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Joint Sparse Estimation with Cardinality Constraint

via Mixed-Integer Semidefinite Programming
Tianyi Liu, Frederic Matter, Alexander Sorg, Marc E. Pfetsch, Martin Haardt, and Marius Pesavento

Abstract—The multiple measurement vectors (MMV) problem
refers to the joint estimation of a row-sparse signal matrix from
multiple realizations of mixtures with a known dictionary. As a
generalization of the standard sparse representation problem for
a single measurement, this problem is fundamental in various
applications in signal processing, e.g., spectral analysis and
direction-of-arrival (DOA) estimation. In this paper, we consider
the maximum a posteriori (MAP) estimation for the MMV
problem, which is classically formulated as a regularized least-
squares (LS) problem with an ℓ2,0-norm constraint, and derive
an equivalent mixed-integer semidefinite program (MISDP) re-
formulation. The proposed MISDP reformulation can be exactly
solved by a generic MISDP solver, which, however, becomes
computationally demanding for problems of extremely large
dimensions. To further reduce the computation time in such sce-
narios, a relaxation-based approach can be employed to obtain an
approximate solution of the MISDP reformulation, at the expense
of a reduced estimation performance. Numerical simulations in
the context of DOA estimation demonstrate the improved error
performance of our proposed method in comparison to several
popular DOA estimation methods. In particular, compared to
the deterministic maximum likelihood (DML) estimator, which
is often used as a benchmark, the proposed method applied with
a state-of-the-art MISDP solver exhibits a superior estimation
performance at a significantly reduced running time. Moreover,
unlike other nonconvex approaches for the MMV problem,
including the greedy methods and the sparse Bayesian learning,
the proposed MISDP-based method offers a guarantee of finding
a global optimum.

Index Terms—DOA estimation, multiple measurement vec-
tors, joint sparsity, ℓ2,0-mixed-norm constraint, mixed-integer
semidefinite program, maximum a posteriori estimation

I. INTRODUCTION

T
HE multiple measurement vectors (MMV) problem is

a fundamental challenge in signal processing and com-

pressed sensing. It involves the joint estimation of multiple

signals that share a common sparse support over a known

dictionary. The MMV problem arises in various applications,

e.g., imaging [1], communications [2], [3], and signal process-

ing [4]. The MMV problem is also known by several other
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names in the literature, e.g., simultaneous sparse coding [5],

joint sparse coding [6], and simultaneous sparse approxima-

tion [7], [8].

Similar to the classical sparse signal reconstruction from

a single measurement vector (SMV), the MMV problem is

NP-hard due to the combinatorial nature of the cardinal-

ity constraint [9], [10]. Hence, approximate procedures are

conventionally applied. Many existing approximate solution

approaches for the SMV case have been extended to the MMV

case. Those approaches can be roughly divided into greedy

methods [3], [7], [11], [12], convex relaxation approaches

based on minimization of diversity measures [3], [8], [13]–

[15], and sparse Bayesian learning methods [16], [17]. The

diversity minimization methods achieve sparse solutions by

introducing in the objective function a penalty, referred to as

the diversity measure, that is computationally convenient and

encourages joint sparsity. In particular, as a natural extension

of basis pursuit [18] or LASSO [19] for the SMV case,

the ℓ2,1-mixed-norm penalty is investigated in [3], [13]. An

equivalent compact reformulation of the ℓ2,1-mixed-norm min-

imization, named SPARROW, is proposed in [14], which can

be solved at a significantly reduced running time. The diversity

minimization methods belong to the category of regularization-

based methods, which can be equivalently interpreted as

maximum a posteriori (MAP) estimators with different priors

under the framework of Bayesian inference [20]. Another

class of methods established in the Bayesian framework is

known as sparse Bayesian learning (SBL). In contrast to the

diversity minimization methods, where the parameters of the

prior distribution are assumed to be known and considered as

tuning parameters, in the sparse Bayesian learning framework,

the prior parameters are estimated by a type-II maximum

likelihood, i.e., by maximizing the marginal likelihood that

has been integrated over the parameter space [16]. Although

this marginal likelihood is multimodal, various iterative algo-

rithms have been employed to efficiently obtain its stationary

points, including the EM algorithm and other fixed-point meth-

ods [16], [17]. Recovery guarantees of several aforementioned

methods for the MMV problem are established in [12], [21]–

[25].

MMV-based parameter estimation is a classical problem

in various applications in array signal processing including

direction-of-arrival (DOA) estimation [26]–[30]. As a promi-

nent class of DOA estimation methods, the subspace-based

methods have been developed by exploiting the eigenstruc-

ture of the spatial correlation matrix, including the MUltiple

Signal Classification (MUSIC) and ESPRIT along with their

variants [31]–[34]. However, in the case of correlated source
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signals and/or low sample sizes, the classical subspace-based

methods experience a dramatic performance degradation as the

signal subspace becomes rank deficient. A common alternative

approach that is known to be robust to the signal correlation

is the deterministic maximum likelihood (DML) estimation,

which is formulated as a nonlinear least-squares (LS) problem.

The DML estimation has remarkable error performance in both

the threshold and asymptotic region by fully exploiting the

data model. Nevertheless, due to the nonlinearity and mul-

timodality, the DML estimation is computationally expensive

and generally requires a multidimensional grid search to obtain

the exact solution. Inspired by the capacity of compressed

sensing [35], sparsity-based DOA estimation methods have

been developed, where the DOA estimation from multiple

snapshots is modeled as an MMV problem by introducing

a predefined dictionary that is obtained from sampling the

complete field-of-view (FOV) [30], [36]. The sparsity-based

approach often exhibits excellent estimation performance in

several demanding scenarios, including cases with a limited

number of snapshots and highly correlated sources, at an

affordable running time by using the aforementioned efficient

methods for the MMV problem, such as the mixed-norm

minimization [13], [14] and sparse Bayesian learning [17],

[37], [38]. A comprehensive review of the sparsity-based

methods for DOA estimation can be found in [36]. However,

the relaxation of the cardinality measure in the mixed-norm

minimization often leads to a degradation of the estimation

quality and an asymptotic bias. On the other hand, although the

SBL method provides more flexibility and avoids the overhead

of tuning regularization parameters, its performance degrades

dramatically in the cases with a large number of sources

or high source correlations, as shown in the simulations in

Section VIII.

In this paper, we consider the MAP estimation for joint

sparse signal reconstruction from multiple measurement vec-

tors, with application to DOA estimation. In contrast to the

mixed-norm minimization approaches, we employ the ex-

act ℓ2,0-norm constraint to avoid a performance degradation

caused by the relaxation of the cardinality constraint. Specif-

ically, the corresponding MAP estimator is formulated as a

regularized LS problem with an ℓ2,0-norm constraint, which

can be viewed as a generalization of the ℓ0-norm constrained

LS problem investigated in [39] from a single measurement

to MMV case. By using the reformulation techniques in [14],

[39], the ℓ2,0-norm constrained LS problem can be exactly re-

formulated as a mixed-integer semidefinite program (MISDP).

The proposed MISDP reformulation can be solved by a generic

MISDP solver such as SCIP-SDP [40], which, however, may

become computationally expensive for problems of extremely

large dimensions. To reduce the running time in such scenarios

of large problem dimensions, one may employ the interval

relaxation based approximate solution approach proposed by

Pilanci et al. in [39] for the MISDP reformulation in the

SMV case. Simulation results demonstrate the improved error

performance of our proposed methods in comparison to several

widely used DOA estimation methods. In particular, compared

to the DML estimator obtained by brute-force search over a

multidimensional grid, which is often used as a benchmark, the

proposed MISDP-based method applied with the SCIP-SDP

solver [40] exhibits a superior error performance at a consid-

erably reduced running time in difficult scenarios, e.g., in the

case with a limited number of snapshots. On the other hand, it

is observed that the interval relaxation based implementation

fails in the case of a large sample size since the tightness of

the interval relaxation is no longer satisfied. Nevertheless, in

the case of very few snapshots, this relaxation-based algorithm

can be used to find a satisfactory approximate solution of the

MISDP reformulation at a greatly reduced running time. More-

over, in contrast to other nonconvex approaches, including the

greedy methods and the SBL method, the proposed MISDP-

based method offers a guarantee of finding a global optimum.

In addition, using the MISDP reformulation, we extend the

existing links between the considered ℓ2,0-norm constrained

problem and its commonly used convex relaxation — the ℓ2,1-

norm minimization problem.

To summarize, the main contributions of this paper are:

• We consider the MAP estimation of an MMV problem,

which is formulated as a regularized LS problem with

an ℓ2,0-norm constraint, and derive an equivalent MISDP

reformulation.

• Using the reformulation, we extend the available results

on the theoretical links between the considered ℓ2,0-norm

constrained formulation and the commonly used convex

formulation with the ℓ2,1-norm regularization.

• In contrast to the DML estimator, which is obtained

by brute-force search, the MAP estimator, as the global

optimum of the MISDP reformulation, can be achieved

by an efficient MISDP solver at a significantly reduced

running time.

• In the simulations, we also investigate the interval re-

laxation based low-cost approximate solution approach

proposed by Pilanci et al. in [39] for the MISDP reformu-

lation in the SMV case. The simulation results reveal the

failure of this approximate method in the case of a large

sample size since the tightness of the interval relaxation

is no longer satisfied.

The paper is organized as follows. The sensor array signal

model is presented in Section II. In Section III, we briefly

review the DML estimator and the MAP estimator established

in the Bayesian framework, as two classical multi-source

estimation methods. In Section IV, the DOA estimation task

is modeled as an MMV problem and the equivalent MISDP

reformulation is established. Two solution approaches for the

MISDP reformulation are then described in Section V. In

Section VI, using the developed reformulation, we provide

a theoretical comparison between the ℓ2,0-norm constrained

problem and the conventional convex method with ℓ2,1-norm

minimization. In Section VII, we briefly introduce a gen-

eralization of the proposed MISDP-based method for the

DOA estimation with nonuniform source variances. Simulation

results are presented in Section VIII, and conclusions are

drawn in Section IX.

Notation: We use x, x, and X to denote a scalar, column

vector, and matrix, respectively. For any x ∈ C, x∗ denotes its

complex conjugate. The sets of M×M Hermitian and positive
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ξ1 ξ2 ξ3 ξM. . .

Arbitrary linear array with M sensors

Source 1 Source L. . .

θ1
θL

Fig. 1. Exemplary setup for a linear array of M sensors and L source signals.

semidefinite (PSD) Hermitian matrices are denoted by SM and

SM+ , respectively. The M ×M identity matrix is denoted by

IM , and 0 and 1 represent a zero matrix and all-ones matrix,

respectively. The symbols (·)T, (·)H, and (·)−1 denote the

transpose, Hermitian transpose, and inverse, respectively. The

trace operator is written as tr(·). The Frobenius norm and the

ℓp,q-mixed-norm of a matrix X , defined in (15), are referred

to as ‖X‖F and ‖X‖p,q, respectively, while the ℓp-norm of

a vector is defined as ‖x‖p. In particular, the ℓ0-pseudo-norm

‖x‖0 counts the number of nonzero entries in the vector x.

II. SIGNAL MODEL

As depicted in Fig. 1, we consider a linear array of M
omnidirectional sensors. Assume that L narrowband far-field

source signals impinge from distinct directions θ1, . . . , θL ∈
[0, 180◦]. The corresponding spatial frequencies are defined as

µl = π cos(θl) ∈ [−π, π) (1)

for l = 1, . . . , L and summarized in the vector µ =
[µ1, . . . , µL]

T. We consider the DOA estimation problem with

multiple snapshots, where the array output provides measure-

ments recorded at N time instants. We assume that the sources

emit time-varying signals, whereas the spatial frequencies in

µ remain constant within the entire observation time. Let

Y = [y1, . . . ,yN ] ∈ C
M×N be the matrix that contains the

N snapshots and, specifically, the (m,n)th entry ym,n is the

output of sensor m at time instant n. The measurement matrix

is modeled as

Y = A(µ)Ψ+N , (2)

where Ψ = [ψ1, . . . ,ψN ] ∈ C
L×N is the source waveform

matrix with ψl,n being the signal emitted by source l at time

instant n. The matrix A(µ) collects the L steering vectors as

A(µ) =
[
a(µ1) . . . a(µL)

]
∈ C

M×L, (3)

where a(µ) = [ejµζ1 , . . . , ejµζm ]T is the steering vector corre-

sponding to the frequency µ and ξ1, . . . , ξM denote the sensor

locations in the linear array measured in half-wavelength.

Furthermore, the matrix N = [n1, . . . ,nN ] ∈ CM×N rep-

resents independent and identically distributed (i.i.d.) circular

and spatio-temporal white Gaussian noise with σ2 being the

variance of each noise entry nm,n.

III. DETERMINISTIC MAXIMUM LIKELIHOOD AND

MAXIMUM A POSTERIORI ESTIMATORS

In this section we briefly review the DML estimator and the

MAP estimator established in the Bayesian framework, as two

classical multi-source estimation methods. As those methods

are often computationally demanding, e.g., if the number of

sources is large, we propose an equivalent reformulation of the

MAP estimation problem in Section IV. The resulting MISDP

reformulation enables a computationally efficient solution to

the MAP estimation problem using state-of-the-art numerical

MISDP solvers.

In the deterministic maximum likelihood (DML) approach,

the source waveform matrix Ψ in (2) is considered to be

deterministic and unknown. According to the signal model

in (2), the snapshots yn are statistically independent and com-

plex normally distributed with mean A(µ)ψn and covariance

matrix σ2IM , i.e.,

yn|ψn ∼ CN (A(µ)ψn, σ
2IM ). (4)

Thus, the DML estimator for the frequencies µ and the source

waveforms Ψ is obtained as the solution of the following

nonlinear LS problem [27]:

min
µ∈[−π,π)L,Ψ∈CL×N

‖A(µ)Ψ− Y ‖2
F
, (5)

where ‖ · ‖F denotes the Frobenius norm. Since we are

mainly interested in estimating the DOA parameters µ, the

objective function in (5) can be concentrated with respect to

the nuisance parameters Ψ. That is, for each value of µ, the

minimizer of the nuisance parameters Ψ can be expressed in

closed form, which can then be substituted into the original

objective function to obtain the concentrated optimization

problem. Particularly, the DML estimation problem in (5) can

be concentrated as

min
µ∈[−π,π)L

tr
(
Y H

Π
⊥
A(µ)Y

)
, (6)

where Π⊥
A(µ) = IM−A

(
µ)(A(µ)HA(µ)

)−1
A(µ)H denotes

the orthogonal projector onto the orthogonal complement of

the column space of the matrix A(µ).

The maximum a posteriori (MAP) estimator [20], [28]

developed in the Bayesian framework is another widely used

estimation method that is closely related to the ML estima-

tion. In this approach, only the DOAs are considered to be

deterministic, whereas the source waveforms are assumed to

be stochastic. In particular, we consider the spatio-temporal

i.i.d. assumption that the signal waveforms ψl,n are statistically

independent for different sources and snapshots. They follow

the same circularly-symmetric complex Gaussian distribution

ψn ∼ CN (0, γIL), (7)

where γ is the source power that is assumed to be known

a priori. By the Bayes’ rule, the MAP estimator for the
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uncorrelated Gaussian prior in (7) is given by the solution

of the following regularized LS problem [20]:

max
µ∈[−π,π)L,Ψ∈CL×N

N∏

n=1

p(ψn|yn)

⇔ max
µ∈[−π,π)L,Ψ∈CL×N

N∏

n=1

p(yn|ψn)p(ψn) (8a)

⇔ min
µ∈[−π,π)L,Ψ∈CL×N

N∑

n=1

− log(p(yn|ψn))− log(p(ψn))

⇔ min
µ∈[−π,π)L,Ψ∈CL×N

‖A(µ)Ψ− Y ‖2
F
+ ρ‖Ψ‖2

F
, (8b)

where p(·) denotes the probability density function and

ρ =
σ2

γ
. (9)

The first LS data fitting term in (8b) resulting from the

likelihood p(yn|ψn) is identical to the DML cost function

in (5), whereas the prior distribution p(ψn), according to

the Gaussian assumption in (7), introduces the Tikhonov

regularization term in (8b). For a given vector µ, the minimizer

of the nuisance parameters Ψ in problem (8) admits the well-

known Tikhonov closed-form solution [41]

Ψ̃ =
(
A(µ)HA(µ) + ρIK

)−1
A(µ)HY . (10)

Then, by substituting (10) into (8), the MAP estimation can

be concentrated as

min
µ∈[−π,π)L

tr
(
Y H

Π̃
⊥
A(µ)Y

)
(11)

with Π̃
⊥
A(µ) = IM −A

(
µ)(A(µ)HA(µ) + ρIK

)−1
A(µ)H.

Moreover, by using the matrix inversion lemma, the matrix

Π̃
⊥
A(µ) can be rewritten as Π̃⊥

A(µ) = ( 1
ρ
A(µ)A(µ)H+IM )−1,

which leads to the following equivalent expression of the

concentrated MAP estimation in (11):

min
µ∈[−π,π)L

tr
(
Y H( 1

ρ
A(µ)A(µ)H + IM )−1Y

)
. (12)

IV. A MISDP REFORMULATION OF MAP ESTIMATION

FOR THE MMV PROBLEM

Due to the quadratic term in the matrix inversion, both the

DML and the MAP estimation problems in (6) and (12), re-

spectively, are nonconvex and multimodal with a large number

of local minima. Hence, the corresponding optimization pro-

cedure is computationally demanding and generally requires

a multidimensional grid search to find the exact solution.

Inspired by the concept of compressed sensing [35], the

above DOA estimation problem can be modeled as an MMV

problem by introducing a predefined dictionary that samples

the complete FOV [36]. In this section, we first introduce

the MMV-based model for DOA estimation. Then, for the

MMV problem, a dictionary-based MAP estimation problem

is developed according to (8), which can be reformulated as a

MISDP problem based on the reformulation techniques in [39]

and [14].

The problem of recovering the frequencies in µ from

the measurement matrix Y can be formulated as an MMV

problem by exploiting the following sparse representation for

the model in (2):

Y = A(ν)X +N , (13)

where A(ν) = [a(ν1), . . . ,a(νK)] ∈ C
M×K is an overcom-

plete dictionary constructed by sampling the FOV in K ≫ L
directions with spatial frequencies ν = [ν1, . . . , νK ]T and

X ∈ CK×N is a sparse representation of the source signal

matrix Ψ. Specifically, provided that the true frequencies µ

are contained in the frequency grid, i.e.,

{µl}Ll=1 ⊂ {νk}Kk=1, (14)

then X = [x1, . . . ,xK ]T admits a row-sparse structure,

which has only L nonzero rows corresponding to the signal

waveforms of the L sources, i.e., A(µ)Ψ = A(ν)X . Thus,

the considered DOA estimation problem can be described as an

MMV problem, which aims at jointly recovering a set of signal

samples in X that have a common sparse support over a given

dictionary A(ν) from multiple measurement vectors in Y .

The spatial frequencies are then estimated from the support of

the recovered row-sparse signal matrix X̂ = [x̂1, . . . , x̂K ]T

by {µ̂l}Ll=1 = {νk | ‖x̂k‖0 > 0, k = 1, . . . ,K}. For

simplicity, in the rest of the paper, the dictionary is referred

to as A = A(ν).
The ℓp,q-mixed-norms are commonly used to enforce

the row-sparsity assumption in sparse reconstruction prob-

lems [15]. Specifically, the ℓp,q-norm for a matrix X =
[x1, . . . ,xK ]T is defined as

‖X‖p,q = ‖x(ℓp)‖q with x(ℓp) =
[
‖x1‖p · · · ‖xK‖p

]T
.

(15)

The inner ℓp-norm applied to each row provides a nonlinear

coupling among the elements in a row, whereas the outer ℓq-

norm applied to the norms of all rows approximately measures

the row-sparsity. In particular, the ℓp,0-pseudo-norm represents

the exact number of nonzero rows of the matrix, which,

however, typically leads to an NP-hard problem due to its

nonconvexity. In [13], the ℓ2,1-norm regularization is utilized

as a convex approximation of the ℓ2,0-norm, to address the

MMV problem described above. In contrast, in this paper,

we consider the exact MAP estimation for the sparse model

in (13).

Let us impose the same spatio-temporal i.i.d. zero-mean

complex Gaussian prior assumption in (7) on the nonzero rows

of the matrix X . Therefore, the entries xk,n in the nonzero

rows of X are independent both across snapshots and across

DOAs and follow the distribution

xk,n ∼ CN (0, γ) (16)

for n = 1, . . . , N . Then, similar to (8), the MAP estimator for

the sparse model in (13) is given by the following regularized

LS problem with ℓ2,0-norm constraint:

min
X∈C

K×N , ‖X‖2,0≤L

‖AX − Y ‖2F + ρ‖X‖2F. (17)

The DML approach for the sparse model in (13) is obtained

from (17) by choosing the regularization parameter ρ to be

zero. However, compared to the DML approach, the MAP
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estimation in (17) can be equivalently reformulated as a

MISDP problem due to the additional Tikhonov regularization,

and then, its global optimum can be conveniently obtained

by a state-of-the-art MISDP solver. Problem (17) with the

ℓ2,0-norm constraint can be viewed as a generalization of

the ℓ0-norm constrained LS regression problem for a single

measurement, as considered by Pilanci et al. in [39], to the

MMV case. In this paper, we provide a nontrivial extension

of Pilanci’s MISDP reformulation for the SMV case to the

MMV problem (17). The regularization parameter ρ is chosen

according to (9) if the prior information of the expected

power of the source waveforms is known and satisfies the

assumption in (7). Otherwise, if training data are available, a

suitable value of ρ may be obtained through cross-validation

or, more efficiently, with the help of the algorithm unrolling

procedure [42]. On the other hand, the parameter ρ also

has a significant influence on the running time of the two

solution approaches for problem (17) that will be introduced in

Section V. As can be easily observed, a larger value of ρ leads

to a better-conditioned problem, which can generally be solved

faster. Therefore, if no prior information is available, one may

simply choose ρ to be as small as possible under a given

running time limit, in order to achieve a good approximation

of the DML estimator with the efficient solution approaches

presented in Section V.

In the following, we present a simplified derivation of

the MISDP reformulation for the MMV case, which, unlike

that in [39], does not involve the dual problem constructed

with the Legendre-Fenchel conjugate. First, by introducing

additional binary variables u ∈ {0, 1}K, the original ℓ2,0-norm

constrained problem in (17) can be equivalently represented as

the lifted problem

min
u∈{0,1}K

uT
1≤L

min
X∈CK×N

‖AD(u)X − Y ‖2
F
+ ρ‖X‖2

F
. (18)

The matrix D(u) in (18) is a diagonal matrix with u on its

main diagonal, which determines the active directions in the

dictionary A, i.e., the directions with nonzero source signals.

Note that D(u) is not required in the regularization in (18)

because the rows of X that are not selected by D(u) are not

involved in the data fitting term and, hence, will be enforced

to be all-zero by the minimization of ‖X‖2
F
.1 Like the MAP

estimation in (8), problem (18) can also be concentrated with

respect to X and then reformulated by the matrix inversion

lemma as the following integer program (IP)

min
u∈{0,1}K,uT

1≤L

tr
(
Y H( 1

ρ
AD(u)AH + IM )−1Y

)
. (19)

Next, by applying the same SDP reformulation technique as

in [14], [39], the integer program in (19) can be further written

1Note that the MAP estimation problem in (8) is often solved by grid
search in practice. By adding D(u) into the Tikhonov regularization in (18),
problem (18) can also be interpreted as a discretized version of the MAP
estimation problem in (8). That is, problem (18) is equivalent to solving
the MAP estimation problem in (8) via a brute-force search over the grid
{νk}

K
k=1

in (14).

as the following MISDP problem with a slack variable T :

min
u∈{0,1}K ,T∈SM

+

tr(T ) (20a)

s.t.

[ 1
ρ
AD(u)AH + IM Y

Y H T

]
� 0, (20b)

uT
1 ≤ L. (20c)

Note that the positive semidefiniteness of the matrix T is

enforced by the PSD constraint (20b). The equivalence of

the two problems in (19) and (20) can be shown as follows.

Since 1
ρ
AD(u)AH + IM is positive definite, by the Schur

complement formula, the constraint (20b) is equivalent to [43]

T � Y H( 1
ρ
AD(u)AH + IM )−1Y .

Therefore, for every given u, the minimum of tr(T ) in (20)

is achieved at T = Y H( 1
ρ
AD(u)AH + IM )−1Y . The above

argument also exhibits the fact that the solution of the MISDP

problem (20) is completely determined as long as the optimal

solution of the binary variable u is given.

It can be observed that the dimension of the semidefinite

constraint (20b) is proportional to the number of snapshots N ,

which becomes computationally demanding for the case with a

large number of snapshots. Therefore, following a similar line

of analysis as in SPARROW [14], we derive another equivalent

MISDP formulation that scales better with respect to N . The

objective function in problem (19) depends only on the sample

covariance matrix of the received signals R̂ = 1
N
Y Y H and,

hence, can be rewritten as follows:

tr
(
Y H( 1

ρ
AD(u)AH + IM )−1Y

)

= N tr
(
( 1
ρ
AD(u)AH + IM )−1R̂

)

= tr
(
Ŷ H( 1

ρ
AD(u)AH + IM )−1Ŷ

)
,

(21)

where Ŷ =
√
N ·R̂ 1

2 ∈ CM×M . It then leads to the following

equivalent MISDP formulation:

min
u∈{0,1}K,T∈SM

+

tr(T ) (22a)

s.t.

[
1
ρ
AD(u)AH + IM Ŷ

Ŷ H T

]
� 0, (22b)

uT
1 ≤ L. (22c)

In contrast to the constraint (20b), the dimension of the

semidefinite constraint (22b) is independent of the number of

snapshots N . In summary, either formulation (20) or (22) can

be used to solve the ℓ2,0-norm constrained problem in (17),

depending on the number of snapshots N . Specifically, (20)

is preferable in the undersampled case, i.e., N ≤M , and (22)

is preferable otherwise.

V. SOLUTION APPROACHES FOR THE MISDP

REFORMULATION

The MISDP implementation (20) or (22) of the consid-

ered MMV problem can be directly solved by a general

purpose MISDP solver such as SCIP-SDP [40]. The SCIP-SDP

solver provides two efficient approaches based on the widely
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Algorithm 1: The Interval Relaxation and Randomized

Rounding (IRRR) Algorithm for the MISDP Prob-

lem (20) or (22).

Step 1 Interval Relaxation: Solve the convex relaxation

of the MISDP formulation in (20) or (22) that

replaces the Boolean hypercube {0, 1}K by its

convex hull, the unit hypercube [0, 1]K . Let

û ∈ [0, 1]K be the optimal solution of the relaxed

problem.

Step 2 Randomized Rounding: Given the approximate

solution û, randomly generate T > 0 binary

solutions ũ ∈ {0, 1}K where each entry ũi
independently follows the Bernoulli distribution

P[ũk = 1] = ûk and P[ũk = 0] = 1− ûk for

k = 1, . . . ,K . Then, the solution ũ⋆ with the

smallest objective function value, which can be

calculated according to the IP formulation

in (19), among all feasible solutions is chosen to

be the approximate solution.

used branch-and-bound method and cutting-plane method,

respectively. Either the branch-and-bound or the cutting-plane

approach admits an improved scalability in the case of a

large problem dimension, compared to the simple brute-force

search on the integer variables. Nevertheless, the SCIP-SDP

solver may also become computationally demanding with the

increase of the problem dimension, since the branch-and-

bound and the cutting-plane approaches require iteratively

either solving continuous SDP relaxations or the computation

of an eigendecomposition for the construction of cutting

planes [40].

In contrast to solving the MISDP reformulation exactly,

in [39], the authors present a low-complexity method for

obtaining a good approximate solution in the case with a single

measurement vector, which is based on the convex relaxation

and randomized rounding. The method can be generalized

to the MMV case and the two main steps are summarized

in Algorithm 1, which is termed the Interval Relaxation and

Randomized Rounding (IRRR) Algorithm in this paper. The

interval relaxation in Step 1 is a continuous SDP and can be

efficiently solved by a generic interior point solver such as

MOSEK [44]. Note that the same relaxation technique is used

to construct the continuous relaxed subproblems in the branch-

and-bound approach of SCIP-SDP. To further reduce the

complexity of Step 1 in the case of an extremely large problem

dimension, one may consider an attractive alternative that,

instead of solving the interval relaxation of the MISDP for-

mulation in (20) with interior-point solvers, employs projected

first-order and quasi-Newton methods [45], or primal-dual

methods such as ADMM [46] to solve the interval relaxation

of the equivalent IP formulation in (19). In Step 2, since the

fractional solution û satisfies ûT
1 ≤ L, the cardinality of a

generated binary solution ũ follows a binomial distribution

with the expectation E[ũT
1] = ûT

1 ≤ L, which ensures the

high probability of the existence of feasible solutions among

the randomly generated binary solutions for reasonable choices

of T . Additional analyses on the tightness of the interval

relaxation are provided in [39]. Although Pilanci’s method can

be trivially generalized to the MMV case as considered here,

the tightness of the interval relaxation, for a large sample size,

is no longer satisfied with a high probability, as demonstrated

by the simulation results in Section VIII.

Furthermore, the on-grid assumption (14) is typically not

fulfilled in practice due to the finite grid size, which results in

spectral leakage effects and basis mismatch [47], [48] in the

reconstructed signal. To depress the grid mismatch error, one

may perform an additional local search step that employs a

generic, e.g., based on gradient methods, or customized, e.g.,

the Alternating Projection algorithm in [49], local optimization

solver to find a local optimum of the gridless DML estimation

in (6) or the gridless MAP estimation in (11), starting from the

frequencies recovered by the grid-based method. Nevertheless,

since it finds only a local optimum, it is not guaranteed

to always improve the estimation quality, especially if the

frequencies recovered by the grid-based method are very poor.

VI. RELATION TO THE ℓ2,1-NORM MINIMIZATION

In the literature, the ℓ1-norm is widely used as a convex

approximation of the ℓ0-norm for obtaining computationally

more tractable problems [18], [19]. In the MMV case, the

following ℓ2,1-norm minimization problem [13]

min
X∈CN×K

1
2‖AX − Y ‖2

F
+ λ

√
N‖X‖2,1 (23)

is typically considered as a generalization of the classic ℓ1-

norm minimization problem, where λ > 0 is a regularization

parameter. To address problem (23), the SPARROW method

in [14] utilizes the following equivalent convex reformulation:

min
s∈RK

+

tr
(
(AD(s)AH + λIM )−1R̂

)
+ sT1. (24)

The optimal solutions X̂ = [x̂1, . . . , x̂K ]T and ŝ for (23)

and (24), respectively, are related by ŝk = 1√
N
‖x̂k‖2 for

k = 1, . . . ,K . Similarly, problem (24) can be further reformu-

lated as an SDP problem and solved by a generic SDP solver.

Alternatively, a coordinate descent algorithm is also devised

in [14] for problem (24), which is more scalable in the case

with a large number of sensors M . By the expression in (21),

the integer program (19) employed in our proposed method

can be rewritten as

min
u∈{0,1}K ,uT

1≤L

tr
((
AD(u)AH + ρIM

)−1
R̂
)
, (25)

where some constant factors are discarded. Thus, it can be

concluded that problem (24) is equivalent to a Lagrangian of

a convex continuous relaxation of the integer program in (25)

where, in contrast to the interval relaxation used by the IRRR

Algorithm 1, the binary variables are further relaxed to be

nonnegative. As shown by the simulations in Section VIII,

the continuous relaxation and Lagrangian relaxation lead to

a degradation of the estimation quality, compared to our

proposed method.
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VII. GENERALIZATION TO THE SPARSE MAP ESTIMATION

WITH NONUNIFORM SOURCE VARIANCES

In Section IV, we developed a MISDP reformulation for the

sparse MAP estimation problem (17) with the uniform prior

assumption in (16) where a priori the sources in all directions

are assumed to have the same variance. In this section, we

consider the sparse MAP estimation problem with nonuniform

source variances and briefly introduce a generalization of the

MISDP-based method in Section IV.

Consider the sparse model in (13) constructed by sampling

the FOV. The waveform matrix X is similarly assumed to

be row-sparse and follow a spatial-temporal i.i.d. zero-mean

complex Gaussian distribution. However, unlike the uniform

prior assumption in (16), the source variances are assumed to

vary across the DOAs. Specifically, if there exists a source in

the sampled direction with the spatial frequency νk, then the

entries xk,n are assumed to follow the distribution

xk,n ∼ CN (0, γk) (26)

for n = 1, . . . , N , where γk > 0 denotes the given potential

source variance in the DOA with the spatial frequency νk. The

vector γ = [γ1, . . . , γK ]T can be considered as the sampled

spatial source power spectrum over the FOV, which may be

estimated a priori by, e.g., the conventional beamforming or

the SBL method. Define the regularization parameters

ρk =
σ2

γk
(27)

for k = 1, . . . ,K and summarize them in the vector ρ =
[ρ1, . . . , ρK ]T. Then, using the same considerations as in

Section IV, we can write the sparse MAP estimation problem

corresponding to the nonuniform prior in (26) as the follow-

ing sparse LS problem with a row-wise weighted Tikhonov

regularization

min
u∈{0,1}K

uT
1≤L

min
X∈CK×N

‖AD(u)X−Y ‖2F+ ‖D(
√
ρ)X‖2F, (28)

where the square root operation is performed elementwise

and ρk represents the regularization weight for the squared

Euclidean norm of the kth row of X . Similar to problem (18),

the matrix D(u) is not required in the regularization in (28)

because the rows of X that are not selected by D(u) are not

involved in the data fitting term and will be enforced to be

all-zero by the minimization of the row norm.

Likewise, problem (28) can be concentrated with respect to

X and then reformulated by the matrix inversion lemma as

the following integer program

min
u∈{0,1}K ,uT

1≤L

tr
(
Y H(AD(u ⊘ ρ)AH + IM )−1Y

)
,

(29)

where ⊘ denotes the elementwise division. The integer pro-

gram in (29) can be further written as MISDP problems similar

to (20) and (22) by applying the same reformulation technique

as in Section IV. Likewise, the MISDP reformulation is solved

exactly by the SCIP-SDP solver or approximately by the IRRR

Algorithm 1, as discussed in Section V. The details of the

generalization of the MISDP reformulation and the solution

approach for the sparse MAP estimation problem in (28)

with nonuniform source variances are omitted due to space

limitations.

VIII. SIMULATION RESULTS

In this section, we conduct numerical experiments on syn-

thetic data to evaluate and analyze the performance of the

proposed method, including both solution approaches intro-

duced in Section V for the MISDP reformulation. Specifically,

the SCIP-SDP solver [40] of version 4.1.0 is used and the

nonlinear branch-and-bound approach is chosen in the SCIP-

SDP solver, where the relaxed continuous SDP subproblems

are solved by MOSEK [44].2 The additional gridless local

search described in Section V is achieved by the fmincon

solver with the interior-point algorithm provided by MATLAB.

The continuous SDP problem in the IRRR Algorithm 1

is modeled by using CVX [50], [51] and also solved by

MOSEK. The estimation error of the proposed method is

compared to the stochastic Cramér-Rao Bound (CRB) [52]

and the estimation error of several widely used approaches for

DOA estimation, namely, MUSIC [31], root-MUSIC [32], the

SPARROW method with coordinate descent implementation,

the sparse Bayesian learning (SBL) method in [17], and the

DML estimator. The DML estimator is obtained via a brute-

force search over the same grid as in (13), which is equivalent

to the solution of problem (17) with the regularization param-

eter ρ being zero. The SBL method in [17] also employs an

uncorrelated Gaussian prior assumption. However, in the SBL

method, the source variances in the prior are not assumed to be

known but, as mentioned in Section I, estimated by a type-II

maximum likelihood method. The frequencies corresponding

to the L largest peaks in the spectrum of the estimated source

variances are then chosen to be the estimated frequencies.

The results are averaged over NR = 200 Monte-Carlo trials.

In particular, the quality of the estimated spatial frequencies

µ̂(n) = [µ̂1(n), . . . , µ̂L(n)]
T for n = 1, . . . , NR are measured

by the root-mean-square error (RMSE) with respect to the

ground-truth µ defined as

RMSE(µ̂) =
√

1
LNR

∑NR

n=1

∑L

l=1|µ̂l(n)− µl|2wa
, (30)

where |µ1 − µ2|wa = mink∈Z|µ1 − µ2 + 2kπ| denotes the

wrap-around distance between two frequencies µ1 and µ2. All

experiments were conducted on a Linux PC with an Intel Core

i7-7700 CPU and 32 GB RAM running MATLAB 2022a.

In the simulations, we consider a ULA of M = 8 sensors

with half-wavelength inter-element spacing, and the dictionary

A is constructed with K = 100 grid points with frequencies

uniformly sampled in [−π, π). The SNR is calculated as

SNR = 1/σ2.

Some algorithmic parameters are set as follows. The regular-

ization parameter ρ in (17) for our proposed method is chosen

2The source code of SCIP-SDP and an interface for MATLAB can be
downloaded from the website https://www.opt.tu-darmstadt.de/scipsdp. In the
experiments, the SCIP-SDP solver is called from MATLAB through the
provided interface.

https://www.opt.tu-darmstadt.de/scipsdp
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according to the rule in (9) and the parameter λ in (23) for

the SPARROW method is selected by the heuristic rule

λ =
√
σ2M logM (31)

as recommended in [14], [53]. The number of randomly

generated integer solutions in the IRRR algorithm is set to

be T = 1000 as recommended in [39].

A. Uncorrelated Source Signals

We first compare the performance of the methods in the

case with uncorrelated source signals that satisfy the prior

assumption in (7). Specifically, for each Monte-Carlo trial, the

true source signals in Ψ are randomly generated according to

the uncorrelated Gaussian prior in (7) with the variance γ = 1.

In the simulations in Fig. 2 and 3, we compare the es-

timation error performance of the different methods in a

small-scale scenario of L = 3 sources with frequencies

µ = π · [−0.1, 0.35, 0.5]T, where the brute-force search is

computationally competitive. The true frequencies µ are not

forced to be on the searching grid. The estimation errors of the

recovered frequencies without and with the additional gridless

local search based on the DML function and the MAP function

in (17), respectively, are reported.

In the first simulation, as depicted in Fig. 2, the number

of snapshots is set to be N = 8 and the SNR is varied

between −10 dB and 20 dB. Except for root-MUSIC, all the

methods are grid-based and, hence, as shown in Fig. 2(a), their

estimation quality in the high SNR region is hindered by the

grid mismatch error caused by the finite grid. Nevertheless, in

most of the cases, the grid mismatch error can be eliminated

by an additional gridless local search, as demonstrated in

Fig. 2(b) and 2(c). With the increase of SNR, the solution

of SPARROW becomes less sparse than the expected value

since the recommended choice of the regularization parameter

λ in (31) decreases. This results in a significant degradation

of the error performance of SPARROW in the high SNR

region. A more suitable choice of λ may be obtained by

cross validation with training data, which is, however, not

investigated in this paper. The proposed method and the brute-

force DML possess almost identical error performance, which

is superior to that of the other methods in most of the inspected

SNR region. Moreover, in this case of low sample size,

compared to SCIP-SDP, the IRRR algorithm is capable of

obtaining a satisfactory approximate solution of the proposed

MISDP problem in (20). Compared to the brute-force DML,

the SBL method exhibits similar estimation quality in the

regions before and after the threshold, whereas its threshold

occurs at a higher SNR, i.e., the RMSE of the SBL method

deviates from the CRB at a higher SNR.

In the second simulation, as shown in Fig. 3, the SNR is

fixed at −5 dB and the number of snapshots is varied from

1 to 1000. As shown in Fig. 3(a), due to the continuous

relaxation and the Lagrangian relaxation discussed in Sec-

tion VI, SPARROW is outperformed by the brute-force DML

and the proposed method via SCIP-SDP in both the asymptotic

and non-asymptotic regions. The brute-force DML and the

proposed method via SCIP-SDP exhibit the best threshold

Proposed method via SCIP-SDP Proposed method via IRRR

SPARROW SBL

DML MUSIC

root-MUSIC CRB

−10 0 10 20

10−2

10−1

100

SNR (dB)

R
M

S
E

(a)

−10 0 10 20

10−2

10−1

100

SNR (dB)

R
M

S
E

(b)

−10 0 10 20

10−2

10−1

100

SNR (dB)

R
M

S
E

(c)

Fig. 2. Error performance w.r.t. SNR for L = 3 uncorrelated sources, M = 8
sensors, N = 8 snapshots, and K = 100 grid points, in the case (a) without
gridless local search, (b) with gridless local search on the DML function, (c)
with gridless local search on the MAP function.

performance. However, as a result of the additional Tikhonov

regularization in (17), the proposed method via SCIP-SDP

possesses a lower estimation error than DML in the region of

low sample size but, meanwhile, exhibits an asymptotic bias.

In comparison to SCIP-SDP, the IRRR algorithm is capable of

obtaining a good approximate solution of the proposed MISDP

problem in (20) in the region of low sample size, whereas, for

large sample size, it exhibits a significant degradation on the

estimation quality since the tightness of the interval relaxation

is no longer satisfied with a high probability. Nevertheless,

Fig. 3(b) demonstrates that the proposed method via IRRR
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Proposed method via SCIP-SDP Proposed method via IRRR

SPARROW SBL

DML MUSIC

root-MUSIC CRB
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R
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(c)

Fig. 3. Error performance w.r.t. the number of snapshots for L = 3
uncorrelated sources, M = 8 sensors, SNR = −5 dB, and K = 100
grid points, in the case (a) without gridless local search, (b) with gridless
local search on the DML function, (c) with gridless local search on the MAP
function.

can be used to find a good initialization for the gridless

local search in the asymptotic region. In particular, with the

additional gridless local search, the proposed method via IRRR

achieves the CRB at the same value of N as root-MUSIC,

which is superior to SPARROW and MUSIC but inferior to

the brute-force DML and the proposed method via SCIP-SDP,

and, moreover, the proposed method via IRRR obtains a lower

estimation error than that of root-MUSIC before the threshold.

Similar to the results in Fig. 2, the threshold in Fig. 3 of

SBL occurs at a higher number of snapshots than that of

Proposed method via SCIP-SDP Proposed method via IRRR

SPARROW SBL

DML MUSIC

root-MUSIC CRB

100 101 102 103
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100

Number of snapshots N

R
M
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E

(a)
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10−1

100

Number of snapshots N

R
M

S
E

(b)

100 101 102 103

10−1

100

Number of snapshots N

R
M

S
E

(c)

Fig. 4. Error performance w.r.t. the number of snapshots for L = 5
uncorrelated sources, M = 8 sensors, SNR = −5 dB, and K = 100
grid points, in the case (a) without gridless local search, (b) with gridless
local search on the DML function, (c) with gridless local search on the MAP
function.

DML. In addition, for all the compared methods, both the bias

introduced by the regularization terms and the residual error

caused by the finite grid can be eliminated in the asymptotic

region by the additional gridless local search on the DML

function. From Fig. 3(b) and 3(c), it can be observed that,

compared to the DML function, the additional Gaussian prior

in the MAP function improves the estimation quality in the

region of low sample size but it also leads to an asymptotic

bias with the increase of number of snapshots.

Next, we consider a scenario of L = 5 sources with
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Proposed method via SCIP-SDP Proposed method via IRRR
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Fig. 5. computation time vs. the number of snapshots for L = 5 uncorrelated
sources, M = 8 sensors, SNR = −5 dB, and K = 100 grid points.

frequencies µ = π · [−0.5, 0.1, 0.35, 0.5, 0.7]T. The estimation

error performance is reported in Fig. 4 and the computa-

tion time in Fig. 5. The computation time of the additional

gridless local search by fmincon is negligible compared to

SPARROW and, hence, is not reported. Although the branch-

and-bound strategy employed by SCIP-SDP enjoys improved

scalability compared to the brute-force search, to limit the total

execution time of this simulation, we terminate the SCIP-

SDP solver when 500 branch-and-bound nodes have been

explored. Note that, compared to the MISDP problem (20),

the change of the dimension of the semidefinite constraint in

the equivalent reformulation (22) only affects the running time

of the relaxed SDP subproblems in the SCIP-SDP solver, not

the searching path over the branch-and-bound tree. Therefore,

the difference in the complexities of the two equivalent MISDP

reformulations (20) and (22) can be analytically observed

by comparing the dimensions of the semidefinite constraints.

Thus, in this simulation, we do not compare the computation

time among the two equivalent MISDP reformulations (20)

and (22). Instead, as discussed in Section II, to achieve the

lower running time in the SDP implementation, the MISDP

reformulation (20) is employed in the undersampled case,

whereas the equivalent MISDP reformulation (22), whose con-

straint dimension is independent of the number of snapshots,

is chosen in the oversampled case. The result is that, in Fig. 5,

the computation time of the proposed MISDP-based method

via SCIP-SDP increases with the increase of the number of

snapshots in the undersampled case but remains constant in

the oversampled case. Compared to the simulation in Fig. 3,

two major differences are observed in Fig. 4. First, even with

early termination, the proposed method via SCIP-SDP presents

a more significant decrease of the RMSE compared to DML

in the region of a low sample size than that in Fig. 3, which

also leads to a threshold performance superior to DML. This

suggests that, for a low sample size, our proposed MISDP-

based method with the SCIP-SDP solver is more favorable

than the brute-force DML since it possesses not only a superior

error performance but also a reduced running time, as shown

in Fig. 5. Second, all the other methods, except for the DML

and the proposed MISDP-based method via SCIP-SDP, exhibit

a degradation of error performance. In particular, the proposed

method via IRRR fails in the region of a large sample size,

even with an additional gridless local search. Actually, when

applied to the solutions of the IRRR algorithm, the gridless

local search worsens the estimation quality in the asymptotic

region as the frequencies recovered by the IRRR algorithm

become meaningless. However, in the case of very few snap-

shots, the proposed method via IRRR is competitive due to its

low complexity and satisfactory error performance. Moreover,

since the MAP estimation model incorporates the additional

prior information of the source covariance matrix, which

is assumed to be unknown in the stochastic model for the

CRB, the proposed method via SCIP-SDP achieves an RMSE

below the CRB in Fig. 4(c) in the middle region. Finally,

we remark that the SCIP-SDP solver incorporates a strategy,

similar to that in the IRRR algorithm, that searches for good

integer solutions by randomized rounding after a relaxed SDP

subproblem is solved. This partly explains the observation that

the SCIP-SDP exhibits a good error performance even with

only 500 branch-and-bound nodes explored.

B. Correlated Source Signals

We then evaluate the performance of the methods in the case

with correlated source signals. In particular, we consider L = 3
sources with frequencies µ = π·[−0.1, 0.35, 0.5]T. The source

signals follow a zero-mean complex Gaussian distribution with

the covariance matrix


1 ϕ ϕ
ϕ∗ 1 ϕ2

ϕ∗ ϕ∗2 1


 (32)

and the correlation coefficient ϕ ∈ C between source 1 and

2 is chosen to be ϕ = 0.99. Since all sources are set to

have the same average power of 1, the regularization ρ in our

proposed method is still chosen according to the rule in (9)

with PΨ = 1. The estimation errors for various choices of the

number of snapshots are displayed in Fig. 6. The following

differences can be observed compared to the results in Fig. 3

for uncorrelated sources. First, it is verified that the subspace-

based methods, including MUSIC and root-MUSIC, often fail

for correlated sources. On the other hand, the SBL method

exhibits a significant degradation of the error performance due

to the mismatch of the prior model. Although the RMSE of the

brute-force DML and the proposed method via SCIP-SDP also

increases in the post-threshold region, the increase in RMSE

is insignificant.

IX. CONCLUSION

In this paper, we consider the maximum a posteriori es-

timation for joint sparse signal reconstruction from multiple

measurement vectors, which is conventionally formulated as

a regularized least-squares (LS) problem with ℓ2,0-norm con-

straint. Using the reformulation techniques in [14], [39], we

reformulate the ℓ2,0-norm constrained LS problem exactly as

a mixed-integer semidefinite program (MISDP). The proposed

MISDP reformulation can be solved by a generic MISDP
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Fig. 6. Error performance w.r.t. the number of snapshots for L = 3 correlated
sources, M = 8 sensors, SNR = −5 dB, and K = 100 grid points, in the
case (a) without gridless local search, (b) with gridless local search on the
DML function, (c) with gridless local search on the MAP function.

solver such as SCIP-SDP [40], which, however, may become

computationally expensive for problems of extremely large

dimensions. To reduce the running time in such scenarios

of large problem dimensions, one may employ the interval

relaxation based approximate solution approach proposed by

Pilanci et al. in [39] for the MISDP reformulation in the case

with a single measurement. The simulations in the context

of DOA estimation in array signal processing demonstrate

the improved error performance of our proposed methods in

comparison to several widely used DOA estimation methods.

In particular, compared to the deterministic maximum like-

lihood (DML) estimator obtained by the brute-force search,

the proposed MISDP-based method via the SCIP-SDP solver

exhibits a superior error performance at a considerably reduced

running time in difficult scenarios, e.g., the case with a limited

number of snapshots. Also, similar to the DML estimator,

the proposed method provides an improved robustness to

the source correlations and the increase of the number of

sources when compared to subspace-based methods and the

SBL method. On the other hand, it is observed that the interval

relaxation based implementation fails in the case of a large

sample size since the tightness of the interval relaxation is no

longer satisfied. Nevertheless, in the case of few snapshots, this

relaxation-based algorithm can be used to find a satisfactory

approximate solution of the MISDP reformulation at a greatly

reduced running time. Similar to our proposed method, the

sparse Bayesian learning (SBL) method adopts an uncorrelated

Gaussian prior assumption. However, instead of considering

the source variances as tuning parameters, it estimates the

source variances by a type-II maximum likelihood approach.

Although the SBL method provides more flexibility and avoids

the overhead of tuning regularization parameters, it exhibits

a significant degradation of the error performance in the

simulation with correlated sources due to the mismatch of

the prior model. Additionally, in contrast to other noncon-

vex approaches, including the greedy methods and the SBL

method, the proposed MISDP-based method offers a guarantee

of finding a global optimum.
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