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Structured Nyquist Correlation Reconstruction for
DOA Estimation With Sparse Arrays

Chengwei Zhou ™, Member, IEEE, Yujie Gu

Abstract—Sparse arrays are known to achieve an increased num-
ber of degrees-of-freedom (DOFs) for direction-of-arrival (DOA)
estimation, where an augmented virtual uniform array calculated
from the correlations of sub-Nyquist spatial samples is processed
to retrieve the angles unambiguously. Nevertheless, the geometry
of the derived virtual array is dominated by the specific physi-
cal array configurations, as well as the deviation caused by the
practical unforeseen circumstances such as detection malfunction
and missing data, resulting in a quite sensitive model for virtual
array signal processing. In this paper, we propose a novel sparse
array DOA estimation algorithm via structured correlation recon-
struction, where the Nyquist spatial filling is implemented on the
physical array with a compressed transformation related to its
equivalent filled array to guarantee the general applicability. While
the unknown correlations located in the whole rows and columns
of the augmented covariance matrix lead to the fact that strong
incoherence property is no longer satisfied for matrix completion,
the structural information is introduced as a priori to formulate the
structured correlation reconstruction problem for matrix recon-
struction. As such, the reconstructed covariance matrix can be ef-
fectively processed with full utilization of the achievable DOFs from
the virtual array, but with a more flexible constraint on the array
configuration. The described estimation problem is theoretically
analyzed by deriving the corresponding Cramér-Rao bound (CRB).
Moreover, we compare the derived CRB with the performance of
the virtual array interpolation-based algorithm. Simulation results
demonstrate the effectiveness of the proposed algorithm in terms
of DOFs, resolution, and estimation accuracy.

Index Terms—Direction-of-arrival estimation, Nyquist spatial
filling, sparse arrays, structured correlation reconstruction.
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I. INTRODUCTION

IRECTION-OF-ARRIVAL (DOA) estimation using sen-
D sor arrays plays a fundamental role in a broad range of ap-
plications, including radar, acoustics, speech, medical imaging,
wireless communications, etc [1], [2], [3], [4], [5], [6]. Generally,
the spatial signals are uniformly sampled within the framework
of the Nyquist-Shannon sampling theorem for multichannel
signal processing, where a uniform linear array (ULA) is the
most popular array configuration. While the aperture of the
ULA is limited by the number of physical sensors, the idea of
sparse sensing has been developed by processing sub-Nyquist
spatial samples to overcome the performance bottlenecks. Since
sub-Nyquist spatial sampling provides an enhanced resolution
with an increased number of degrees-of-freedom (DOFs) be-
yond the Nyquist sampling-based approaches [7], [8], [9], [10],
[11], [12], exploiting sparse arrays for DOA estimation has
become aresearch hotspot, where coprime arrays [13] and nested
arrays [14] are the most representative systematically-designed
configurations.

Virtual array signal processing techniques are the mainstream
solution for DOA estimation with sparse arrays, where the
second-order correlation statistics corresponding to an enlarged
virtual ULA are processed in the virtual domain [15], [16], [17],
[18]. As such, the model variation from Nyquist to sub-Nyquist
sampling can be effectively handled for an unambiguous angle
retrieval. Nevertheless, it should be noted that the geometry of
a virtual array is dominated by the sparse array configurations,
which can be categorized as fully augmentable arrays [19] and
partially augmentable arrays [20]. As compared to the fully aug-
mentable arrays which have a contiguous virtual array geometry,
the partially augmentable arrays do not possess an ideal virtual
ULA. A typical solution to cope with a non-uniform virtual array
is simply extracting its contiguous segment for the subsequent
processing [21]. Although the segmented virtual ULA still has
more elements than the number of physical sensors in the sparse
array, a performance loss is inevitable due to the removal of
correlation statistics corresponding to the discontiguous virtual
sensors. On the other hand, since a specific virtual sensor usually
corresponds to multiple lags in the derived difference coarray,
the correlation calculated from a finite number of sparse array re-
ceived signals varies [22]. Therefore, how to properly process the
available correlations that are calculated from the sub-Nyquist
spatial samples to match the Nyquist sampling-based model is
a critical task for sparse array DOA estimation.

In order to make full use of the discontiguous virtual array, the
idea of spatial interpolation has been introduced to the virtual do-
main for generating a ULA containing all the derived virtual sen-
sors, where both matrix completion and matrix reconstruction
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principles have been adopted for the retrieval of the covariance
matrix corresponding to the interpolated virtual ULA [23], [24],
[25], [26], [27], [28]. With the optimized augmented covariance
matrix from virtual array interpolation, all the sub-Nyquist
correlations can be effectively processed within the Nyquist
sampling rate in the virtual array domain. On the other hand, to
maintain a desirable virtual array geometry for processing, the
configuration of the sparse array has been optimally designed
with specific structural constraints [29], [30], [31]. As such,
the properties of both, the physical array and its corresponding
virtual array, are optimized to achieve a lower mutual coupling, a
lower sensor redundancy, a longer contiguous virtual array, etc.
Furthermore, following the dynamic optimization principle, the
concept of sparse array motions has been proposed to increase
the number of achievable DOFs and contiguous lags for DOA es-
timation [32], whereas the antenna selection technique dynami-
cally optimizes the sparse array configuration to maintain a given
performance guarantee [33]. Moreover, the characteristics of
virtual difference coarrays have been optimized by considering
the space-frequency domain for multi-dimensional DOA-range
parameter joint estimation [34]. Nevertheless, all these efforts in
the state-of-art literature are based on a deterministic array con-
figuration. While the geometry of the virtual array is determined
by the sparse array configuration, in addition to the restricted
physical array configuration in practical usage, unforeseen cir-
cumstances such as detection malfunction, sensor failure, and
missing data also lead to a quite sensitive geometry in the virtual
domain. As such, a random change of the deterministic sparse
array configuration will results in a corruption of the contiguous
virtual array geometry, leading to an indeterminate signal model.
Therefore, it is urgent to develop a generalized framework to
effectively process the whole sub-Nyquist correlations for DOA
estimation with sparse arrays.

In this paper, we propose a novel sparse array DOA es-
timation algorithm via structured correlation reconstruction.
Instead of deriving the virtual array from the physical array
as the conventional methods did, we shift the focus to the
physical array domain for generating an equivalent ULA, which
is accomplished by filling presumed sensors on the missing
Nyquist sampling positions. With an established compressed
transformation relationship, the covariance matrix of the as-
sumed ULA is augmented from the sample covariance matrix,
where all the correlations calculated from the received signals
of the sparse array are taken into account. While the unknown
entries are located in entire rows and columns that correspond
to the filled sensors, the strong incoherence property is not
satisfied for the augmented covariance matrix, indicating that the
matrix completion principle becomes infeasible [35]. To address
this technical bottleneck, the Hermitian Toeplitz structure of
the ULA-based covariance matrix is incorporated as a priori
information to formulate a structured correlation reconstruction
problem for the retrieval of the unknown entries in the aug-
mented covariance matrix. With the optimized covariance matrix
corresponding to the assumed ULA, the Nyquist sampling-based
processing can be applied to resolve off-grid sources with an
increased number of DOFs. An equivalent performance re-
lationship between the proposed Nyquist spatial filling-based
approach and the virtual array interpolation-based approaches is
analyzed, and the performance bound for the estimation of DOAs
is also theoretically derived. Simulation results are presented
to validate the effectiveness of the proposed DOA estimation
algorithm.
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TABLE I
LIST OF NOTATIONS
Symbol Description
a,a, A Scalar, vector, and matrix
% (\T /\H Conjugation, transpose, and conjugate trans-
(5670 pose
E[] Statistical expectation
. Diagonal transformation between a column
diag(-) - R .
vector and its corresponding diagonal matrix
vec(+) Vectorization
®, O Kronecker product, Khatri-Rao product
> Matrix inequality
I Ales || [ Frobenius norm, nuclear norm
1=+v-1 Imaginary unit
Pa(.) Projection operation with the corresponding
@ positions indexed by set 2
Hermitian Toeplitz matrix with a as its first
Toep(a)
column
Tr(-), rank(-) Trace, rank
A7\ (A) Inverse, the i-th eigenvalue of A
|A] Cardinality of A
Ay Non-negative subset of A
C, R Set of complex number, set of real number
I Identity matrix
0 Zero vector or matrix

To be specific, the main contributions of this work are sum-
marized as follows.

® Wepresent a Nyquist spatial filling approach to the physical
array for DOA estimation with generalized sparse arrays,
where the established compressed transformation guaran-
tees the full utilization of sub-Nyquist correlations without
limiting the deterministic array configuration.

® We formulate a correlation reconstruction problem with
matrix structure constraints to retrieve the whole rows
and columns of the augmented covariance matrix corre-
sponding to the presumed sensors, such that the Nyquist
sampling-based methods can be effectively processed.

e We derive the Cramér-Rao bound (CRB) for DOA es-
timation from the reconstructed covariance matrix of a
presumed ULA, based on which the equivalence relation-
ship to the virtual array interpolation-based algorithms is
verified.

The rest of this paper is structured as follows. In Section II, the
preliminaries of the sparse array signal model are presented. In
Section III, the proposed structured correlation reconstruction-
based DOA estimation algorithm is described, and its theoretical
performance analysis is presented in Section IV. In Section V,
numerical simulations are conducted for performance compari-
son, and the conclusions are drawn in Section VI. The notations
throughout this paper are listed in Table 1.

II. SPARSE ARRAY SIGNAL MODEL

By focusing on sensor arrays, sub-Nyquist spatial sampling
as well as its diverse variants in practical applications including
sensor failure can be abstracted as a sparse array configuration as
shown in Fig. 1(a). In particular, the Nyquist sampling positions
U represented by the dashed squares have an inter-element
spacing of unit d, which is equals to half a wavelength, i.e., the
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Fig. 1. Illustration of Nyquist spatial filling for sparse arrays. (a) S: Sparse
array; (b) U: Presumed ULA.

maximum distance satisfying the Nyquist spatial sampling rate.
The sensors’ positions of a sparse array S constitute a subset of
U,ie.,S = {uid,uad, ..., ugd} C U with the first element as
the reference (e.g., u; = 0). Due to the sparse deployment, the
spacings between adjacent sensors in S are usually larger than

Assuming that there are K far-field narrowband and uncor-
related sources illuminating the sparse array S from distinct
directions @ = [01, 05, ...,0x]7T, the received signals in the I-th
time slot can be modeled as

K
z(l) =Y as(Or)si(l) +ns(l) = As(8)s(l) + ns(l), (1)
k=1

where
. ) T
a'S(ek) _ |:1)e—jﬂ'u2 sm(Ok)7 o )e—jﬂ'u‘g‘ sin(0y) e (C\S\ )
denotes the steering vector towards 6, Ag(0)=
[as(61),as(62),. .., as(0)] € CP*K is the steering matrix

of the sparse array S, s(I) = [s1(1), s2(1),...,sk(1)]T € CK
contains the signal waveforms of the K sources, and
ng(l) ~CN(0,02I) is an independent and identically
distributed (i.i.d.) additive Gaussian white noise vector with o2
representing the noise power.

Accordingly, the array covariance matrix can be expressed as

K
Reo = E [z()2"(1)] = ofas(0r)at (0x) + o2 1
k=1

= As(9)PAL(0) + 01, 3)

where 07 = E[|si(1)|*] denotes the power of the k-th source,
and P = diag(p) = diag([0?,03,...,0%]") is a diagonal ma-
trix containing the power of K sources. In practical applications,
the array covariance matrix R, is usually estimated by the
sample covariance matrix

1

me = (4)

il

L
>z,
=1

where L denotes the number of snapshots.

Compared with ULAs, sparse arrays are capable of breaking
through the DOFs limited by the number of physical sensors
while offering a higher resolution. Nevertheless, the incomplete
signal model resulting from the sub-Nyquist spatial sampling
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prevents a direct adoption of the conventional Nyquist sampling-
based methods to process the formulated signal model x(1).
Therefore, it is necessary to explore a general solution to process
the signals received by the sparse arrays, such that the advantages
brought by the sparse deployment can be effectively maintained.

III. DIRECTION-OF-ARRIVAL ESTIMATION FOR GENERALIZED
SPARSE LINEAR ARRAYS

In this section, we propose a structured correlation
reconstruction-based DOA estimation algorithm for generalized
sparse linear arrays. First, we focus on the sparse array itself
rather than generate a virtual array, and implement the Nyquist
spatial filling to generate a presumed ULA, where the transfor-
mation relationship between their correlation statistics can be
uniquely established. Then, we can retrieve the unknown corre-
lations corresponding to the presumed sensors in the augmented
covariance matrix of the presumed ULA by solving a struc-
tured correlation reconstruction problem, where the structural
information is incorporated as a priori to address the challenges
caused by the whole rows and columns of missing elements.
As such, the reconstructed covariance matrix corresponding to
the presumed ULA can be effectively utilized to perform DOA
estimation within the framework of Nyquist spatial sampling.

A. Nyquist Spatial Filling and Compressed Transformation

In order to meet the Nyquist spatial sampling while maintain-
ing the enlarged array aperture offered by the sparse arrays, we
propose a Nyquist spatial filling scheme for the generation of
a presumed ULA. In particular, as shown in Fig. 1, by filling
the presumed sensors represented by the gray triangles into
Nyquist sampling positions ranging from 0 to ws|d where the
physical sensor does not exist, the resulting presumed ULA
U = {v1d, vad, ..., vy d} shownin Fig. 1(b) has the same array
aperture of wgd as that of the original sparse array S, where
vy = us) and v = 0. As such, the discontiguous sparse array
S is transformed into a contiguous uniform array U with all the
elements in S included.

Since no actual signal is sampled from the positions of U — S,
there is no knowledge about the signal statistics available from
these presumed sensors. In order to perform Nyquist sampling-
based DOA estimation, it is necessary to activate these presumed
sensors by recovering their corresponding signal statistics. The-
oretically, the received signals of the presumed ULA U can be
expressed as

K
y(1) =D au(@r)sk(l) + nu(l) = Au(8)s(l) +nu(l), (5)
k=1

where AU(G) = [aU(91)7 aU(02)7 LI} aU(aK)] € C‘U‘XK is
the steering matrix of the presumed ULA U with the k-th column

. . T
aU(ek) _ 1’ e ITV2 sm(@k)’ e eI sin(0x)

6)

representing the steering vector towards 6y, and ny (1) € CV is
the additive Gaussian white noise vector with the same statistical
character as ng(l) in (1).

Accordingly, the sparse array received signal «({) in (1) can
be regarded as a compressed sampling of the presumed ULA
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received signal y(1) in (5), i.e.,
K
z(l) = 2y(l) = > _ ®ay(0x)sk(l) + ny(l)
k=1

= B Ay(0)s(1) + Bry(l), ™)

where ® € RISVl is a sketching matrix containing binary
entries 0 and 1. More specifically, the entry of the 7-th row and
the j-th column of the sketching matrix, ®; ;, is 1 if and only if
the i-th element in S overlaps with the j-th element in U (i.e.,
its (z, u; + 1)-th element is 1), while all the remaining elements

are 0,7 =1,2,...,|S|. As an illustrative example, the sketching
matrix relating a sparse array
Sexample = {O, d, Zd, de 7d} (8)
and the corresponding presumed ULA
Uexample = {0, d, 2d, 3d,4d, 5d, 6d,7d} )
is given by
100 0 0 O0O0O0
01 000O0O0OTO
Pexampe = [0 0 1.0 0 0 0 O (10)
000O0OO0OT1O0F®O
0 000O0OO0OTU 071

In contrast to the conventional compressive sensing method
using random sensing kernels for dimension reduction, the
sketching matrix ® is fixed for a given sparse array, which lays
the foundation for processing the generalized sparse array.

In particular, with the sketching matrix ®, the sparse array
covariance matrix Ry, € C/S*5in (3) can be reformulated as

me =dF [y(l)yH(l)] (I)H = ¢Ryy(1)H7 (] 1)

where

K
Ry, = E [yOy" ()] =D orav(Ok)af (0x) + oo
k=1

= Ay(6)PAj(6) + o1 (12)

is the theoretical covariance matrix of the presumed ULA U.
Since @ is a real-valued matrix following ®® = I ¢ RISI*ISI,
it will not affect the noise covariance matrix in R, during
dimension reduction. Hence, (11) can be rewritten as

R,, = ®Ay(0)PAY ()@Y + 021 (13)

with ® Ay (0) = Ag(0). On the other hand, the sketching matrix
® has the property of ®71® = A, where A € RV*Ul i5 a
diagonal matrix, and the binary elements on its main diagonal
represent the existence of physical sensors in each position of
U. As such, the sparse array sample covariance matrix R, €
CBI¥BI can be augmented to a presumed uniform array sample
covariance matrix Ry, € CU*Ul as

R,, = AR, A =®"R,,®. (14)

Obviously, the entries in R,,, related to the presumed sensor
positions are all zeros, whereas the other entries remain the

same as those corresponding correlations in Ry,. As such,
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the problem of filling the presumed sensors in the spatial do-
main has been transformed into the problem of retrieving the
zero-forced correlations in the augmented covariance matrix

Ry, = AﬁyyA. Therefore, it is critical to estimate the corre-
lation of the presumed ULA from the sample covariance matrix

Ry

B. Structured Nyquist Correlation Reconstruction

According to the structure of the sketching matrix @, it is
observed that for any ¢d € U — S, both (¢ + 1)-th row and the

(¢ 4 1)-th column of the augmented covariance matrix R, in
(14) are all-zero vectors. Unfortunately, all-zero vectors either
in rows or in columns cannot be effectively retrieved through
matrix completion, which essentially exploits the data correla-
tion [35]. In particular, when there is no information available in
the entire row or column, the strong incoherence property is not
satisfied; hence, there is no optimal solution for such a matrix
completion problem.

Note that, due to a finite number of temporal samples, it is
not mandatory to keep the calculated correlations same in the
retrieved covariance matrix. Therefore, we turn to adopt the
principle of matrix reconstruction, where the available corre-
lations are taken as the reference for reconstruction. With the
observation that the theoretical covariance matrix of the ULA
(e.g., Ry, in (12)) is Toeplitz and Hermitian, we propose a
structured correlation reconstruction problem

H@Ryyéﬂ — Ry

min
Ry, cCIUxIU

F

subject to rank (Ry,) = K,

Ry, =Ry, Ry, cThp (15
to reconstruct the covariance matrix corresponding to the pre-
sumed ULA U. Here, the objective function aims to minimize the
fitting error between the observed sub-Nyquist correlations in
the sample covariance matrix R, and those at the correspond-
ing positions of the optimization variable R,,,. The first equality
constraint maintains R, a low-rank matrix with its rank equals
to the number of sources K, whereas the second equality con-
straintenforces IRy, to be a Hermitian matrix. The last constraint
indicates that R, is a |U|-dimensional positive semi-definite
(PSD) Toeplitz square matrix, owing to non-negative power for
both sources and noise. With the constraints of these structural
information as a priori, it is possible to retrieve the zero-forced
rows and columns in Ry,,.

Alternatively, the proposed optimization problem (15) can be
reformulated as

~ min
Ry, CUIXI

H@Ryycﬁﬂ ~ Ry,

- + prank (Ryy)

subject to Ry, = Ryy, Ryy € Thap, (16)
where 1 is a regularization parameter to balance the covariance
fitting error and the rank penalty. However, since the matrix
rank is nonconvex, the optimization problem (16) is NP-hard.
To address this issue, the nuclear norm is introduced as a convex
relaxation of the nonconvex matrix rank. As such, the nonconvex
structured correlation reconstruction problem can be relaxed as
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Algorithm 1: Proposed Structured Nyquist Correlation
Reconstruction-based Sparse Array DOA Estimation.

1: Input: Array configuration S, received signals
{x()}E,. o

2:  Output: Estimated DOAs 6 = [0;,0,...,0k]|".

Calculate the sample covariance matrix R by (4);

4: Perform Nyquist spatial filling on the physical array S
to generate a presumed ULA U;

5:  Determine the sketching matrix ® based on S and U;

6: Relate the sample covariance matrix Rm to its
augmented version IRy, via the compressed
transformation (14);

7. Solve the convex optimization problem (17) to obtain
the optimized covariance matrix Ry, corresponding
to U;

8: Implement Nyquist sampling-based DOA estimation
on R}, € CVIIV e.g., via MUSIC as in (18).

(O8]

a convex optimization problem

min

®R,,®" - R
Ry, cClUXIUI H vy e

F+“||Ryy||*

subject to ng =Ryy, Ry, € Tgéle

a7
which can be efficiently solved by interior-point methods. Mean-
while, considering the fact that the optimization problem (17) is
dedicated to a generalized framework for sparse array configu-
rations, the nonsmooth nuclear norm term || Ry, || may cause
a nonconvergent iteration process under certain circumstances.
As such, the alternating direction method of multipliers solution
can also be implemented as a candidate to expedite the solving
process.

The optimized solution of (17) R}, behaves like the co-
variance matrix of the presumed ULA U, ie., Ry, in (12),
whose steering matrix Ay (0) indicates the number of achievable
DOFs increased from [S| to |U| for DOA estimation. There-
fore, benefitting from the proposed Nyquist spatial filling in
the physical array domain for the generation of a presumed
ULA, off-the-shelf Nyquist sampling-based DOA estimation
methods can be adopted, such as subspace-based methods [21],
sparsity-based methods [36], [37], and their variants [38], [39],
[40]. For instance, the multiple signal classification (MUSIC)
spatial spectrum corresponding to the presumed ULA U is given
as

Puusic(9) = (a'(0) B, E¥ay(0)) ", (18)
where E,, € C/V*(U=K) spans the noise subspace of the op-
timized covariance matrix R, corresponding to U. By col-
lecting the directions corresponding to the largest K spectrum
responses, the DOAs are estimated as 6 = [él, O, ..., éK}T.

The proposed DOA estimation algorithm via structured cor-
relation reconstruction is summarized in Algorithm 1. The
computational complexity of solving the proposed optimiza-
tion problem (17) is O(|U|*?) [41], which relates to the array
aperture. It is worth highlighting that the proposed algorithm
does not incorporate the predefined spatial sampling grids into
the optimization problem. Hence, the estimation accuracy will
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QO: Observed Correlation  X: Missing Element

O0O0OX00xx0O0 OO0 xXxx00x00O0
O00O0OX00OXx0 OO0OxXxx00xXx000
O000O0OX00 X x XX XX XX XX XX
XO000O0OX00 X X X XX XX XX XX
Ox00000OX00 OO0OxXxx00xXx000
OO0Ox00000OxO0 OO0 xXxxXx0O00Ox00O0
XOO0OXO0O0O0O0OO0O X X XXX XXXXXX
XX00OxXx00000 OO XX0OO0OXO0O0O0
OXX00OxXx000O0 OO0 XX0O0xXx00O0
| OO XX0O0OX000] | OO XX OO X000
(a) (b)
Fig. 2. Illustration of the principle difference on the augmented covariance

matrix to be retrieved. (a) Virtual array interpolation; (b) Proposed Nyquist
spatial filling.

not be limited by the grid density, ensuring the capability of
resolving off-grid sources.

IV. PERFORMANCE ANYLYSIS

In this section, the performance of the proposed struc-
tured correlation reconstruction-based DOA estimation algo-
rithm is analyzed theoretically. First, the relationship between
the proposed Nyquist spatial filling approach and the virtual
array interpolation-based approaches is established. Then, the
Cramér-Rao bound tailored for the proposed DOA estimation
problem is derived.

A. Relationship With Virtual Array Interpolation Approaches

The idea of virtual array interpolation had been proposed to
address the information loss caused by the discontiguous virtual
array, which enables the full utilization of virtual signals for
sparse array DOA estimation. For the sake of clarity, here we
briefly review the virtual array interpolation-based approaches.

The virtual array signals are obtained by vectorizing the sparse
array covariance matrix Rz, (3) as

K
re = vec (Rgy) = Zaiaswk) @ a(0;) + o2vec (I),

k=1
19)
whose corresponding virtual array geometry is given as
D= {’U,ld - Ujd, YV u,d, Ujd S S} (20)

The virtual array D is contiguous for a fully augmentable ar-
ray (e.g., nested array), but discontiguous for a partially aug-
mentable array (e.g., coprime array). Therefore, the virtual array
interpolation is only applicable for the partially augmentable
array to form a virtual ULA V containing all discontiguous
virtual sensors in D . Accordingly, the covariance matrix of the

interpolated virtual ULA, R,,, can be constructed by rearranging

the correlations in 7, = vec(Ry,) into a Hermitian Toeplitz
matrix, i.e., the diagonals corresponding to the virtual sensors in
D, are selected from the corresponding entries in 7., whereas
the diagonals corresponding to the interpolated virtual sensors
inV — D, are initialized to zeros.

The principle difference between the virtual array interpo-
lation and the proposed Nyquist spatial filling is illustrated in
Fig. 2. In particular, for the virtual array interpolation, the discon-
tiguous virtual sensors cause the diagonals of missing elements
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in the corresponding positions of the augmented covariance
matrix R,. While the main diagonal of R, contains the auto-
correlations, its strong incoherence property is always satisfied.
By contrast, the augmented covariance matrix resulting from
Nyquist spatial filling, R, presents whole rows and columns of
missing elements, which makes the matrix completion principle
not work.

To interpolate the discontiguous virtual arrays, the matrix
completion principle can be utilized to retrieve the unknown
correlations in I:L, as [24]

[[Toep(2)].

min
Toep(z)eCIVIIV|
Pa (Toep(2)) = Pa(Ry),

where the equality constraint keeps the observed correlations in
R, same in the optimized covariance matrix.

More recently, the matrix reconstruction principle has been
introduced to reconstruct the covariance matrix corresponding
to the interpolated virtual ULA as [26]

Tr (Toep(z))

subject to 21

min
Toep(z)eCIVIxIVI
2
<6

subject to HPQ (Toep(z)) — R,

Toep(z) = 0,

(22)

where the inequality constraint enforces the norm of reconstruc-
tion error on the observed positions to be bounded by a small
threshold £ > 0, and the curled inequality constraint indicates
a PSD matrix. The optimized covariance matrix Toep(z*) from
(21) or (22) behaves like the covariance matrix of the interpolated
virtual ULA V, which thus enables a Nyquist sampling-based
DOA estimation in the virtual domain.

By comparing the virtual array interpolation-based optimiza-
tion problems (21) and (22) with the proposed Nyquist spatial
filling-based optimization problem (17), we can establish the
following Property to reveal their relationship with respect to
DOA estimation performance.

Property 1: There is no DOA estimation performance dif-
ference between using the Nyquist spatial filling and the virtual
array interpolation, if and only if all the correlatlons in Rm (1D
are included in the reference matrices Ry, of (17) and R of
(21) and (22). 0

Proof: In order to validate the claimed property, we analyze
the above-mentioned approaches from three aspects, namely,
retrieved covariance matrix, nuclear norm penalty, and the cor-
relation fitting component.

Retrieved Covariance Matrix: In the framework of virtual
array interpolation, the correlations in the covariance matrix
Toep(z*) € CIVI*IVl optimized by the matrix completion prin-
ciple remain the same as the observed correlations in R, that
correspond to the discontiguous virtual array D, whereas the
optimization problem (22) using the matrix reconstruction prin-
ciple forms a denoising constraint to minimize the difference
between the observed correlations in Rv and those in the cor-
responding positions of Toep(z*). Here, the interpolation in the
virtual domain indicates that |V| = max(ID, ) + 1. On the other
hand, the incorporation of the sketching matrix ® in the proposed
Nyquist spatial filling-based approach (17) directly takes the
sample covariance matrix R as the reference for denoising.
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Meanwhile, the prior information on the matrix structure is
required for retrieving the unknown entries in the whole rows
and columns of the |U| x |U| dimensional augmented covari-
ance matrix corresponding to the presumed ULA. According to
the procedure of Nyquist spatial filling of a physical array in
Section III-A, we have |U| = max(S) + 1. From (20), we have
max (D, ) = max(S), and hence the relationship

V| = max(Dy) + 1 = max(S) + 1 = |U] (23)

holds. While all above-mentioned optimization problems (17),
(21) and (22) enforce the optimized matrix a Hermitian Toeplitz
structure, both the retrieved covariance matrix Ry, € CIUlx|ul
from the proposed Nyquist spatial filling and those optimized
from the virtual array interpolation, i.e., Toep(z*) € CIVIxIVI,
have the same matrix dimension. Hence, the subsequently in-
corporated Nyquist sampling-based DOA estimation methods
operate with a similarly structured ULA. |

Nuclear Norm Penalty: As the convex envelope of the rank
function, the nuclear norm is incorporated into the formulated
optimization problems (17) and (21), representing an approx-
imation to the upper-bound of the matrix rank. Although the
virtual domain atomic norm is applied for gridless reconstruction
with atomic norm minimization in [26], its objective function is
eventually cast as a trace minimization problem in (22) accord-
ing to the properties of the atomic norm for multiple virtual
measurements. Note that, both optimization problems (17) and
(22) claim a PSD constraint on the optimized covariance ma-

trix, i.e., Ay (Ry,,) > 0,u=1,2,...,|U| and A, (Toep(z*)) >
0,v :‘1, 2,... ‘ ,[V]. While Ry, and Toep(z*) are square ma-
trices, it is 0bv10us that
Ul
1Rl =2 A (B) =T (). (24)
V|
| Toep(z Z Ay (Toep(z*)) = Tr (Toep(z*)), (25)

indicating an equivalence relationship between the trace opera-
tor and the nuclear norm operator in the considered optimization
problems. Therefore, the nuclear norm penalty in the proposed
optimization problem (17) has the same effect as the objective
functions of both virtual array interpolation-based optimization
problems (21) and (22). While the nuclear norm or trace norm
is the convex envelope of the matrix rank for convex relaxation,
it has been pointed out in [42] that the original rank penalty
term can be further approximated by applying a family of
non-convex penalties, where the suboptimal solution is capable
of approaching the theoretical one. |

Correlation Fitting Component: In the virtual array
interpolation-based approaches, the correlations in R, corre-
sponding to the discontiguous virtual sensors in D4 can be
selected from 7, corresponding to their respective lags. It has
been revealed in [43] that

E[rmf’H] = rmr + —

T
@ (Rm ® Rea) (26)
indicating that the vectorized sample covariance matrix 7,
calculated from finite snapshots contains multiple entries cor-
responding to the same lag. While different pairs of elements

in S may correspond to the same virtual sensor in D according
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to (20), not all the correlations in Rm are effectively utilized
with such a selection. Alternatively, by replacing the selection
process with an averaging process, where the correlations cor-

responding to the same lag in Rm are averaged to form Rv,
the virtual array interpolation-based approaches are capable of
taking all the available information as the proposed Nyquist
spatial filling-based approach. With such an average, they share
the same information from the reference matrix Rmm or R,,
for optimizing the augmented covariance matrix. Furthermore,
according to the conclusions drawn in [22], a performance closer
to the CRB can be obtained by properly sampling the correlations
from the sample covariance matrix 7, with a certain strategy
instead of simply performing an average. |

Whileitis clear from (26) that 7, tends to 7, when the number
of snapshots L goes to infinity, we can conclude that on the
premise of utilizing all the correlations in the ideal R, for the
optimization, the virtual array interpolation-based approaches
have the same DOA estimation performance as the proposed
algorithm, where the Property 1 is validated. Nevertheless, ow-
ing to the incorporation of the sketching matrix ® relating S
and U, the proposed algorithm is more flexible to cope with a
general class of sparse array configurations without investigating
the characteristic of derived virtual array, and the structured
correlation reconstruction ensures an effective retrieval of the
augmented covariance matrix resulting from Nyquist spatial
filling in the physical array domain.

B. The Cramér-Rao Bound

As a lower bound on the variance of any unbiased estimator,
the Cramér-Rao bound can be utilized as a unified metric for
evaluating the performance of parameter estimation. For the
unconditional model as defined in (1), the lower bound of
the DOA estimation performance can be represented by the
stochastic CRB, which is calculated from the inversion of the
Fisher information matrix [44]. However, when the number
of sources exceeds the number of physical sensors, its Fisher
information matrix becomes singular, rendering the stochastic
CRB invalid. In this subsection, we derive the CRB tailored
for the proposed structured correlation reconstruction-based
DOA estimation with Nyquist spatial filling, where both the
overdetermined case (K < |S|) and the underdetermined case
(K > |S]) are included.

For the proposed algorithm, the DOA estimation is accom-
plished in the processing of the reconstructed covariance matrix
Ry, x |U| corre-
sponding to the presumed ULA U. Nevertheless, from the in-
formation perspective, only the observed correlations calculated
from the received signals (1) of the sparse array S are effective,
reflected by the non-zero entries in the augmented covariance
matrix R,,,. Although the unknown correlations represented as

zeros in Ry, have been retrieved from the optimization problem
(17), the effective information beyond the correlations contained
in Ryq is not increased. Therefore, the (m,n)-th entry in the
Fisher information matrix F' can be calculated from R, as [44],

[45], [46]

OR, OR,
-1 TL 51 rT

where (3,,, and 3,, denote the m-th and n-th entry of the parameter
vector 3, respectively. For the DOA estimation problem, the

F,,,=LTr 27)
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unknown parameters include the DOAs of sources 6 and their
power p, as well as the noise power 2. As such, the parameter
vector (3 can be expressed as

B=1[0"p", 02" (28)

While the DOAs are estimated from the augmented covari-
ance matrix Ry, to achieve an increased number of DOFs,
according to the compressed transformation relationship estab-
lished in (11), the Fisher information matrix F' in (27) can be
calculated with respect to the theoretical covariance matrix of
the presumed ULA R, and the sketching matrix ® as

9 (‘I)Ryyq’T) 9 (‘I’Ryy'I’T)
OBm 0B ’
(29)
where the partial derivative operation is related to IR, because
the sketching matrix ® only depends on the array configura-
tions and is independent of any parameter in 3. According
to the property of the trace operator, we have Tr(ABCD) =
[vec(BM)]H(AT @ C)vec(D). In addition, while R, is non-
singular, we have (Rgz ® Rge) ' = R,L ® R,L. Then, the
derivation process of the Fisher information matrix continues as

T

9Pm

F’m,n = LTr R;;lc

H
(Ri, ® Rux)

T
(8(%@)) 50

-1

6ﬁn

Combining the equivalent transformation of the vectorization
process, i.e., vec(P Ry, ®1) = (@ @ ®)vec(Ry,), the Fisher
information matrix can be further represented as

H
F=1L {VeC(a.Ryy)] (@ ® q))T (Rgm ®Rmm)71
B
vec (ORy.)
(‘I’@‘P) 73ﬁ vy, 3

By incorporating the property for the Kronecker product calcula-
tion (A ® B)(C @ D) = AC ® BD, the Fisher information
matrix can be further calculated as.

H
For [0 (re) e (@7 R)) (@0 )
vec (0Ryy)
B
_I [Vec (gé%yy)rl ((QTR;SE‘P)T ® (‘I)TR;;@))
vec (ORy,)
oB
(32)

According to the compressed transformation relationship be-
tween R,, and R,, as established in (11), the Fisher infor-
mation matrix can be finally represented only related to the
theoretical covariance matrix of the presumed ULA R, as in
(33) shown at the bottom of the next page. Considering that
the sketching matrix ® is a non-square and singular matrix,
the term (@R, ®)~! cannot be further decomposed. The
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Fig. 3. Comparison of the Cramér-Rao bounds. (a) Overdetermined case;
(b) Underdetermined case.

above-mentioned derivation on Fisher information matrix from
(29) to (33) effectively reflects the compressed transformation
relationship established by ®.

According to the definition of R, in (12), its vectorization
follows

ry = vee (Ryy) = (A}(0) © Ay(0)) p + i),

K

=" o2ai(0r) ® av(0r) + 02y,
k=1

(34)

where 4y € RV denotes the vectorization of the |U| x |U]
dimensional identity matrix. Then, the vectorized form of the
partial derivative of R,,, with respect to 3 becomes

vee (8Ryy) — % — % 8& % 35)
19J6] 08 00’ Op  doi|’
where
ory _ (0A}(6) . 0Ay(0)
0 — ( 20 © Ay(0)+ Aj(0) © 0 P,
(36)
Iy _ A2 (0)© Ay(0) 37
ap - U U 3
0 .
&% = Z\U\~ (38)

Then, the CRB for the proposed DOA estimation algorithm is
the inverse of the Fisher information matrix as

CRB(B) = F ', (39)

which is feasible to indicate the performance bound of DOA
estimation in both overdetermined and underdetermined cases.

We compare the Cramér-Rao bounds for estimating the DOAs
in Fig. 3 with Nyquist spatial filling in both the virtual array
domain and the proposed physical array domain, where the
sparse array consists of 7 physical sensors located at 0, 3d,
5d, 6d, 9d, 10d, and 12d, respectively. In the overdetermined
case, we consider a single random source from N(0°,1°),
whose direction changes from trial to trial but remains fixed
from snapshot to snapshot. In the underdetermined case, we
consider 10 sources uniformly distributed in [—60°, 60°]. The
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number of snapshots is 500, and the CRB is averaged over
500 Monte-Carlo trials. According to Fig. 3(a), the CRB for
the proposed algorithm, (39), overlaps with the stochastic CRB,
indicating that the derived CRB degenerates to the conventional
stochastic CRB when K < |S|. While the stochastic CRB does
not exist when K > |S|, we compare the CRB for the virtual
array interpolation-based DOA estimation approach [26] and
the derived CRB for the Nyquist spatial filling-based DOA
estimation (39). Itis clear from Fig. 3(b) that both CRBs present
the same response when the signal-to-noise ratio (SNR) varies.
Hence, the performance lower bound for DOA estimation is de-
termined by the correlations in the ideal sparse array covariance
matrix Ry, as in (3), regardless of the subsequent operation
either in the physical array domain or in the virtual array domain.
The observation from this CRB comparison further validates the
equivalence revealed in Property 1 in a theoretical manner.

It is worth noting that the Cramér-Rao bound is typically
tight asymptotically. The most recent work on performance
bound analysis derived an explicit Ziv-Zakai bound for both
overdetermined DOAs estimation and underdetermined DOAs
estimation [47], which is global tight to evaluate the estimation
performance especially in the low SNR regime.

V. SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the performance of the proposed DOA estimation algorithm.
A coprime array configuration, which belongs to a partially
augmentable array with a systematic design, is first consid-
ered for performance comparison. Then, different sparse array
configurations are adopted to illustrate the effectiveness of the
proposed algorithm.

A. Achievable DOFs

We consider a coprime array composed of 7 sensors locat-
ing at Scoprime = {0, 3d, 5d, 6d,9d, 10d, 12d}. To indicate the
increased number of DOFs, the underdetermined case with
9 sources is considered. The proposed structured correlation
reconstruction-based algorithm is compared to two coprime
array DOA estimation algorithms, namely, the covariance matrix
sparse reconstruction (CMSR) algorithm [16] and the sparse sig-
nal reconstruction (SSR) algorithm [37]. Meanwhile, the Capon
algorithm operating on an ULA consisting of the same 7 phys-
ical sensors is also presented for reference. The regularization
parameter for the proposed algorithm is ;. = 2.5 x 1073, which
is heuristically selected according to the simulation parameter
setting as well as the practical experience. The normalized
spectra of the tested algorithms are depicted in Fig. 4, where
the SNR is set to 0 dB and the number of snapshots L = 500.
The red vertical dashed lines in each spectrum represent the true
DOA:s.

Since the ULA consisting of 7 sensors can only distinguish
at most 6 sources, the Capon spectrum shown in Fig. 4(a)
fails to resolve all 9 sources. Although exploiting the coprime
array breaks through the DOFs limitation constrained by the

vec (ORyy)

F_L[ 0B

r { o7 (@R,,®") ' @] e @7 (2R, @") ' @) }

vec (ORyy)

e (33)
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interpolation algorithm; (b) Proposed Nyquist spatial filling algorithm.

number of physical sensors, the CMSR algorithm only uti-
lizes the contiguous segment of the discontiguous virtual ar-
ray Veoprime = {—12d, —10d, —9d, —7d, ...,7d,9d, 10d, 12d}
for virtual domain signal processing. Therefore, the maximum
achievable DOFs for the CMSR algorithm is 7, accounting for
the failure of source identification presented in Fig. 4(b). While
the SSR algorithm makes full use of the discontiguous virtual
array Voprime, it is capable of identifying all the 9 sources, as
shown in Fig. 4(c). Nevertheless, there exist several spurious
peaks in the spatial spectrum, which is caused by the suboptimal
solution to its relaxed sparsity constraint. In contrast, the pro-
posed algorithm presents the best spectrum characteristic among
all tested algorithms in Fig. 4, since it makes full use of the sparse
array received signals while maintaining an ULA-based signal
processing for DOA estimation.

While the optimized covariance matrix Ry, corresponds to
the presumed ULA with 13 sensors ranging from O to 12d,
we increase the number of sources to K = 12 to evaluate its
maximum achievable DOFs. In Fig. 5, the proposed Nyquist
spatial filling-based algorithm is compared with the virtual array
interpolation algorithm [26]. It is clear from Fig. 5(b) that the
proposed algorithm successfully identifies all the 12 sources
with 7 physical sensors, indicating that the Nyquist spatial filling
and the associated structured correlation reconstruction enable
a larger number of DOFs than the discontiguous virtual array
Veoprime- Although performing virtual array interpolation can
also present 12 response peaks in the spectrum, due to the
selection of the virtual domain correlations that correspond to
the same lag, several peaks apparently deviate from the true
directions as shown in Fig. 5(a).
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B. Resolution Performance

We then compare the resolution of the proposed algorithm
with those of the Capon algorithm, the SSR algorithm, and the
virtual array interpolation (VAI) algorithm, where two closely
spaced sources impinge from 0° and 5°. In this subsection, all
the algorithms are applied on the coprime array Scoprime With an
aperture of 12d. The SNRs of both sources are set to 0 dB, and
the number of snapshots is L = 500.

The normalized spectra of the tested algorithms are com-
pared in Fig. 6. Although the Capon algorithm incorporates
the same coprime array as other algorithms, it fails to identify
the two sources as shown in Fig. 6(a). The spectrum char-
acteristic of the SSR algorithm directly operating on the en-
tire discontiguous virtual array is not satisfactory, where one
peak is not quite obvious as shown in Fig. 6(b). In contrast,
both the virtual array interpolation algorithm and the proposed
Nyquist spatial filling-based algorithm are capable of distin-
guishing these two closely-spaced sources, and the proposed
algorithm shows sharper response peaks than the virtual array
interpolation algorithm. The comparison result indicates that the
proposed algorithm owns a more reliable performance than the
virtual array interpolation algorithm in the matrix reconstruction
process.

To further demonstrate the angular resolution of the proposed
algorithm, we compare the identification rate by varying the
interval between the two sources. In particular, assume that the
first source 0; is randomly generated from a normal distribu-
tion A/(0°,1°), whose direction changes from trial to trial but
remains fixed from snapshot to snapshot. Moreover, the second
source has the direction 65 = 07 + A6, where A6 denotes the
directional interval between the two sources. The identification
rate is defined as the percentage of success trials among 500
Monte-Carlo trials, where a trial is regarded as successful if
|01 — 02] < AG/2. To maintain a fair comparison, the interval
for spectrum searching or predefined spatial sampling grids in
each algorithm is set to 0.1°.

The identification rates of the tested algorithms with respect to
the directional interval Af are compared in Fig. 7. It is obvious
that the Capon algorithm requires the largest interval to achieve
the same identification rate as the other algorithms. Although
the SSR algorithm and the virtual array interpolation (VAI)
algorithm make full use of the discontiguous virtual array, their
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and L = 500.

identification rates are inferior to the proposed algorithm. In
contrast, by taking advantage of the Nyquist spatial filling and
structured correlation reconstruction, the proposed algorithm
has the best resolution among the tested algorithms and achieves
the full identification rate with a 2.5° directional interval.

C. Estimation Accuracy

To evaluate the estimation accuracy, we compare the root
mean square error (RMSE) of the tested DOA estimation al-
gorithms. The RMSE is defined as

N K
RMSE = KNZZ(HM— )

n=1k=1

(40)

where ékyn denotes the estimate of the k-th source 6, in the
n-th Monte-Carlo trial, and N = 500 denotes the number of
Monte-Carlo trials. In certain trial when the simulated method
fails to identify all the sources, i.e., the number of estimated

DOAs in 6 is less than K , we add additional zeros to meet the
RMSE criterion (40), and both the resulting K DOA estimation
results and the ideal DOAs 6 are sorted in ascend order for
RMSE calculation. Meanwhile, the corresponding CRB (39) is
also plotted as a reference.

We first consider the underdetermined case with 9 off-
grid sources from the directions 8, = 0, + 0,,k =1,2,...,9,
where {0,k =1,2,...,9} are the fixed directions uniformly
distributed in [—50°, 50°] while the random term 6, ~ A/(0°,1°)
changes from trial to trial but remains fixed from snapshot
to snapshot. It is demonstrated in Fig. 8(a) that the proposed
algorithm outperforms the virtual array interpolation algorithm,
and its RMSE converges to a similar value as that of the SSR
algorithm. The reason lies in the fact that the virtual array
interpolation algorithm only selects a part of the correlations
corresponding to the discontiguous virtual array for reconstruct-
ing the covariance matrix of an interpolated ULA. Hence, the
information loss is inevitable, since there may exist multiple
correlations in the sample covariance matrix R corresponding
to a certain lag/virtual sensor. In contrast, both the proposed
algorithm and the SSR algorithm utilize all the correlations
in Rm, which hence lead to a better performance. Neverthe-
less, the SSR algorithm directly operates on the second-order
statistics corresponding to the discontiguous virtual array with
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a relaxed sparsity constraint, the irregular spurious peaks as
illustrated in Fig. 4(c) cause a negative effect on DOA estimation.
On the other hand, the structured correlation reconstruction
(17) not only enables the proposed algorithm to reconstruct the
covariance matrix corresponding to a presumed ULA, but also
utilizes all the correlations of the received signals. It is shown in
Fig. 8(b) that for a given SNR (10 dB), the proposed algorithm
provides a better estimation accuracy regardless of the numbers
of snapshots, where the abnormal point in the curve of the SSR
algorithm is due to the irregular spurious peaks that appear in
its spatial spectrum.

We then compare the DOA estimation accuracy in the max-
imum achievable DOFs case, where 12 sources uniformly dis-
tributed in [—50°, 50°] are simulated. While K = 12 exceeds
the maximum achievable DOFs offered by the discontiguous
virtual array D, only the proposed algorithm and the virtual array
interpolation algorithm are compared in Fig. 9. Different from
the conventional thinking, in such extreme scenario, the RMSE
curve presents a minimal value when the SNR equals to 0 dB and
goes relatively flat when SNR is larger than 5 dB. Nevertheless,
it is clear from Fig. 9 that the proposed algorithm outperforms
the virtual array interpolation algorithm within the entire region
we simulated.

We also consider the overdetermined case assuming a single
source with the direction randomly generated from N (0°,1°)
in each Monte-Carlo trial. Different from the underdetermined
case where the CRB converges to a constant, it can be inferred
from Fig. 3 that the CRB keeps decreasing with the increase
of the SNR in the overdetermined case. Hence, to avoid the
performance limitation of DOA estimation caused by the fixed
spectrum searching interval, the search-free root MUSIC algo-
rithm [48] is used to process the optimized covariance matrices
in the proposed algorithm and the virtual array interpolation
algorithm. In Fig. 10, the proposed algorithm is compared to the
SSR algorithm, the virtual array interpolation algorithm, and the
spatial smoothing-based MUSIC (SS-MUSIC) algorithm [21].
While the SSR algorithm and the SS-MUSIC algorithm suffer
from a performance limitation caused by either fixed predefined
spatial sampling grids or inherent spectrum searching interval,
their RMSE curves become relatively flat when the SNR is larger
than 5 dB as shown in Fig. 10(a). It is observed that there is
a constant gap between the RMSE curve and the CRB for the
virtual array interpolation algorithm when the SNR is larger than
—10 dB although the trend is consistent with the CRB, whereas
the RMSE of the proposed algorithm almost overlaps with the
CRB when the SNR is larger than —10 dB. The simulation
results in Fig. 10(b) also indicate the superiority of the proposed
algorithm compared with other tested algorithms in scenarios
with a different number of snapshots.

D. Sparse Array Configurations

To evaluate the performance of the proposed algorithm under
different sparse array configurations, we compare the RMSE
and the corresponding CRB in Fig. 11 for both the overdeter-
mined case and the underdetermined case. Three sparse array
configurations with 7 physical sensors including the mini-
mum redundancy array (MRA), the nested array, and the
random array are considered. In particular, the sensors
of the MRA and the nested array are respectively lo-
cated in Syra = {0,d,8d, 11d,13d,15d,17d} and Syesrea =
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