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SALSA: A Sequential Alternating Least Squares
Approximation Method For MIMO Channel Estimation

Sepideh Gherekhloo, Khaled Ardah, Martin Haardt

Abstract—In this paper, we consider the channel estimation problem
in sub-6 GHz uplink wideband MIMO-OFDM communication systems,
where a user equipment with a fully-digital beamforming structure
is communicating with a base station having a hybrid analog-digital
beamforming structure. A novel channel estimation method called Se-
quential Alternating Least Squares Approximation (SALSA) is proposed
by exploiting a hidden tensor structure in the uplink measurement
matrix. Specifically, by showing that any MIMO channel matrix can be
approximately decomposed into a summation of R factor matrices having
a Kronecker structure, the uplink measurement matrix can be reshaped
into a 3-way tensor admitting a Tucker decomposition. Exploiting the
tensor structure, the MIMO channel matrix is estimated sequentially
using an alternating least squares method. Detailed simulation results
are provided showing the effectiveness of the proposed SALSA method
as compared to the classical least squares method.

Index Terms—Channel estimation, massive MIMO, Tucker tensor
decomposition, alternating least squares

I. INTRODUCTION

MAssive MIMO [1] is one of the key enabling technologies
of 5G-NR mobile communications [2] and it shall remain

relevant in future 6G wireless systems. By employing a large number
of antennas at the base station (BS) relative to the number of
scheduled users, massive MIMO systems increase the data throughput
relative to legacy systems by providing a large beamforming gain
and an improved multi-user interference suppression owing to its
high spatial resolution [3]. Recently, massive MIMO communications
have received a special attention with the introduction of millimeter-
wave (mm-wave)-based wireless communications [4], since the use
of massive MIMO in such systems becomes a requirement rather
than an option to compensate the high pathloss encountered in the
wireless communication systems at higher frequencies. However, it
is well-known that the promised theoretical massive MIMO gains
heavily rely on the availability of accurate channel state information
(CSI) and the considered beamforming structure.

On the one hand, classical fully-digital (FD) beamforming struc-
tures, which generally provide the maximum beamforming gain,
require a dedicated radio frequency (RF) chain for each antenna ele-
ment. This increases not only the implementation cost and complexity
of massive MIMO systems, but also the circuit energy consumption.
A promising solution to these issues relies on the recently introduced
hybrid analog-digital (HAD) beamforming structures [5], [6], [4],
[7], [8], which use a combination of analog beamforming in the RF
domain and digital beamforming in the baseband domain to reduce
the number of RF chains as compared to FD beamforming structures,
e.g., the number of RF chains can be as small as the number of
transmitted data streams.

On the other hand, in 5G-NR systems, for example, the BS esti-
mates the CSI from uplink sounding reference signals (SRS) emitted
by the user terminals (UEs). In mm-wave systems, the CSI estimation
problem is often transformed into a multi-dimensional direction-
of-arrival (DoA) estimation problem [9], [10], [11], thanks to the
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low-rank (sparse) nature of mm-wave MIMO channels [4], where
several techniques, e.g., compressed sensing [9], [10] and ESPRIT
[11] can be readily employed to obtain a high CSI estimation accuracy
while requiring a small number of training overhead. Differently,
in sub-6 GHz-based systems, the MIMO channels often experience
a high-rank nature, which makes most, if not all, mm-wave-based
MIMO channel estimation methods unfeasible. To this end, classical
channel estimation techniques, e.g., least-squares (LS) and minimum
mean squared-error (MMSE) methods [12], [13] can be used to
estimate sub-6 GHz-based MIMO channels. However, these methods
were originally developed for single-antenna and small-scale MIMO
systems and suffer from a severe performance degradation in difficult
scenarios, e.g., with small number of training snapshots and/or a
low signal-to-noise ratio (SNR). Since sub-6 GHz massive MIMO
communications are, and will remain, an integral part of current
and future wireless communication systems, more efficient channel
estimation techniques than the classical methods are required.

In this paper, we consider the channel estimation problem in sub-6
GHz uplink wideband MIMO-OFDM communication systems, where
a single-user with a FD beamforming structure communicates with a
BS having a HAD beamforming structure. By exploiting a hidden
tensor structure in the uplink measurement matrix, we propose a
novel channel estimation method called Sequential Alternating Least
Squares Approximation (SALSA). Specifically, by showing that any
MIMO channel matrix can be approximately decomposed into a sum-
mation of R factor matrices having a Kronecker structure, the uplink
measurement matrix can be reshaped into a 3-way tensor admitting a
Tucker decomposition [14]. Exploiting such a tensor representation,
the MIMO channel matrix can be estimated sequentially using the
classical ALS method [15]. Detailed simulation results are provided
showing that the SALSA-based approach can achieve a more accurate
channel estimation in difficult scenarios as compared to the classical
LS-based approach.

Notation: The transpose, the complex conjugate, the conjugate
transpose (Hermitian), and the Kronecker product are denoted as AT,
A∗, AH, and ⊗, respectively. Moreover, IN is the N ×N identity
matrix, vec{A} forms a vector by staking the columns of A over
each other, and the n-mode product of a tensor A ∈ CI1×I2×...,×IN
with a matrix B ∈ CJ×In is denoted as A×n B.

II. SYSTEM MODEL

We consider an uplink single-user wideband MIMO-OFDM com-
munication system, as depicted in Fig. 1, where a UE with NUE

antennas is communicating with a BS with NBS antennas over NSC

subcarriers. The UE has a FD beamforming structure while the BS
has a HAD beamforming structure with NRF ≤ NBS radio-frequency
(RF) chains. We assume that the NBS antennas and the NRF RF chains
are divided equally1 into NG ≥ 1 groups, where each group has
N̊BS = NBS

NG
antennas and N̊RF = NRF

NG
RF chains (i.e., NBS = NG·N̊BS

and NRF = NG ·N̊RF) and the RF chains in every group are connected
with every antenna element in the same group. Moreover, we assume

1To simplify the exposition, we assume that NBS, NRF, and NG are selected
so that N̊BS and N̊RF are integer numbers, without loss of generality.
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a block-fading channel model as shown in Fig. 2, where the channel
coherence-time TC is divided into TBSTUE transmission time intervals
(TTIs), i.e., every block has TUE snapshots.

Let Āi ∈ CNBS×NRF denote the analog combining matrix at the
ith block at the BS. Then, according to our above assumptions, Āi

has a block-diagonal structure given as2

Āi =
1√
N̊BS

·


Āi,1 . . . 0

...
. . .

...
0 . . . Āi,NG

 ∈ CNBS×NRF , (1)

where Āi,g ∈ CN̊BS×N̊RF is the gth block-matrix with constant
modulus entries, i.e.,

∣∣[Āi,g][r,c]
∣∣ = 1, where [Āi,g][r,c] is the (r, c)th

entry of Āi,g .
The received signal by the BS in the (i, j)th TTI over the kth sub-

carrier, with i ∈ {1, . . . , TBS}, j ∈ {1, . . . , TUE}, k ∈ {1, . . . , NSC},
can be expressed as

ȳk,i,j = ĀH
iHkfk,jsk,j + ĀH

i z̄k,i,j ∈ CNRF , (2)

where fk,j ∈ CNUE is the (k, j)th precoding vector, sk,j ∈ C is
the corresponding training symbol, z̄i,j ∈ CNBS is the BS additive
white Gaussian noise with zero mean and variance σ2

n, and Hk ∈
CNBS×NUE is the kth subcarrier frequency-domain MIMO channel
matrix.

Initially, we collect the measurement vectors {ȳk,i,j}TUE
j=1 next to

each other as Ȳk,i = [ȳk,i,1, . . . , ȳk,i,TUE ], which can be written as

Ȳk,i = ĀH
iHkFk + ĀH

i Z̄k,i ∈ CNRF×TUE , (3)

where Fk = [fk,1sk,1, . . . ,fk,TUEsk,TUE ] ∈ CNUE×TUE and Z̄k,i =
[z̄k,i,1, . . . , z̄k,i,TUE ]. We assume that Fk,∀k, are designed with
orthonormal rows, i.e., FkF H

k = INUE , ∀k, and TUE ≥ NUE. After
applying the right-filtering to (3) we obtain

Yk,i = Ȳk,iF
H = ĀH

iHk + Zk,i ∈ CNRF×NUE , (4)

where Zk,i = ĀH
i Z̄k,iF

H
k . Next, we collect the measurement matri-

ces {Yk,i}TBS
i=1 on the top of each other as Yk =

[
Y T
k,1, . . . ,Y

T
k,TBS

]T,
which can be written as

Yk = AHk + Zk ∈ CL×NUE , (5)

where L = TBSNRF, A =
[
Ā1, . . . , ĀTBS

]H ∈ CL×NBS , and Zk =[
ZT
k,1, . . . ,Z

T
k,TBS

]T. After that, we collect the measurement matrices
{Yk}NSC

k=1 next to each other as Y = [Y1, . . . ,YNSC ], which can be
written as

Y = AH + Z ∈ CL×NUENSC , (6)

where Z =
[
Z1, . . . ,ZNSC

]
and H =

[
H1, . . . ,HNSC

]
∈

CNBS×NUENSC is the total MIMO channel matrix.
The baseline LS-based channel estimation method: Given the

measurement matrix in (6), a least-squares (LS)-based method can
be used to obtain an estimate of the total MIMO channel matrix as

ĤLS = [A]+Y =
[
Ĥ1, . . . , ĤNSC

]
∈ CNBS×NUENSC , (7)

where [·]+ denotes the Moore-Penrose pseudo-inverse. Note that, due
to the left filtering, the LS-based method requires that L ≥ NBS, i.e.,
TBS ≥ NBS

NRF
to provide an accurate channel estimate.

2Note that if NG = 1, the above analog structure coincides with the known
fully-connected analog structure [5], where every RF chain is connected to
every antenna element. On the other hand, if NG = NRF, the above analog
structure coincides with the known partially-connected analog structure [5],
where every RF chain is connected to a unique subset of antenna elements.

Digital 
Domain

RF Chain

RF Chain

RF Chain

RF Chain

Digital 
Domain

Analog Domain

A BS with a hybrid analog-digital beamforming structure

A UE with a fully digital 
beamforming structure

Wideband MIMO Channel

Fig. 1. The considered uplink MIMO-OFDM communication system.

Fig. 2. The channel coherence time TC division.

III. THE PROPOSED SALSA METHOD

To obtain a more accurate channel estimate while reducing the
training overhead, we propose in this section a novel channel estima-
tion method called SALSA, which is derived by exploiting a hidden
tensor structure in the measurement matrix in (6). To show this, we
first recall the following propositions from [16], [17], [18].

Proposition 1: Let X be a matrix given as

X = X1 ⊗X2 =

X1,1 . . . X1,J1

. . .

XI1,1 . . . XI1,J1

 ∈ CI×J , (8)

where X1 ∈ CI1×J1 , X2 ∈ CI2×J2 , I = I1I2, J = J1J2, and
Xn,m = [X1][n,m]X2 is the (n,m)th block-matrix of X . Let K ∈
CI1J1×I2J2 be a rank-one matrix given as

K =



vec{X1,1}T

. . .

vec{XI1,1}T

. . .

vec{X1,J1}T

. . .

vec{XI1,J1}T


= vec{X1}vec{X2}T, (9)

with the rank-one truncated-SVD given as K = σuvH, where u ∈
CI1J1 and v ∈ CI2J2 are the left and right singular vectors of K,
respectively, and σ is the associated singular value. Then, the optimal
solution to

minimize
X1,X2

‖X −
(
X1 ⊗X2

)
‖2F (10)

can be obtained as

X1 = reshape{
√
σu, I1, J1} (11)

X2 = reshape{
√
σv∗, I2, J2}. (12)

Proof: Please refer to [17] for more details.
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Algorithm 1 Sequential Kronecker Factorization

1: Input: A matrix X ∈ CI×J
2: Select R, I1, J1, I2, J2 such that I = I1I2 and J = J1J2

3: for r = 1 to R do
4: Get Xr = X −

∑r−1
r′=1 X1,r′ ⊗X2,r′

5: Given Xr , get X1,r and X2,r using (11) and (12), respec-
tively

6: end for
7: Output: X̂ =

∑R
r=1 X1,r ⊗X2,r ∈ CI×J

10 20 30 40 50 60 70
10−35

10−25

10−15

10−5

105

Ropt ≈ min{I1J1, I2J2}

Number of channel factor matrices R

M
S
E

[I1,I2,J1,J2] = [8,8,8,8]

[I1,I2,J1,J2] = [8,8,4,16]

[I1,I2,J1,J2] = [8,8,64,1]

[I1,I2,J1,J2] = [32,2,32,2]

Fig. 3. MSE vs. the number of channel factor matrices R assuming NBS =
64, NUE = 4, and NSC = 16, where MSE = ‖H −

∑R
r=1 Cr ⊗ Br‖2F .

Here, the total MIMO channel matrix H =
[
H1, . . . ,HNSC

]
∈ CI×J is

generated following the 3GPP CDL channel model [19], [20] with the main
system parameters outlined in Table I. Please refer to Section IV for more
details.

Proposition 2: For any given I × J matrix X , it can be approxi-
mately written as a summation of R ≥ 1 factor matrices as

X =

R∑
r=1

Xr =

R∑
r=1

X1,r ⊗X2,r, (13)

where Xr = X1,r ⊗X2,r , X1,r ∈ CI1×J1 , and X2,r ∈ CI2×J2 ,
I = I1I2, and J = J1J2.

Proof: The proof follows directly by applying Proposition 1
sequentially [18]. The corresponding Proposition is summarized in
Algorithm 1.

Let I = NBS and J = NUENSC. Then, from Proposition 2, the
total frequency-domain MIMO channel matrix H ∈ CI×J in (6) can
be approximately written as

H ≈
R∑
r=1

Cr ⊗Br ∈ CI×J , (14)

where Br ∈ CI1×J1 , Cr ∈ CI2×J2 , I = I1I2, and J = J1J2. As
shown in Fig. 3, the approximation becomes tighter as the number of
channel factor matrices R increases. More importantly, we can see
that in case of full rank channels, the optimal value of R, denoted
in the figure by Ropt, is dependent on the division scenario of I
and J , where Ropt ≈ min{I1J1, I2J2}. In other words, reducing the
dimension of one of the channel factor matrices, i.e., Br ∈ CI1×J1
or Cr ∈ CI2×J2 , reduces the value of Ropt.

Let L = TBSNRF. Then, by substituting (14) into (6), and assuming
R is sufficiently large, we can write

Y = A

(
R∑
r=1

Cr ⊗Br

)
+ Z =

R∑
r=1

A(Cr ⊗Br) + Z

=

R∑
r=1

Yr + Z ∈ CL×J , (15)

where Yr = A(Cr ⊗Br) ∈ CL×J . From (15), we note that Yr can
be seen as the 1-mode unfolding of a 3-way Tucker tensor given as
[14]

Yr = S ×1 A×2 BT
r ×3 CT

r ∈ CL×J1×J2 , (16)

where S ∈ ZI×I1×I2 is the core-tensor with the 1-mode unfolding
given as [S](1)

def
= II . The `-mode unfolding of Yr , ` = {1, 2, 3},

can be expressed as

[Yr](1) = A[S](1)(Cr ⊗Br) ∈ CL×J , (17)

[Yr](2) = BT
r [S](2)(Cr ⊗AT) ∈ CJ1×LJ2 , (18)

[Yr](3) = CT
r [S](3)(Br ⊗AT) ∈ CJ2×LJ1 . (19)

From (16), the 3-way Tucker tensor form of (15) can be expressed
as

Y =

R∑
r=1

Yr + Z ∈ CL×J1×J2 , (20)

where Z is the 3-way tensor representation of the noise matrix Z.
This latter formulation suggests that the factor matrices {Br,Cr}Rr=1

can be estimated sequentially as follows. Let Yr be the tensor
obtained at the rth sequential step as

Yr = Y −
r−1∑
r′=1

Yr′ ∈ CL×J1×J2 . (21)

Then, by exploiting the 2-mode and the 3-mode unfoldings, the
rth factor matrices Br and Cr can be obtained using, e.g., the ALS
method [15], where one factor matrix is assumed to be fixed when
solving for the other. Specifically, Br and Cr can be obtained as

BT
r = [Yr](2)

[
Ψ2

]+
= [Yr](2)Ψ

H
2 [Ψ2Ψ

H
2 ]−1 (22)

CT
r = [Yr](3)

[
Ψ3

]+
= [Yr](3)Ψ

H
3 [Ψ3Ψ

H
3 ]−1, (23)

where Ψ2 and Ψ3 are given as

Ψ2 = [S](2)(Cr ⊗AT) ∈ CI1×LJ2 (24)

Ψ3 = [S](3)(Br ⊗AT) ∈ CI2×LJ1 . (25)

Algorithm 2 summarizes the proposed SALSA method for estimat-
ing the total MIMO channel matrix H ∈ CI×J , which is guaranteed
to converge monotonically to, at least, a local optimum solution [15].

Algorithm 2 SALSA For MIMO-OFDM Channel Estimation

1: Input: Measurement matrix Y ∈ CL×J as in (6)
2: Select R ≥ 1, Nmax-iter ≥ 1, I1, I2, J1, and J2 such that I =
I1I2 = NBS and J = J1J2 = NUENSC

3: Obtain the 3-way Tucker tensor Y in (20) from Y
4: for r = 1 to R do
5: Get Yr = Y −

∑r−1
r′=1 Ŷr′

6: Initialize C
(0)
r ∈ CI2×J2 , e.g., randomly

7: for n = 1 to Nmax-iter do
8: Get B(n)

r using (22) for given C
(n−1)
r

9: Get C(n)
r using (23) for given B

(n)
r

10: end for
11: Set B̂r = B

(Nmax-iter)
r and Ĉr = C

(Nmax-iter)
r

12: Get Ŷr = S ×1 A×2 B̂T
r ×3 ĈT

r , go back to Step (5)
13: end for
14: Output: ĤSALSA =

∑R
r=1 Ĉr ⊗ B̂r ∈ CI×J

Note that, due to the right filtering, the SALSA method in
Algorithm 2 requires that (C1) I1 ≤ LJ2 and (C2) I2 ≤ LJ1,
i.e., TBS ≥ min

{
I1

NRFJ2
, I2
NRFJ1

}
to provide an accurate channel
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Fig. 4. NMSE vs. SNR for different I and J division scenarios.

TABLE I
SYSTEM PARAMETERS

Parameter Value
Scenario UMi

Cell radius 100 m
BS (UE) height 10 (1.5) m

Carrier frequency fc 4 GHz
Sampling frequency fs 30.72 MSamples/s
No. of subcarriers NSC 16

No. of antennas at BS NBS 64 (8× 8)

No. of antennas at UE NUE 4 (2× 2)

Polarization Single

estimation. Therefore, under practical settings, the SALSA method
in Algorithm 2 requires less training overhead than the LS method in
(7). On the other hand, assuming that the complexity of calculating
the Moore-Penrose pseudo-inverse of an n×m matrix is on the order
of O(min{n,m}3), then the complexity of the LS method in (7) is
on the order of O(min{L, J})3, while for the SALSA method in
Algorithm 2 the complexity is on the order of O(R ·Nmax-iter ·I3

1 ·I3
2 ),

assuming that the (C1) and (C2) conditions are satisfied.

IV. SIMULATION RESULTS

We adopt the 3GPP clustered delay line (CDL) channel model
described in TR 38.901 [19], where a step-by-step tutorial of it
along the MATLAB scripts for channel generation is presented in
[20]. Specifically, in our simulation, we first generate a time-domain
channel tensor H ∈ CNBS×NUE×Ntaps , where Ntaps represents the
number of time-domain channel taps calculated according to [20,
Eqn. (64)] and using the system parameters shown in Table I. Then,
we perform a NSC-point FFT operation along the third dimension for
each receive-transmit antenna pair to obtain the frequency-domain
channel tensor H ∈ CNBS×NUE×NSC , where the kth slice matrix
Hk = H[:,:,k] ∈ CNBS×NUE represents the the kth subcarrier
frequency-domain MIMO channel matrix.

We show the simulation results in terms of the normalized
mean-square-error (NMSE) that is defined as NMSE = E{‖H −
ĤX‖2F}/E‖H‖2F}, where X ∈ {LS, SALSA}. The signal-to-noise
ratio (SNR) is defined as SNR = E{‖Y − Z‖2F}/E{‖Z‖2F}. In
all simulation scenarios, we set NBS = 64, NUE = 4, NSC = 16,
TUE = NUE, NRF = 4, NG = 2, and assume a random generation of
the analog decoding matrix A ∈ CTBSNRF×NBS , where every nonzero
entry is obtained as a = 1/

√
N̊BS · ejφ, where φ ∈ [0, 2π].

Initially, we show simulation results investigating the best division
scenario of I and J with the constraints of I = I1I2, J = J1J2,
Id ≥ 1, Jd ≥ 1, and Id, Jd are Natural numbers, where d ∈ {1, 2}.
Recall that I = NBS and J = NUENSC. Therefore, we have I =
J = 64 and the candidate numbers of Id and Jd are 1, 2, 4, 8, 16, 32,
and 64. Therefore, we have in total 49 different division scenarios
as illustrated in Table II. We have simulated the SALSA algorithm

TABLE II
DIVISION SCENARIOS OF I1, I2, J1 , AND J2

Scenario No. I1 and I2 values J1 and J2 values
Scenario 1

[I1, I2] = [64, 1]

[J1, J2] = [64, 1]

...
Scenario 7 [J1, J2] = [1, 64]

...
...

...
Scenario 43

[I1, I2] = [1, 64]

[J1, J2] = [64, 1]

...
Scenario 49 [J1, J2] = [1, 64]

using all the 49 possible scenarios. In Fig. 4, we show the NMSE
versus SNR results for some selected I and J division scenarios. The
other scenarios are not shown, due to space limitations, but we note
that their NMSE performance are inferior compared to the shown
scenarios.

From Fig. 4, when TBS = 12, i.e., L = TBSNRF = 48 < NBS, the
analog training matrix A ∈ CL×NBS , i.e., the 1st factor matrix of the
measurement tensor in (16), is left non-invertible, i.e., [A]+A 6= I .
Therefore, the LS-based method has a very bad channel estimation
accuracy NMSE. On the other hand, we can see that the best NMSE
of SALSA method is achieved when I1 = 8, I2 = 8, J1 = 64, and
J2 = 1, i.e., when Br ∈ C8×64 and Cr ∈ C8×1,∀r. The main
reason is that by dividing I = 64 equally between I1 and I2, i.e.,
I1 = I2 = 8, SALSA reduces the impact of the non-invertibility
of A by distributing it between the 2nd (i.e., Br) and the 3rd (i.e.,
Cr) factor matrices of the measurement tensor, which leads to a
better channel estimation accuracy. On the other hand, by setting
J1 = 64 and J2 = 1, the required number of channel factor matrices
R reduces as compared to the other division scenario, as we have
illustrated above in Fig. 3.

Differently, when TBS = 16, i.e., L = NBS, the analog training
matrix A is left invertible, i.e., [A]+A = I . Therefore, the LS-based
method has an accurate channel estimation accuracy. For SALSA
method, on the other hand, we can see that when I1 = 8 and I2 =
8, the estimation accuracy of SALSA improves as we increase J1

and decrease J2, where the best result is obtained when we have
J1 = 64 and J2 = 1, i.e., similar to the case above when TBS = 12.
Nonetheless, we can see that the SALSA method can obtain a more
accurate channel estimation, compered to the LS-based method, by
setting I1 = 1, I2 = 64, J1 = 64, and J2 = 1, i.e., Br ∈ C1×64

and Cr ∈ C64×1 (or, not shown in the figure, by setting I1 = 64,
I2 = 1, J1 = 1, and J2 = 64, i.e., Br ∈ C64×1 and Cr ∈ C1×64).
In the both these scenarios, the channel matrix H ∈ C64×64 in (14)
is decomposed into a summation of R factor matrices Br ⊗ Cr ∈
C64×64, each having a rank-one, i.e., rank{Br⊗Cr} = 1, ∀r, which
leads to a better channel estimation accuracy.

In Figs. 5 and 6 we show NMSE versus SNR simulation results
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Fig. 5. NMSE vs. SNR with varying TBS.
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with varying the number of channel training overhead, i.e., TBS and
the number of channel factor matrices, i.e., R, respectively. From Fig.
5, we can see that the channel estimation accuracy of both methods,
i.e., LS-based and SALSA improves as TBS increases. However,
SALSA significantly outperforms LS-based with all TBS < 16, i.e.,
L < NBS scenarios, wherein the analog training matrix A ∈ CL×NBS

is left non-invertible.
On the other hand, we can see from Fig. 6 that the SALSA channel

estimation accuracy increases with the increasing R, in the high
SNR regime, while it decreases with the increasing R, in the low
SNR regime. The main reason is that, in the high SNR regime, the
noise impact is minimal and by increasing R, the channel estimation
accuracy increases, as we have illustrated above in Fig. 3. On the
other hand, in the low SNR regime, the channel measurement tensor
is noise-limited and, therefore, the impact of noise increases by
increasing R, i.e., after a certain R, the estimated channel factor
matrices are very noisy that decreases the overall estimation accuracy.
Clearly, for every SNR regime/level, there is an optimal R value,
wherein the channel estimation accuracy is maximized, which we
leave for a follow up future work.

V. CONCLUSION

In this paper, we have proposed a novel channel estimation
method for MIMO-OFDM sub-6 GHz communication systems called
SALSA. We have shown that an accurate channel estimation can be
obtained with a small training overhead by exploiting a hidden tensor
structure in the received measurement matrix, which estimates the
channel matrix sequentially using an ALS-based method. Our results
show that the SALSA method outperforms the conventional LS-based
method, especially in the low training overhead, which makes it more
appealing for practical implementations.
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