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In this article, a general introduction to the area of sensor ar-
ray and multichannel signal processing is provided, including 
associated activities of the IEEE Signal Processing Society 

(SPS) Sensor Array and Multichannel (SAM) Technical Com-
mittee (TC). The main technological advances in five SAM 
subareas made in the past 25 years are then presented in detail, 
including beamforming, direction-of-arrival (DOA) estimation, 
sensor location optimization, target/source localization based on 
sensor arrays, and multiple-input multiple-output (MIMO) ar-
rays. Six recent developments are also provided at the end to 
indicate possible promising directions for future SAM research, 
which are graph signal processing (GSP) for sensor networks; 
tensor-based array signal processing, quaternion-valued array 
signal processing, 1-bit and noncoherent sensor array signal 
processing, machine learning and artificial intelligence (AI) for 
sensor arrays; and array signal processing for next-generation 
communication systems.

Introduction
Sensor array and multichannel signal processing has a long 
history, with typical research topics including beamform-
ing and DOA estimation at its early stage and corresponding 
representative algorithms, including the Capon beamformer/
linearly constrained minimum variance (LCMV) beamformer 
and the MUSIC/ESPRIT algorithms [1], [2], [3], [4], [5]. The 
past 25 years have seen an explosive growth of research ac-
tivities in this area, and significant progress has been made 
in a wide range of theoretical and application areas of sensor 
array and multichannel signal processing. Although, tradition-
ally, the areas’ applications have been mainly limited to the 
defense sector, such as radar and sonar, today, we can see their 
impact in everyday life, including beamforming for ultrasound 
imaging, synthetic aperture radar for remote sensing, vehicular 
radar (ultrasound and electromagnetic) for autonomous driv-
ing, microphone arrays for human-machine interfaces (a good 
example is the Amazon Echo), and MIMO antenna arrays for 
Wi-Fi and mobile communications standards (IEEE 802.11n, 
IEEE 802.11ac, 3G, WiMax, and LTE).
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As a result, the sensor array and multichannel signal pro-
cessing research area has expanded significantly in the past 
years, as reflected by the scope of the SPS SAM TC. The 
SAM TC, formed in 2000, aims to promote activities within 
the technical fields of sensor array processing and multichan-
nel statistical signal processing [6], including beamforming 
and space-time adaptive processing; DOA estimation; source 
separation; target detection; localization and tracking; MIMO 
signal processing; array processing for radar, sonar, and com-
munications; and many other applications of multisensor and 
synthetic aperture systems, as indicated by the list of editors’ 
information classification schemes covered by the TC (https://
signalprocessingsociety.org/community-involvement/sensor 
-array-and-multichannel/edics).

The SAM TC organizes two biennial workshops dedicated 
to the SAM research area: the IEEE International Workshop 
on Computational Advances in Multisensor Adaptive Process-
ing (CAMSAP), organized in December every odd-numbered 
year since 2005, and the IEEE Sensor Array and Multichan-
nel Signal Processing Workshop, organized in June/July every 
even-numbered year since 2002, each accepting 100–200 
research papers. Due to the COVID-19 pandemic, CAMSAP 
2021, originally scheduled for December 2021, in Costa Rica, 
was postponed to December 2023. The next SAM workshop 
(SAM 2024) will be held in the United States, with two possible 
venues: Oregon State University, Corvallis, OR, and Skamania 
Lodge, Stevenson, WA. Moreover, at each year’s ICASSP con-
ference, the SAM track also receives about 100–200 regular 
submissions. Currently, there is also the Synthetic Aperture 
Technical Working Group, which resides under the SAM TC, 
with the goal of “supporting the maturation of the theoretical 
framework and the associated empirical techniques that under-
pin the estimation of parameters of propagating waves through 
various media using synthetic apertures.”

In this article, as it is not possible to give an exhaustive list 
of all the advances made in the SAM area, we focus on five 
major topics and introduce the corresponding progress made 
in tackling their respective technical challenges: beamforming 
[including robust adaptive beamforming and frequency-invari-
ant beamforming (FIB)], DOA estimation (including sparsity-
based and underdetermined DOA estimation), sensor location 
optimization, target/source localization based on sensor arrays, 
and MIMO arrays (including MIMO radar and MIMO for 
wireless communications). The first two are classic SAM top-
ics from the very beginning of SAM research, as mentioned 
earlier, while the latter three were studied systematically only 
in the past decades. Then, six new developments in the SAM 
area are presented to give an indication about possible future 
research directions, including GSP for sensor networks, tensor-
based array signal processing, quaternion-valued array signal 
processing, 1-bit and noncoherent sensor array signal process-
ing, machine learning and AI for sensor arrays, and array sig-
nal processing for next-generation communication systems.

This article is structured as follows. The five main tech-
nological advances are introduced in detail in the “Main 
 Technological Advances in the SAM Area” section, followed 

by the six new developments in the “New Developments in the 
SAM Area” section and some concluding remarks in the “Con-
cluding Remarks” section.

Main technological advances in the SAM area
In this section, advances made in the five major SAM research 
topics in the past 25 years are presented, including beamform-
ing, DOA estimation, sensor location optimization, target/
source localization based on sensor arrays, and MIMO arrays.

Beamforming
Beamforming is a classic sensor array signal processing prob-
lem and a core SAM topic [1], [2], [3], [4], [5], and it has been 
studied extensively at least for a century. It can be classified 
into narrowband and wideband beamforming according to the 
relative bandwidth of the signals, adaptive and fixed beam-
forming according to its relationship with the received data, 
and analog and digital beamforming according to its circuits 
implementation. In the past 25 years, three main developments 
have been achieved, including robust adaptive beamforming 
[7], FIB [5], and hybrid beamforming [8], which is a combi-
nation of digital and analog beamforming techniques. In this 
section, we discuss the first two in detail and leave the topic of 
hybrid beamforming to the section about MIMO arrays.

Robust adaptive beamforming
In general, for the narrowband case, for an M-sensor array with 
K impinging signals, the received array signals can be formu-
lated into the following form:

 ( ) ( ) ( )t t tx As n= +  (1)

where ( ) [ ( ), , ( )]t x t x tx M
T

1 f=  is the received signal vector, 
A is the steering matrix consisting of K steering vectors ( )a i  
corresponding to the K source signals [i  represents the angle 
of arrival (AOA) of an arbitrary impinging signal], and ( )tn  is 
the noise vector.

Then, the beamformer output y(t) is given by an instan-
taneous linear combination of the received spatial samples 

( ),x tm  as follows:

 ( ) ( ) ( )y t x t w tw xm
m

M

m
H

1

= =)

=

/  (2)

where wm  is the weight coefficient for the mth received sensor 
signal, with the weight vector [ , , ] .w ww M

T
1 f=

The Capon beamformer, which can be considered a spe-
cial case of the more general LCMV beamformer [1], [2], [3], 
[4], [5], can achieve effective adaptive beamforming when the 
DOA angle 0i  of the desired signal is exactly known, and the 
following is the standard formulation:

 ( )min 1subject tow Rw w a
w

H H
0i =  (3)

where { ( ) ( )}E t tR x xH=  is the covariance matrix and ( )a 0i  
is the steering vector of the array at .0i  In practice, since R is 
usually not available, as an approximation, it is replaced by the 
sample covariance matrix ,Rt  which is obtained through the 
finite number of data samples.
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However, the Capon beamformer is very sensitive to model 
mismatch errors, such as DOA error for the desired signal, 
mutual coupling, general array manifold errors, and finite 
sample effects in covariance matrix estimation, and therefore, 
various robust adaptive beamforming techniques have been 
developed [7]. One well-known technique is diagonal loading, 
with the weight vector expressed as ( ) ( ),R I a1

0a p i+ -t  with 
a  being a constant, p  the diagonal loading factor, and I the 
identity matrix.

One prominent development in this area in the past 25 years 
is the worst-case-based robust adaptive beamformer [9], where, 
instead of constraining the beamformer response to be unity at 
the desired signal direction, the response is forced to exceed 
unity within an uncertainty set of steering vectors, which can 
be expressed as

 
A

A

,  

( ) ,

min 1subject tow Rw w a a

a a a e e
w

H H

0

6$ !

; < <#i f= = +

t u u

u u" ,  
(4)

where au  is the possible actual steering vector of the desired 
signal corresponding to the presumed steering vector A( ),a 0i  
is the full set that au  belongs to, and e is the steering vector er-
ror, with its norm bounded by .f  The problem is then converted 
to the following form using the worst-case optimization:
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where {·}Im  denotes the imaginary part of its argument. Since 
the signal-to-interference-plus-noise ratio (SINR) of the beam-
former output will not change by rotating the weight vector, an 
alternative formulation can be derived as

 ( )min Re 1subject tow Rw w a w
w

H H
0 $ < <i f +t " ,  (6)

where {·}Re  takes the real part of its argument.
Both the Capon beamformer and the worst-case robust 

beamformer require estimation of the covariance matrix R, 
and it is a challenging task when only a small number of snap-
shots is available; one solution to the problem is the family of 
iterative adaptive approach-based methods [10], which can still 
work for the extreme case with only one snapshot.

Another notable contribution for robust adaptive beamform-
ing is based on interference covariance matrix reconstruction 
and steering vector estimation [11], which has attracted much 
attention recently, with follow-up works focusing on different 
ways of reconstructing either or both of the covariance matri-
ces corresponding to the desired signal and interference plus 
noise, separately.

Frequency-invariant beamforming
For wideband arrays, different from the data model in (1), the 
received array signals are expressed in the form of convolution 
(represented by )*  [5]:

 ( ) ( ) ( )t t tx s nA *= +u  (7)

where the (m, k)th element of the matrix Au  is given by 
( ),t ,m kd x-  with ,m kx  being the time delay of the kth imping-

ing signal at the mth sensor compared to some reference point.
As a result, wideband beamforming is achieved through a 

series of tapped delay lines (TDLs) or finite-impulse response/
infinite-impulse response filters in its discrete form [5]. For 
wideband beamformers, in general, the beamwidth will 
increase with the decrease of frequency since the relative aper-
ture of the array becomes smaller for lower frequencies, and 
therefore, one unique problem for wideband beamforming is 
how to design a beamformer with a frequency-invariant beam 
response or beam pattern.

To achieve a frequency-independent beam response, many 
methods were proposed in the past, and one typical solution 
is harmonic nesting, where, for a number of frequency bands, 
different subarrays with appropriate aperture and sensor spac-
ing are operated [4]. In a design proposed in [12], each sensor 
in the array is followed by its own primary filter, and the out-
puts of these primary filters share a common secondary filter 
to form the final output; although the design for a 1D array is 
relatively simple due to the dilation property of the primary 
filters, for 2D and 3D arrays, this property is not guaranteed, 
which makes the general design case very complicated. In [5] 
and [13], based on a simple Fourier transform relationship, a 
systematic and consistent approach was developed to design 
fixed frequency-invariant beamformers for 1D, 2D, and 3D 
arrays and for both continuous and discrete apertures.

Furthermore, a series of least-squares-based frequency-
invariant beamformer design methods were proposed with 
closed-form solutions and applicable to arbitrary array geom-
etries [5]. In its very basic form, given the desired beam pat-
tern ( , )Pd iX  (X is the normalized frequency) and designed 
response ( , )P iX  (a quadratic function of the beamforming 
weight vector w) over the frequency range of interest IX  and 
the range of the angle of interest ,H  the design is to minimize 
the following cost function:
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(8)

where the first part is the traditional cost function for a least-
squares-based design over one reference frequency ;rX  the 
second part is the term for measuring the difference between 
the response of the designed beamformer and its response at 
the reference frequency rX  over the full range of the angle 
of interest, i.e., the frequency variation of the response; and 
a  trades these off. Note that the first part of the cost func-
tion is calculated only at the reference frequency, not the whole 

,IX and the reason is that, if the response is frequency invari-
ant, then as long as at one single frequency ( )rX  the designed 
response is close to the desired one, the whole response will 
also be close to it. A design example for a frequency-invariant 
beamformer, over the normalized frequency range [ . , ],0 3r r  
based on a uniform linear array (ULA) of 10 sensors and a 
TDL length of 20 is shown in Figure 1.
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The preceding FIB design techniques can be employed 
to design a FIB network, where multiple frequency-invariant 
beamformers pointing to different directions are placed in 
parallel to transform the wideband array signal processing 
problem into a narrowband one so that traditional narrowband 
beamforming and DOA estimation solutions can be applied 
directly to the output of the FIB network [5]; the second part 
of the cost function in (8) can also be incorporated into the 
adaptive beamforming process to realize adaptive FIB directly 
instead of relying on the FIB network [14].

Note that the TDL-based wideband beamforming structure 
could be replaced by the sensor delay line (SDL)-based struc-
ture [5], [15], where multiple sensors are placed behind the 
original array sensors in place of the delay lines for effective 
wideband beamforming; such an SDL-based structure may 
prove to be very important for the coming terahertz (THz) and 
sub-THz communication systems, where the delays required 
for effective wideband beamforming/beam steering may be 
too short to be implemented in practice.

DOA estimation
DOA estimation is another core SAM research area. Originally, 
it was realized by various beamforming algorithms in its sim-
plest form, such as the Butler matrix, the Capon beamformer, 
and the LCMV beamformer, and then more advanced super-
resolution solutions were developed under the classic subspace 
framework. In the past 25 years, inspired by developments of 
compressive sensing (CS) [16], two important advances in this 
area are the sparsity-based DOA estimation framework [17], 
[18], which, unlike the subspace-based framework, can deal 
with coherent sources directly, and the underdetermined DOA 
estimation approach based on various signal properties (such 
as noncircularity and non-Gaussianity) and the coarray con-
cept (both sum and difference coarrays) [17], [19], [20], [21]. 
(Here, “underdetermined” means that the number of signals is 
larger than or equal to the number of physical sensors.) 

Sparsity-based DOA estimation
To introduce the basic idea for sparsity-based DOA estima-
tion, consider the following discrete version of the continuous 
model in (1):

 [ ] [ ] [ ]i i ix As n= +  (9)

where [ ]ix  is the array data vector for the ith snapshot, [ ]is  is 
the source signal vector, and [ ]in  is the noise vector.

For the ith snapshot, to exploit the spatial sparsity property 
of the source signals, a search grid of Kg ( )K Kg &  potential 
incident angles , ,, ,g g K0 1gfi i -  is first generated, and an over-
complete representation of A is then constructed, given by

 ( ) ( ), , ( ) .A a a, ,g g g K0 1gfi i i= -6 @  (10)

Here, ( )A gi  is independent of the actual source directions 
.ki  We also construct a K 1g #  column vector [ ],isg  with each 

entry representing a potential source at the corresponding 
angle. Then, the model, from the perspective of sparse signal 
reconstruction, becomes

 [ ] ( ) [ ] [ ].i i ix A s ng gi= +  (11)

Now the sparsity-based DOA estimation for a single snap-
shot can be formulated as

 
[ ]

[ ] ( ) [ ]
min i

i isubject to
s
x A sg

0

2

g

g #i f-
 (12)

where 0$< <  is the 0,  norm to promote sparsity in [ ] .isg  Loca-
tions of the nonzero entries in the resultant [ ]isg  represent the 
corresponding DOA estimation results.

Since the 0,  norm is nonconvex, in practice, it is normally 
replaced by the 1,  norm as an approximation. Finally, the 
sparsity-based DOA estimation for a single snapshot is formu-
lated as

 
[ ]

[ ] ( ) [ ]
min i

i isubject to
s
x A sg

1

2

g

g #i f-
 (13)

where 1$< <  is the 1,  norm.
When multiple data snapshots are available, we could per-

form DOA estimation by (12) for each snapshot i separately. 
However, a more effective approach is to jointly estimate the 
DOAs of the impinging signals across multiple snapshots by 
employing the group sparsity concept since they all have the 
same spatial support.

Denote [ [ ], , [ ]],P0 1X x xf= -  where P is the number 
of snapshots. Similarly, we can define [ [ ], , [ ]]P0 1S s sf= -  
and [ [ ], , [ ]] .P0 1N n nf= -  Then, the signal model for mul-
tiple snapshots can be obtained by

 .AS NX = +  (14)

To introduce spatial sparsity, similar to the single-snapshot 
case, we construct [ [ ], , [ ]]s s P0 1Sg g gf= -  and use the row 
vector , k K0 1s ,k g gg g # # -  to represent the k thg  row of the 
matrix :Sg

 ( ) .X A S Ng gi= + r  (15)
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FIGURE 1. A frequency-invariant beamformer.
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Then, a new K 1g #  column vector is generated by comput-
ing the 2,  norm of each row in ,Sg  expressed as

 ., , ,s s ss , , , K
T

0 2 2 1 21g g g g gf< < < < < <= -t 6 @  (16)

Finally, the problem for multiple snapshots can be formu-
lated as

 
( )

min

subject to

s

X A Sg F

1S
g

g

g

#i f-

t
 

(17)

where F$< <  represents the Frobenius norm and s 1gt  is also 
called the ,2 1,  norm of the matrix .Sg  Locations of the nonzero 
entries of the resultant column vector sgt  are, then, the corre-
sponding estimation results.

One problem with the preceding group sparsity-based for-
mulation is its high computational complexity, especially when 
a large number of snapshots P is available. To reduce the com-
plexity, we can perform singular value decomposition (SVD) 
to X and project the data to a lower-dimension signal space, 
leading to the so-called 1, -SVD method [22], or use the cova-
riance matrix of the data to form a virtual array directly [23].

Underdetermined DOA estimation
For underdetermined DOA estimation, although it can be 
achieved by exploiting the non-Gaussianity, noncircularity, 
and nonstationarity of the signals, the most important develop-
ment is through constructing various sparse array structures 
for virtual coarray generation, such as coprime arrays, nested 
arrays, and their numerous extensions [24], [25], [26].

For second-order statistics-based coarray generation, one 
common step is to vectorize the covariance matrix of the phys-
ical sparse array. Consider the covariance matrix

 [ ] [ ] ( ) ( )i iER x x a a IH
k k

H
k

k

K

n N
2

1

2
xx v i i v= = +

=

" , /  (18)

where k
2v  is the power of the kth impinging signal and ki  is 

its AOA.
By vectorizing ,Rxx  we obtain a virtual array model

 ( )vecz R A s iNn
2

xx 2i v= = +u u u" ,  (19)

where ( ) ( ) ( ), , aA a K1 fi i i=u u u6 @ is the equivalent virtual 
steering matrix, with ( ) ( ) ( )a aa k k k7i i i= )u  being the corre-
sponding steering vector (,  denotes the Kronecker product); 

, ,s K
T

1
2 2fv v=u 6 @  is the equivalent source signals; and iN2u  is 

obtained by vectorizing .IN

In the preceding virtual array model, although there are 
repeated entries in ,Rxx  the number of virtual sensors corre-
sponding to the difference coarray is much more than that of 
the physical sensors, and the equivalent source signals share 
the same spatial support with the original impinging signals. 
The virtual model in (19) is similar to the single-snapshot array 
model, and sparsity-based DOA estimation methods such as 
that in (13) can be applied here.

Instead of employing a sparse array, it is possible to extend 
the coarray concept to different frequencies, where a sin-
gle ULA can be used with two continuous-wave signals of 
coprime or other different frequencies, and to the wideband 
case through frequency decomposition and employing mul-
tiple frequency pairs [17].

The group sparsity concept employed for the multiple-snap-
shot case can be applied to general underdetermined and over-
determined wideband DOA estimation [17]; as in traditional 
wideband DOA estimation, focusing can also be employed 
for sparsity-based wideband DOA estimation to simplify 
the problem to a single reference frequency. One interesting 
observation about the wideband case is that the sensor spac-
ing can be larger than half the wavelength corresponding to 
the highest frequency of the signal, without causing the spa-
tial aliasing problem; on the contrary, an improved estimation 
performance can be achieved for a larger spacing, due to an 
increased aperture.

Figure 2 gives a real experimental result based on an 
eight-microphone coprime array for estimating the directions 
of 10 speech signals, with a bandwidth from 5 to 10 kHz and 
sampling frequency of 20 kHz [27].

–90 –70 –50 –30 –10 10 30 50 70 90
θ (°)

(b)

(a)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 S
pe

ct
ru

m

FIGURE 2. Group sparsity-based underdetermined wideband DOA estima-
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Sensor location optimization
In many applications, the array’s geometrical layout is as-
sumed to be fixed and given in advance. However, it is  possible 
to change the geometrical layout of the array, including the ad-
jacent sensor spacing, and these additional spatial degrees of 
freedom (DOF) can be exploited to improve the performance 
in terms of beamforming, DOA estimation, or both. For the 
beamforming side, given the nonconvex nature of the optimi-
zation problem, traditionally, it is solved by genetic algorithms, 
simulated annealing, and similar approaches [28]. With the 
development of CS and the sparsity maximization framework, 
a new CS-based framework with a theoretically optimum so-
lution (given the convex nature of the formulated problem) 
has been developed for sensor location optimization for fixed 
beamforming [29], followed by further work in adaptive beam-
forming [30], [31], with robustness against various array model 
errors considered, too. For the DOA estimation side, the main 
efforts have been focused on the coarray design to increase the 
DOF for underdetermined DOA estimation. As mentioned in 
the previous section, coprime arrays and nested arrays are two 
representative array structures [24], [25], based on which nu-
merous second-order and fourth-order (and even higher) coar-
ray construction methods have been developed. In this part, 
we focus on the sparse array design problem for beamforming.

To illustrate how the design works, consider a narrowband 
linear array structure consisting of M omnidirectional sen-
sors, where the distance from the first sensor to subsequent 
sensors is denoted as ,dm  for , , , ,m M1 2 f=  with ,d 01 =  i.e., 
the distance from the first sensor to itself. The output of the 
beamformer is a weighted sum of the received signals, and the 
weighting coefficients are denoted by wm  and , , , ,m M1 2 f=  
which are placed together into the weighting vector w. Then, 
the sparsity-based design for sensor location optimization can 
be described as follows.

First, consider the array geometry being a grid of poten-
tial active antenna locations. In this instance, dM  is the maxi-

mum  aperture of the array, and the values of ,dm  for m = 
, , , ,M2 11 f -  are selected to give a uniform grid, with M 

being a very large number so that the spacing between adja-
cent antennas is very small. Through selecting the minimum 
number of nonzero-valued weight coefficients to generate a 
beam response close to the desired one, a sparse array design 
result is obtained. In other words, if a weight coefficient is zero 
valued, the corresponding sensor will be inactive and therefore 
can be removed, leading to a sparse or nonuniformly spaced 
sensor array.

Mathematically, it is formulated as a constrained -norm1,  
minimization problem

 min w 1  (20)

 subject to p w Ar
H

2 # f-  (21)

where pr  is the vector holding the desired beam responses at 
the sampled angular range of interest; A is the steering matrix 
corresponding to those angles, with w AH  representing the de-
signed beam responses; and f  is the allowed error between 
the designed and desired beam responses. The minimization 
of the 1,  norm of the weight vector helps to promote sparsity 
in the weight vector, and the reweighted -norm1,  minimization 
could be used instead to have a closer approximation to the 
ideal -norm0,  minimization problem, where smaller weighting 
terms are added to the larger elements of the weight vector w 
so that smaller values in w are penalized more and become 
closer to zero after minimization [32].

A broadside main beam design example is provided in 
 Figure 3, where the sensor locations are optimized over an 
overall aperture of ,d 10M m=  which is split into 181 poten-
tial sensor locations ( ).M 181=  It can be seen that the resul-
tant weight vector is sparse, with only 12 nonzero-valued  
coefficients, leading to a sparse array of 12 sensors, and com-
pared to the beam pattern of a standard 12-sensor ULA with 
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half-wavelength spacing, the sparse array has a similar main 
beamwidth but a much lower sidelobe level.

Various constraints can be added to the preceding formu-
lation to deal with more complicated application scenarios. 
For example, in the preceding formulation, the steering vec-
tor of the array is assumed to be known exactly, which may 
not be true due to various possible model perturbations, 
such as errors in sensor locations, mutual 
coupling, and discrepancies in individual 
sensor responses; then, robust designs can 
be achieved by applying a norm-bounded 
error constraint to the weight vector. In 
another case, it has been assumed that the 
sensors in the array are of zero size; how-
ever, this is not true in the real world, and 
various size constraints can be added to 
the design, and some postprocessing methods can be intro-
duced to make sure the minimum spacing between adjacent 
sensors in the result is larger than the size of the sensor. 
Based on the concept of group sparsity, the design can also 
be extended to the wideband case with TDLs [29].

Target/source localization based on sensor arrays
This is another important problem in array signal processing, 
and significant progress has been made in this area in the past 
25 years. Typical solutions include those based on the received 
signal strength [33]; those based on distance-related measure-
ments, such as the time of arrival [34]; and those based on 
the AOA/DOA [35], [36]. The last is also called bearing-only 
localization, and it is an attractive candidate since synchroni-
zation among the distributed platforms is not required, and it 
can be used in both active and passive sensing networks and 
adopted in a wide range of applications, including multistatic 
radar, distributed massive MIMO, and wireless sensor net-
works. There are normally two steps in this bearing-only local-
ization: the first is applying existing DOA estimation methods 
to find the AOAs at all distributed sensor arrays, while the 

second is to find intersections of those estimated AOAs to 
localize the sources, and the maximum likelihood estimator 
has been adopted to minimize the total least-squares errors of 
the noise-corrupted angle measurements among all distributed 
sensor arrays. However, the performance of such a two-step 
localization approach is dependent on the accuracies of angle 
measurements obtained at all platforms, and even one bad 

AOA estimation result can lead to a serious 
performance degradation.

To tackle the shortcomings of the two-
step approach, we could jointly process the 
collected information across the observa-
tion platforms in lieu of fusing the separate 
angle estimation results at all platforms. 
One recent advance in this direction is a 
group sparsity-based one-step approach 

[37], where a common spatial sparsity support corresponding 
to all distributed sensor arrays is enforced, leading to a better 
estimation performance, which also avoids the possible pairing 
and ambiguity problems associated with the two-step AOA-
based solution.

To show how this idea works, we consider a distributed nar-
rowband sensor array network with M subarrays and K targets, 
as illustrated in Figure 4, where ( , )U x ym m m  and ( , )T x yk T Tk k  
represent locations of the receiver platform and the kth target, 
respectively. For each receiver, a linear subarray with Lm  sen-
sors is employed.

For each target located at ( , ),T x yk T Tk k  a unique incident 
angle ,m ki  relative to the mth subarray can be obtained. With-
out loss of generality, a square area of interest in the Cartesian 
coordinate system is divided into a K Kx y#  grid, with Kx  and 
Ky  being the number of grid points along the x-axis and the 
y-axis, respectively. Here, ( , )G x yk kx y  represents the location 
of the ( , )k k thx y  search grid, and the signal originating from 
the possible source located at ( , )G x yk kx y  will arrive at the mth 
subarray, with a DOA angle ( , ).k km

g
x yi  Since ( , )x yk kx y  is com-

mon to all subarrays and a source located at ( , )G x yk kx y  will 
appear to come from the same location with respect to all sub-
arrays, we can apply the group sparsity concept to all subar-
rays’ source data.

For example, for the mth subarray, corresponding to the 
data model in (14), we can have the multiple-snapshot model as

 X A S Nm m m m= +  (22)

with , , , .m M1 2 f=  Applying the sparsity-based approach, 
we can construct the following overcomplete data model:

 X A S Nm m
g

m
g

m= +  (23)

where Am
g  is the overcomplete steering matrix corresponding 

to the K Kx y  potential signal directions ( , )k km
g

x yi  and Sm
g  is 

the potential source matrix. If there is no source located at a 
particular position ( , ),G x yk kx y  then the corresponding row of 
Sm

g  will be zero valued for all , , , .m M1 2 f=  We can place all 
the matrices Sm

g  together to form a new matrix ,Sg  as follows:

y

U1 (x1, y1) U2 (x2, y2)

o

UM (xM, yM)

Tk (xTk, yTk)

The k th Target

x

φM,k

φ2,k
φ1,k

FIGURE 4. A general target/source localization model based on distributed 
sensor arrays [37].

One unique problem for 
wideband beamforming is 
how to design a beamformer 
with a frequency-invariant 
beam response or beam 
pattern.
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 , , , .S S S Sg g g
M
g

1 2 f= 6 @  (24)

Then, the group sparsity-based localization problem can 
be formulated by minimizing the ,2 1,  norm of ,Sg  subject to 
limiting the overall reconstruction error for all subarrays to a 
small value. One main advantage of the group sparsity-based 
approach for direct target localization is that the different sub-
arrays are not required to be synchronized and can work on 
different frequencies, the statistical properties of the sources 
can be different for different subarrays, and sensor numbers, 
rotation angles, and corresponding source signals of different 
subarrays do not need to be the same (as long as they come 
from the same set of target locations). This group sparsity-
based one-step direct localization idea can be extended to the 
wideband, the underdetermined case, or both without diffi-
culty [37].

Figure 5 displays a simulation result for underdetermined 
wideband localization, where the normalized signal frequen-
cy band is from .0 75r  to ,r  and there are six subarrays and 
five targets, with each subarray being a four-sensor minimum 
redundancy array [4].

MIMO arrays
MIMO, which is, by its multichannel implementation at both 
the transmitter and the receiver, a natural fit within the SAM 
portfolio, represents another significant development in ar-
ray signal processing in the past 25 years. There are mainly 
two totally different directions. One is MIMO radar, which 
exploits the orthogonality of the transmitted waveforms to 
increase the DOF of the system to improve the resolution 
and capacity of the array [38], [39], [40], which will play an 
important part in 4D auto radar imaging in addition to tradi-
tional radar detection applications. Note that nonorthogonal 
waveforms can also be employed for MIMO radar [41]. The 
other one is MIMO for wireless communications to exploit the 
spatial diversity of the channel to improve the performance 
and, in particular, the capacity of the communication system 
[42]. While MIMO has already been in use for both Wi-Fi and 
4G communication systems, its new evolution, the so-called 
massive MIMO, or ultramassive MIMO (UM-MIMO), will 
play a crucial role in next-generation communication systems 
and beyond [43].

MIMO radar
In a MIMO radar, multiple transmit antennas emit orthogo-
nal waveforms and multiple receive antennas, then receive the 
echoes reflected by the targets. Antennas of the MIMO radar 
can be widely separated [38] and colocated [39], [40], with the 
latter more widely studied. For the case with colocated anten-
nas, the transmitting side and the receiving side can be located 
either at the same site or far away from each other.

Consider a colocated narrowband MIMO radar system 
where the transmit and receive antennas are located at the 
same place. The transmitted multiple orthogonal waveforms 
are then reflected back by K present targets and received by 
the receive array. After matched filter processing, the output 

signal vector [ ]ix  at the receiver at the ith snapshot can be 
expressed as

 
[ ] ( ) ( ) [ ] [ ]
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(25)

where ki  is the DOA of the kth target; ( )at ki  and ( )ar ki  are 
the steering vectors of the transmit and receive arrays, respec-
tively; and [ ] ,b i ek k

j f i2 kc= r  with kc  being the complex-valued 
reflection coefficient of the kth target and fk  being the Doppler 
frequency for moving targets.

It can be seen that with the MIMO radar configuration, a 
virtual array with a significantly increased aperture has been 
created due to the effect of the Kronecker product in (25). 
For example, if both the transmit array and receive array are 
three-sensor ULAs with a spacing of d and 3d, respectively, 
the newly generated virtual ULA will consist of nine virtual 
sensors. In this way, by exploiting waveform diversity, a virtual 
array with a much larger aperture and significantly increased 
DOF is formed using a small number of physical sensors, pro-
viding enhanced spatial resolution, higher target detection 
capacity, and better performance.

MIMO for wireless communications
On the other hand, MIMO for wireless communications is a 
huge research area, and numerous techniques have been devel-
oped centered around this concept, such as space-time coding, 
MIMO beamforming, spatial multiplexing, and spatial modu-
lation. Today, an element of MIMO can be found in most of 
the publications in wireless communications. It is impossible 
to list all the important advances in the area, and in this sec-
tion, we focus only on MIMO beamforming, which is playing 
an increasingly important role in the implementation of MIMO 
communication systems.

As well known by the array signal processing community 
and also presented in the “Beamforming” section, traditionally, 
beamforming is designed for line-of-sight (LOS) transmission 
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and reception, and physically, a beam will be formed in the 
process, pointing to different directions around the array sys-
tem. However, in MIMO beamforming, due to a very strong 
multipath effect, the result of beamforming between the trans-
mitter and receiver will not necessarily form a beam in space 
but, rather, an overall enhanced signal 
transmission link between them. Decades 
of research in MIMO beamforming have 
pushed the boundaries of beamforming 
well beyond the technology’s traditional 
meaning, and today, any process achieving 
enhancement of the desired signal while 
reducing the effect of interference can be 
considered beamforming. However, with 
the introduction of massive MIMO and millimeter-wave (mm-
wave) communications in 5G and beyond, the LOS case is 
becoming more and more important again in MIMO beam-
forming, and one interesting development in this context is the 
hybrid beamforming structure proposed for massive MIMO 
systems [8].

Hybrid beamforming is a combination of analog beam-
forming and digital beamforming. Ideally, beamforming could 
be implemented completely in the digital domain for maxi-
mum flexibility and adaptability; however, for extremely large 
arrays, as in the case of massive/UM-MIMO, the extremely 
high cost associated with the large number of high-speed ana-
log-to-digital converters (ADCs)/digital-to-analog converters 
(DACs) and the high-level power consumption will render it 
practically infeasible. For hybrid beamforming in the receive 
mode, analog beamforming is performed first to reduce the 
number of analog channels, which are then converted into digi-
tal via a reduced number of ADCs, and after that, digital beam-
forming can be performed; for the transmit mode, the process 
is simply reversed. There are many hybrid beamforming struc-
tures proposed in the literature, and one representative is the 
subaperture-based hybrid beamformer. An interesting recent 
development in this area is a new class of multibeam multi-
plexing designs, where the number of analog coefficients is the 
same as the number of antennas, independent of the number of 
parallel independent user beams generated, while the number 
of subarrays is the same as the number of beams; interested 
readers can refer to [44] and [45] for details.

New developments in the SAM area
In the era of AI, multi-sensor-based systems and techniques 
are ubiquitous and will play an even greater role in the future. 
As a result, there has been an exponential increase in research 
activities in the SAM area in the past few years, and in the fol-
lowing, we introduce some new developments that may well 
indicate promising future research directions.

GSP for sensor networks
GSP is an emerging new mathematical tool for analysis of data 
resident on a largely irregular network of either physical or vir-
tual sensor nodes, where the regular network can be consid-
ered a special case [46], [47]. Examples for the physical sensor 

network include traffic networks, brain neural networks, and 
energy consumption sensor networks, while for the virtual one, 
a good example is social networks. In connection with classic 
signal processing, basic concepts, such as frequency, and oper-
ations, such as shift/delay and filtering, have been introduced. 

However, there is still no unified framework 
for GSP, and it is still an open problem to 
find the best representations of a graph sig-
nal. However, this has not stopped the wide 
application of GSP, and it has been shown 
to be a powerful data analysis tool provid-
ing new insights into the studied problems; 
for example, brain signals can be mapped 
to a graph network to analyze cognitive be-

havior of the brain. Application of GSP to traditional sensor 
array signal processing problems, such as direction finding and 
target localization, is an emerging but somewhat open area, as 
traditional sensor arrays and networks normally have a regular 
structure, and traditional sensor array signal processing tools 
have been extremely successful in tackling those associated 
problems. It is not clear yet whether GSP can bring any advan-
tage to the traditional sensor array signal processing problems 
or not.

Tensor-based array signal processing
Tensors are extensions of matrices to higher dimensions and 
have been widely employed for multidimensional data analy-
sis and processing with the aid of tensor decomposition tools 
and algorithms. Many sensor array signals and data can be 
transformed into a multidimensional form and viewed direct-
ly as a multidimensional structure [48], [49]. For example, the 
narrowband data received by a rectangular array and multiple 
subarrays are 3D, the data received by a wideband linear ar-
ray can be transformed into the 3D space–time–frequency 
domain, and the data received by vector sensor arrays are nat-
urally higher dimensional. For MIMO communication sys-
tems, the data can be placed into a tensor form by accounting 
for diversities in space, time, frequency (including Doppler 
frequency), and polarization. As a result, tensor processing 
can be applied to solve many array signal processing prob-
lems directly without much adaptation. However, although it 
is recognized that tensors can keep the inherent data struc-
tures and therefore have the potential to provide improved 
performance compared to classic array signal processing 
methods and algorithms, further research is needed to dem-
onstrate the clear benefits of tensor processing and fully real-
ize its potential.

Quaternion-valued array signal processing
As a higher-dimensional extension of complex numbers, a qua-
ternion has one real part and three imaginary parts, and qua-
ternion calculus has been applied to a range of signal process-
ing problems related to 3D and 4D signals, such as color image 
processing, wind profile prediction, vector sensor array pro-
cessing, and quaternion-valued wireless communications [50], 
[51]. In addition to solving the classic array signal  processing 

Today, any process 
achieving enhancement 
of the desired signal 
while reducing the effect 
of interference can be 
considered beamforming.
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problems, such as DOA estimation and beamforming, one im-
portant development is the quaternion-valued MIMO array, 
where pairs of antennas with orthogonal polarization direc-
tions are employed at both the transmitter and receiver sides 
and a 4D modulation scheme across the two polarization di-
versity channels using a quaternion-valued 
representation is employed. Although the 
polarization states will change during trans-
mission through the channel, and there 
may be interferences between these two 
states, we can employ a quaternion-valued 
adaptive algorithm to recover the original 
4D signal, which inherently also performs 
an interference suppression operation to 
separate the original two 2D signals. For 
the MIMO array, reference signal-based and blind quater-
nion-valued adaptive algorithms can be employed for both 
channel estimation and beamforming. Signal processing has 
 experienced a revolutionary change from real-valued process-
ing to complex-valued processing, and we may be at the door-
step of a quaternion-valued world, and increasing interest in 
quaternion-valued sensor array signal processing is expected 
in the near future.

One-bit and noncoherent sensor array  
signal processing
Given the extremely high data rate and storage requirements 
for a fully digital large sensor array system, there has been 
significant work aimed at achieving a reasonable sensor array 
processing performance with 1-bit representation of the array 
signals; i.e., only signs of the data samples are reserved, while 
the magnitude information is removed [52]. This problem can 
be simply considered the normal case but with extremely high 
quantization noise, and we can perform normal array process-
ing irrespective of the number of bits per data sample; however, 
a more effective way is to try to achieve effective estimation 
of the statistics of the signals using the 1-bit data samples and 
then, based on the newly obtained statistics information, per-
form the corresponding tasks. Contrary to 1-bit array process-
ing, the signs of the data samples are removed, and only the 
magnitude information is kept, which leads to the so-called 
noncoherent sensor array signal processing problem, with the 
advantage of being robust against array phase errors. One rep-
resentative example is noncoherent DOA estimation and target 
localization [53], [54], [55], which can be cast into a phase re-
trieval problem; however, the difference is that there is usu-
ally only one snapshot in phase retrieval, while in array signal 
processing, multiple snapshots are available, which can be ex-
ploited by applying group sparsity to existing phase retrieval 
algorithms, such as the ToyBar and modified GESPAR algo-
rithms [53], [54].

Machine learning and AI for sensor arrays
Machine learning and AI have been applied to almost all ar-
eas of research in the signal processing community, and the 
SAM area is no exception. For example, machine learning and 

AI have been applied to DOA estimation, beamforming, and 
source separation successfully [56]. There are strong topical 
connections among sparsity-inspired array processing (see 
the “DOA Estimation” section), compressed sensing (see the 
“Sensor Location Optimization” section), and machine learn-

ing. Unlike in traditional machine learning 
and AI applications, where it is a challenge 
to acquire sufficient training data, in most 
of the array signal processing applications, 
the required training data can be obtained 
easily by simulation. Nonetheless, their ap-
plication to array signal processing also fac-
es some similar issues. For example, after 
training, the system may work very well for 
the targeted scenario, but it may struggle if 

there is change to the system and the environment, while the 
traditional array signal processing methods and  algorithms can 
cope with such changes well. Another challenge is how to ap-
ply machine learning and AI to distributed sensor arrays and 
networks effectively. As a hot topic, federated learning may 
prove to be a promising direction of research for the SAM 
community [57].

Array signal processing for next-generation 
communication systems
Antenna array design and signal processing is one of the funda-
mental techniques in 5G (and beyond) wireless communication 
systems since the two underpinning 5G/6G technologies—
massive MIMO/UM-MIMO and mm-wave/sub-THz/THz 
communications—are all based on antenna arrays [58]. It will 
continue to play a significant role in many other aspects in the 
future, such as the Internet of Things and integrated sensing 
and communication, both of which are hot topics for 6G wire-
less communications research, with extensive research activi-
ties in the community. Moreover, beamforming is essential to 
achieve effective communication over the THz and sub-THz 
frequency bands, as it is necessary to employ a large num-
ber of antennas for such high frequencies, while the widely 
studied reconfigurable intelligent surfaces can be considered 
semipassive antenna array systems [59]. To a great degree, ar-
ray signal processing will be a main focus of research for next-
generation communication systems and for the integration of 
sensing and communications, particularly at mm-waves [60].

Concluding remarks
Accompanied by intensive research activities and the sig-
nificant progress made in signal processing, the world now 
has stepped into the new era of AI, where multi-sensor-
based systems and techniques have become ubiquitous and 
indispensable to our daily life and will play an even greater 
role in our society in the very near future. This is an ex-
citing time for the SAM community, and we welcome new 
members at different levels to join the TC and work together 
to promote its activities, make a more extensive and deeper 
impact in the real world, and further enhance its standing in 
our wider society.

Signal processing has 
experienced a revolutionary 
change from real-valued 
processing to complex-
valued processing, and we 
may be at the doorstep of a 
quaternion-valued world.
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