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ABSTRACT
Probability mass function (PMF) estimation using a low-rank
model for the PMF tensor has gained increased popularity
in recent years. However, its performance evaluation relied
mostly on empirical testing. In this work, we derive theoret-
ical bounds on the attainable performance under this model
assumption. We begin by deriving the constrained Cramér-
Rao Bound (CCRB) on the low-rank decomposition parame-
ters, and then extend the CCRB to bounds on the mean square
error in the resulting estimates of the PMF tensor’s elements,
as well as on the mean Kullback-Leibler divergence (KLD)
between the estimated and true PMFs. The asymptotic tight-
ness of these bounds is demonstrated by comparing them to
the performance of the Maximum Likelihood estimate in a
small-scale simulation example.

Index Terms— PMF Estimation, Low-Rank CPD, Con-
strained Cramér-Rao Bound, KLD Bound.

1. INTRODUCTION

ESTIMATION of the probability mass function (PMF) of a
discrete random vector (RV) (whose elements take val-

ues in finite alphabets) from partial observations thereof is a
key problem in many data analysis contexts in signal process-
ing and machine learning (e.g., recommender systems, data
completion, features selection, classification). Since the reli-
able direct estimation of a PMF tensor using naı̈ve histogram
methods requires data sizes that grow exponentially with the
dimension of the RV, several alternative estimation paradigms
have been proposed in recent years [1–12], which are based
on a low-rank non-negative canonical polyadic decomposi-
tion (CPD) model assumption for the PMF tensor.

However, the performance of the proposed approaches
was only demonstrated empirically, without comparing it to
a theoretical bound. Our goal in this paper is to derive useful
theoretical estimation bounds on three possible performance
measures in PMF estimation problems. Such bounds can be
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useful for determining whether in a given estimation prob-
lem, under prescribed conditions, a desired accuracy level is
(at least theoretically) attainable or not. We begin by deriv-
ing the Constrained Cramér-Rao Bound (CCRB) on the mean
square error (MSE) in unbiased estimation of the underlying
low-rank CPD parameters (which are constrained to the prob-
ability simplex, as explained in the sequel). We then use this
bound in order to obtain element-wise MSE bounds on the
estimated elements of the PMF tensor when its estimate is
the “plug-in” estimate obtained by substituting the estimated
CPD parameters in the CPD model. We compare this bound
to the (nearly trivial) bound on the MSE in direct estimation
of each element without the low-rank CPD model assumption,
so as to quantify the potential gain (in terms of the element-
wise MSE bound) in using the low-rank assumption whenever
this assumption is justified.

In addition, we provide a lower-bound on the attainable
mean Kullback-Leibler divergence (KLD, [15]) between the
estimated and the true PMF tensors (under the low-rank
model assumption).

We demonstrate the possible use of these bounds in a
small-scale example, showing that the performance of the
Maximum Likelihood estimate (MLE) is bounded by the
derived bounds, which, as expected, are asymptotically tight.

1.1. Notation

We denote scalars with plain letters (x), vectors and matrices
with boldface letters (x, X), and tensors with boldface cal-
ligraphic letters (X ). RVs are denoted using sans-serif fonts
(X). We use 1 and 0 to denote (resp.) an all-ones and an
all-zeros vector (or matrix, depending on context). The ele-
ments of vectors, matrices and tensors are denoted using in-
dices in parentheses, e.g., x(4), X(m,n), X (i1, i2, i3). We
use colon notation to denote the column vector of a matrix,
e.g., A(:, 2). The vec(·) operator creates a column vector by
concatenating the (mode-1) columns of its argument (matrix
or tensor). Pr{·} denotes probability; Trace{·} denotes the
trace; I{·} denotes the Indicator function (taking the value 1
if the condition in its argument is satisfied, and 0 otherwise);
◦ denotes an outer product; ∥ · ∥2 denotes the L2 norm. WeIC
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use the notation [T ] to denote the set of integers {1, 2, ..., T}.

2. PROBLEM FORMULATION

Let X = [X1,X2, ...,XN ]T ∈ RN be a discrete RV with Xn

taking discrete integer values in [In]. We denote its joint
PMF tensor X ∈ RI1×I2×...×IN , where X (i1, i2, ..., iN ) ≜
Pr{X1 = i1,X2 = i2, ...,XN = iN}, and denote M ≜∏N

n=1 In the total number of elements in X . We assume that
X admits a low-rank non-negative CPD [3] with F compo-
nents, namely there are N factor matrices A1,A2, ...,AN ,
An ∈ RIn×F , and a ”loading vector” λ ∈ RF such that

X =

F∑
f=1

λf ·A1(:, f) ◦A2(:, f) ◦ ... ◦AN (:, f). (1)

All elements of λ are positive, all elements of A1,A2, ...,AN

are non-negative and 1Tλ = 1, 1TAn = 1T , n ∈ [N ] (these
are commonly known as the probability simplex constraints).

Let Y = [Y1,Y2, ...,YN ]T denote an RV obtained as an
incomplete observation of X, such that

Yn =

{
Xn w.p. 1− p

0 w.p. p
n ∈ [N ], (2)

where Yn is drawn independently for each n and indepen-
dently of all other elements of X (excluding Xn). The known
parameter p denotes the outage probability, namely the prob-
ability that Xn is unobserved in Y. Assume that y is a real-
ization of Y. Let B ∈ [0, N ] denote the number of non-zero
elements of y, and let n1, ..., nB denote their indices. Let θ
denote the vector of all unknown parameters, a concatenation
of λ with the columns of A1,A2, ...,AN , such that

θ ≜ [λT , vecT (A1), ..., vecT (AN )]T ∈ RK , (3)

where K ≜ F · (1 +
∑N

n=1 In) is the number of unknown
parameters. The likelihood function of y parameterized by θ
is given by

p(y;θ) ≜ Pr(Y = y;λ,A1,A2, ...,AN )

= pN−B(1− p)B︸ ︷︷ ︸
≜q

Pr(Xn1
= yn1

, ...,XnB
= ynB

)

= q

F∑
f=1

λf

B∏
b=1

Anb
(ynb

, f). (4)

Our goal is to derive bounds on various quality measures
of the estimation of X from T independent, identically dis-
tributed (iid) observations of Y.

3. THE CONSTRAINED-CRAMÉR-RAO BOUND ON
UNBIASED ESTIMATION OF θ

Given a general probability model p(y;θ) specifying the
probability of measurements y ∈ RN in terms of unknown

parameters θ ∈ RK , where θ is known to satisfy a set of
R constraints of the form c(θ) = 0 ∈ RR, the CCRB [14]
specifies the CRB on any unbiased estimate θ̂ of θ complying
with the same constraints, c(θ̂) = 0:

E
[
(θ̂ − θ)(θ̂ − θ)T

]
⪰

U(θ)
[
UT (θ)J(θ)U(θ)

]−1
UT (θ) ≜ Bθ,

(5)

where the columns of U(θ) ∈ RK×(K−R) form an orthonor-
mal basis of the null-space of the gradient matrix1 C(θ) ≜
∂c(θ)
∂θ ∈ RR×K of the constraints, namely C(θ)U(θ) = 0 ∈

RR×(K−R), and where

J(θ) ≜ E

[
∂T log p(Y;θ)

∂θ

∂ log p(Y;θ)
∂θ

]
(6)

is the K ×K Fisher Information Matrix (FIM).
Returning to our specific problem, our model p(y;θ) is

specified in (4), and the probability simplex constraints give
rise to the following set of R ≜ 1 + F ·N linear equations:

c(θ) ≜



∑F
f=1 λf − 1∑I1

i=1 A1(i, 1)− 1∑I1
i=1 A1(i, 2)− 1

...∑IN
i=1 AN (i, F )− 1

 = 0 ∈ RR. (7)

C(θ) is then a constant block-diagonal matrix C with R
single-row blocks of ones, and U(θ) is therefore also a con-
stant block-diagonal matrix U with R blocks, such that each
block is an orthonormal basis of the null-space of an all-ones
row-vector (block) of the corresponding length in C.

Explicit expressions for the elements of the score vector
∂ log p(y;θ)/∂θ and of the FIM J(θ) are obtained as fol-
lows. For f ∈ [F ],

∂ log p(y;θ)

∂λf
=

q · αf (y;θ)

p(y;θ)
(8)

∂ log p(y;θ)

∂An(i, f)
=

q · βf (y;θ, n, i)

p(y;θ)

n ∈ [N ]
i ∈ [In]

(9)

where

αf (y;θ) ≜
B∏

b=1

Anb
(ynb

, f) (10)

and

βf (y;θ, n, i) ≜ λf

B∏
b=1
nb ̸=n

Anb
(ynb

, f)

· I{yn = i} · I {n ∈ {n1 . . . nB}} . (11)

1Assumed to have full row rank.
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In order to calculate the elements of the FIM J(θ) we
need to take the mean in (6) by summing the product over all
L ≜

∏N
n=1(1 + In) possible values of Y, denoted y1, ...,yL,

each multiplied by p(yℓ;θ). For example, for f1, f2 ∈ [F ]
we have

J(f1, f2) =

L∑
ℓ=1

q2ℓαf1(yℓ;θ)αf2(yℓ;θ)

p(yℓ;θ)
, (12)

where qℓ is obtained as in (4), substituting B with Bℓ, the
number of non-zero elements in yℓ.

Likewise, for F < m1,m2 ≤ K with one-to-one map-
pings m1 ↔ (n̆1, i1, f1) (such that θ(m1) = An̆1(i1, f1))
and m2 ↔ (n̆2, i2, f2) we have

J(m1,m2) =

L∑
ℓ=1

q2ℓβf1(yℓ;θ, n̆1, i1)βf2(yℓ;θ, n̆2, i2)

p(yℓ;θ)
,

(13)
and for f1 ∈ [F ] and m2 ↔ (n̆2, i2, f2) we have

J(f1,m2) =

L∑
ℓ=1

q2ℓαf1(yℓ;θ)βf2(yℓ;θ, n̆2, i2)

p(yℓ;θ)
, (14)

with J(m2, f1) = J(f1,m2). The FIM of T iid observations
of Y is given by T times the single-observation FIM.

4. ELEMENT-WISE MSE BOUNDS ON PLUG-IN
ESTIMATES OF THE PMF

Let Xm, m ∈ [M ] denote an element in X , with a one-
to-one mapping m ↔ (i1, i2, ..., iN ), such that Xm =
X (i1, i2, ..., iN ). Given T iid observations of X, the model-
free CRB on any unbiased estimate of Xm is well-known to
take the Bernoulli form

MSE[X̂m] ≥ Xm(1−Xm)

T

Xm≪1
≈ Xm

T
. (15)

Having found the CCRB on unbiased, constrained esti-
mation of θ in Section 3, we now proceed to derive a lower
bound on the element-wise MSE in estimating X via a plug-
in estimate of θ in our low-rank model (4), and compare it to
the Bernoulli CRB (15). Define

ϕ(θ) ≜ vec(X ) ∈ RM . (16)

Let X̂ (θ̂) denote the plug-in estimate of X using an arbi-
trary unbiased, constrained estimate θ̂ of θ, and let ϕ(θ̂) =

vec(X̂ (θ̂)) denote its vectorized form. Using a Taylor series
expansion of ϕ(θ̂) around the true θ, and assuming small er-
rors, we have

ϕ(θ̂)− ϕ(θ) ≈ ∂ϕ(θ̂)

∂θ̂

∣∣∣∣∣
θ̂=θ

· (θ̂ − θ). (17)

Taking the (matrix) second moment we get

E

[(
ϕ(θ̂)− ϕ(θ)

)
·
(
ϕ(θ̂)− ϕ(θ)

)T
]
≈

∂ϕ(θ̂)

∂θ̂

∣∣∣∣∣
θ̂=θ

· E
[
(θ̂ − θ) · (θ̂ − θ)T

]
· ∂

Tϕ(θ̂)

∂θ̂

∣∣∣∣∣
θ̂=θ

(18)

which implies the (small errors) MSE bound

E

[(
ϕ(θ̂)− ϕ(θ)

)
·
(
ϕ(θ̂)− ϕ(θ)

)T
]
⪰

∂ϕ(θ̂)

∂θ̂

∣∣∣∣∣
θ̂=θ

·Bθ · ∂
Tϕ(θ̂)

∂θ̂

∣∣∣∣∣
θ̂=θ

≜ BX ∈ RM×M ,

(19)

where for the m-th element of ϕ(θ) (with the same mapping
m ↔ (i1, i2, ..., iN ) used above), we have

∂ϕm(θ̂)

∂λ̂f

∣∣∣∣∣
θ̂=θ

=

N∏
n=1

An(in, f) (20)

∂ϕm(θ̂)

∂Ân̆(i, f)

∣∣∣∣∣
θ̂=θ

= λfI{i = in̆}
N∏

n=1
n ̸=n̆

An(in, f) (21)

5. A LOWER BOUND ON THE MEAN KLD

The KLD is a common measure of (dis-)similaritiy between
two distributions. We wish to find a lower bound on the
expected value of the KLD between the estimated and true
PMFs. Under a small-errors assumption, this bound can be
expressed using the element-wise bounds in (19) as follows.
By definition of the KLD, we have

D(X ||X̂ ) =

M∑
m=1

Xm · log
(
Xm

X̂m

)

=

M∑
m=1

Xm ·
(
log(Xm)− log(X̂m)

)
. (22)

Defining E ≜ X̂ −X as the estimation errors tensor, we have

log(X̂m) = log(Xm + Em)

= log(Xm) + log

(
1 +

Em
Xm

)
. (23)

Substituting (23) in (22), we get

D(X ||X̂ ) = −
M∑

m=1

Xm · log
(
1 +

Em
Xm

)
. (24)

Using a second-order Taylor series expansion of log(1+z) ≈
z − 1

2z
2 for |z| ≪ 1 we get, under a small-errors assumption

D(X ||X̂ ) ≈ −
M∑

m=1

Xm ·
(
Em
Xm

− 1

2
· E

2
m

X 2
m

)
=

1

2

M∑
m=1

E2
m

Xm

(25)
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Fig. 1. Element-wise T · MSE vs T : Bernoulli CRB and our low-
rank bound (solid); Empirical MLE-based MSEs (dashed) from 200

independent trials. All based on averaging over all elements of X .

where the last transition is due to X and X̂ being PMF tensors
whose elements must add up to 1, hence

∑M
m=1 Em = 0.

Taking the expected value of the KLD we obtain

E
[
D(X ||X̂ )

]
≈ 1

2

M∑
m=1

E
[
E2
m

]
Xm

≥ 1

2

M∑
m=1

BX (m,m)

Xm
,

(26)
where BX (m,m) are the diagonal elements of BX (19), the
lower bounds on the MSE of a plug-in estimate of the PMF
elements based on any unbiased, constrained estimate of θ.

6. SIMULATION RESULTS

To demonstrate the performance bounds on the element-wise
MSE and on the mean KLD, we created a small-scale simula-
tion experiment with a rank-2 (F = 2) 5-way (N = 5) PMF
tensor X of dimensions [2, 3, 4, 3, 2] with arbitrarily chosen
A1, ...,A5 and λ as in [4].

Let xt, t ∈ [T ] be the t-th observation of X drawn ac-
cording to X . The observation yt of Y is then obtained by
randomly and independently zeroing-out elements of xt with
varying outage probability p (cf. (2)).

Figure 1 shows the Bernoulli CRB (relevant for outage
probability p = 0 only) and our plug-in low-rank CPD bound
(19) (for outage probabilities p = 0, 0.2, 0.4, 0.6), averaged
over all M = 144 elements of X . In addition, we show the
MSEs attained by the respective MLE-based estimates, which
are asymptotically efficient (we present T · MSE, rather than
the MSE itself, in order to keep the differences between the
bounds and the empirical MSEs clearly visible as T grows).
Note that the model-free (histogram-based) MLE is efficient
for all T , and therefore coincides with the Bernoulli CRB
for all T . The advantage of using the low-rank model (when
applicable) is evident even in this small-scale example: The
zero-outage Bernoulli CRB is more than 150 times larger than
the respective zero-outage element-wise bound, and is in fact

102 103 104 105

T

10-4

10-2

100

Mean KLD

KLD, p=0
Bound, p=0
KLD, p=0.2
Bound, p=0.2
KLD, p=0.4
Bound, p=0.4
KLD, p=0.6
Bound, p=0.6

Fig. 2. Mean KLD vs T : Our bound (solid); Empirical MLE-based
KLDs (dashed) averaged over 200 independent trials.

comparable to the element-wise bound attained at the rela-
tively large outage probability of p = 0.6.

Figure 2 shows our bound (26) on the mean KLD (for
p = 0, 0.2, 0.4, 0.6), together with the mean empirical KLD
between the MLE-based plug-in estimate and the true PMF.

We note that in both figures the plug-in ML estimate
asymptotically coincides with the derived performance bounds,
which are only accurate for small errors. We can also use
these bounds to observe the relation between the outage prob-
ability and the sample size needed to attain a certain level of
estimation accuracy. Note that this relation is not trivial, as
it depends on the dimension N of the RV, as well as on the
alphabet size In in each dimension.

7. CONCLUSION

We derived performance bounds on the estimation of a PMF
tensor from partial observations, under the assumption that
the tensor admits a low-rank non-negative CPD. Our bounds
are based on the CCRB for the CPD parameters (constrained
to the probability simplex), from which we obtained element-
wise MSE bounds for the plug-in estimation error of each ele-
ment of the tensor, as well as a lower bound on the mean KLD
between the estimated and true PMFs. Since the MLE of the
model parameters is asymptotically efficient (asymptotics in
the sense of T → ∞), all the derived bounds are asymptoti-
cally tight (namely, they are asymptotically attainable).

The bounds enable to determine a minimal observation
length for attaining prescribed accuracy measures (either in
terms of element-wise MSEs or in terms of the mean KLD)
in a given estimation problem. They also allow to further ex-
plore the non-trivial relation between the outage probability
and the attainable accuracy.

Future work would include expansion of the bound to ad-
ditional accuracy measures, such as the Factor Match Score
(FMS, [13]) between the estimated and true CPD parameters,
as well as possible extensions of the PMF model or of the
outage model.
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