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Abstract—In this paper, we present an asymptotic performance analysis
of a subspace-based parameter estimation scheme in DFT beamspace that
is based on a first-order expansion of the estimation error that is due
to additive noise. We provide a general expression of the mean squared
error (MSE) for 1-D ESPRIT in DFT beamspace as a function of the
perturbation in terms of physical parameters, such as the array steering
matrix, the beamforming matrix, the signal correlation, the number of
snapshots, and the size of the array. Additionally, a closed-form expression
is provided for the case of a single source. This paper includes the
main parts of the derivation. For the simulation results, we compare the
analytical performance with the empirical one that is based on Monte-
Carlo trials. We also compare the performance of the DFT beamspace
version with the element space counterpart of the ESPRIT algorithm
and reveal the benefits of the former. In conclusion, we discuss possible
extensions for follow-up investigations.

Index Terms—1-D ESPRIT in DFT Beamspace, harmonic retrieval,
performance assessment, first-order perturbation analysis.

I. INTRODUCTION

In recent years, there has been renewed interest in the development
of high-resolution parameter estimation techniques for applications
related to the next-generation wireless communication systems oper-
ating in the millimeter frequency range. As a result, the importance of
theoretical performance analysis for algorithms increases, especially
to justify the choice among various potential candidates. The first-
order perturbation method represents a powerful tool to compare the
efficiency of various direction of arrival (DOA) estimation algorithms
and methods. It was applied to the analysis of various subspace-based
algorithms, such as MUSIC, ESPRIT, and Min-Norm in [1]–[3]. It
was also successfully extended to the analysis of multidimensional
algorithms in [4]–[7].

In this paper, we derive the performance analysis for the 1-D
ESPRIT in DFT Beamspace described in [8] based on the explicit
first-order expansion of the estimation error in the signal subspace
that is due to additive noise. It differs from the ones presented in [9],
[10], and [11]. In [9], the authors exploit a different approach that is
based on the distribution of the eigenvectors of a sample covariance
matrix [12]. The performance assessment based in [12] is asymptotic
in the number of snapshots N and relies on strong Gaussianity
assumptions on the source symbols and the noise. In [10], authors
consider the beamspace transformation applied to separate subarrays.
This differs from our system model, where we apply beamforming to
the complete aperture. In [11], authors describe the multidimensional
extension of [8] and present the performance analysis for it. However,
the expressions presented in this paper are more accurate and have a
simpler expression than the one presented in [11]. Furthermore, the
performance analysis in [11] is derived in terms of signal subspaces
which makes the application of the resulting expressions more
difficult. Moreover, the presented in this paper expressions are derived
in terms of physical parameters which simplifies the calculation in
comparison to the results presented in [4]–[6], [11]. They can also be
applied to the analysis of multidimensional extensions of Beamspace
ESPRIT in [13] or [11].

The contributions of the paper are the following:
• We derive expressions in terms of physical parameters for

the asymptotic performance analysis of 1-D ESPRIT in DFT
beamspace using an explicit first-order expansion of the estima-
tion error.

• We derive a closed-form expression of the mean squared error
(MSE) for the case of a single source.

• We show the impact of the number of snapshots as well as the
size of the array aperture on the performance of the algorithm.

For this work, we follow the notation established in [11], [13],
[14].

II. SYSTEM MODEL

We consider a uniform linear array of M isotropic antennas and
inter-element spacing ∆ = λ

2
. We assume that d plane-wave signals

impinge on the array. The received signal consists of N snapshots.
Its element space formulation is given by

Ỹ = Y +Z = AS +Z ∈ CM×N , (1)

where Y ∈ CM×N is the noiseless version of the received signal,
A ∈ CM×d is the array steering matrix, the i-th column is a

Vandermonde vector ai =
[
1 ejµi . . . ej(M−1)µi

]T
, µi is the

i-th spatial frequency, S ∈ Cd×N is the matrix of impinging
signals with zero-mean, i.e., E {S} = 0, and covariance matrix
Rs = E

{
1
N
SSH

}
∈ Cd×d, and Z is the matrix with samples

of noise.
Next, we perform the beamspace transformation of the received

signals by applying a set of DFT beamformers to the outputs of the
array

ỸDFT = WHỸ = WH (AS +Z) = BS +WHZ ∈ CM×N , (2)

where W ∈ CM×M is the matrix of DFT beamformers, the κ-th
column is a column from the scaled DFT matrix of size M × M
given by

wκ = e
j
(

M−1
2

)
κ 2π

M

[
1 ejκ

2π
M ej2κ

2π
M . . . ej(M−1)κ 2π

M

]T
= e

j
(

M−1
2

)
γκ

[
1 ejγκ ej2γκ . . . ej(M−1)γκ

]T
, (3)

and γκ = κ 2π
M

, 0 ≤ κ ≤ (M − 1), B = WHA ∈ CM×d is the
beamspace steering matrix, and WHZ is the equivalent matrix with
noise samples after the beamspace transformation. The matrix W is
left Π-real, i.e., ΠW ∗ = W , where Π ∈ RM×M is the exchange
matrix with ones on the anti-diagonal [8].

Note that to reduce the complexity of the beamspace version of the
algorithm we use only a subset of columns from the beamforming
matrix W ∈ CM×M which comprises B beamformers. Further in
the paper we denote the subset of B DFT beamformers as WB ∈
CM×B . The particular beamformers of the subset can be determined
via a sectorization procedure. An example of such a sectorization
procedure can be found in [11]. An illustration of the beamspace
transformation process is provided in Figure 1.
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Fig. 1: Illustration on 1-D Beamspace transformation.

III. REVIEW OF 1-D ESPRIT IN DFT BEAMSPACE

In this section, we provide a short summary of 1-D ESPRIT in
DFT Beamspace [8]. First, we consider the noiseless case.

We start by calculating the singular value decomposition of the
noiseless received signal YDFT = U ·Σ ·V H to estimate the signal
subspace Us. To this end, we compute Us as d dominant left singular
vectors of YDFT.

Following the derivation in [8], we can show that for a single
source at the spatial frequency µ, the output amplitudes bκ(µ) and
bκ+1(µ) of two successive beams of the DFT beamspace manifold
are related as(

e−j 1
2
(µ−γκ) − ej

1
2
(µ−γκ)

)
bκ(µ) +(

e−j 1
2 (µ−γκ+1) − ej

1
2 (µ−γκ+1)

)
bκ+1(µ) = 0 (4)

where bκ(µ) = wH
κ a(µ) and bκ+1(µ) = wH

κ+1a(µ). It leads to the
shift-invariance equation

ejµ·
{
e−j 1

2
γκbκ(µ) + e−j 1

2
γκ+1bκ+1(µ)

}
=

ej
1
2
γκbκ(µ) + ej

1
2
γκ+1bκ+1(µ) (5)

Based on (5), we can write a shift-invariance equation for d sources
impinging on the array as

G1,BBΩ = G2,BB ∈ C(B−1)×d, (6)

where Ω = diag
{
ejµi

}d

i=1
is a diagonal matrix with spatial

information, G1,B ∈ C(B−1)×B and G2,B ∈ C(B−1)×B are the
selection matrices defined in (7). In the noiseless case, the matrix B
and the received signals share the same subspace, i.e., B = UsT ,
where T is a full rank matrix. Hence, we can write

G1,BUs TΩT−1︸ ︷︷ ︸
Υ

= G2,BUs ∈ C(B−1)×d, (8)

which we solve with respect to Υ using the method of Least Squares
(LS)

Υ = (G1,BUs)
+ · (G2,BUs) ∈ Cd×d. (9)

Next, we find the diagonal entries of the matrix Ω as eigenvalues
of the matrix Υ

Υ = T ΩT−1 ∈ Cd×d. (10)

In the final stage, the spatial frequency µi, ∀i ∈ [1..d] can be obtained
as µi = arg (Ω(i, i)).

IV. DERIVATION OF ANALYTICAL PERFORMANCE FOR 1-D
STANDARD ESPRIT IN DFT BEAMSPACE

In this section, we present the derivation of the performance
analysis of 1-D ESPRIT in DFT beamspace.

Note that the noiseless received signal in the DFT beamspace can
be written as

YDFT = WH
B ·A · S = UsΣsV

H
s , (11)

where A ∈ CM×d is the steering matrix of the impinging signals,
S ∈ Cd×N contains the impinging signals, and YDFT ∈ CB×N

denotes the received signals after applying the DFT beamspace
transformation.

Next, we consider a perturbed received signal Ỹ and establish the
relation between the matrix with noise samples Z (perturbation term)
introduced in (1) and the spatial error for the i-th source ∆µi.

A. Perturbation of signal subspace

Following the derivations in [3], the subspace perturbation can be
represented as leakage from the orthogonal subspace

∆Us ≈ UnK and ∆Un ≈ UsL, (12)

where the matrices K and L define the leakages into the orthogonal
subspaces. They can be found via properties of the subspaces of
the perturbed matrix for the received signal after the beamspace
transformation ỸDFT [3].

The perturbation of the noise subspace can be found as

∆Un = −UsΣ
−1
s V H

s ∆Y H
DFTUn, (13)

while the perturbation of the signal subspace is equal to

∆Us = UnU
H
n ∆YDFTVsΣ

−1
s . (14)

In the work, we use the perturbation of the signal subspace ∆Us

only since ESPRIT-type algorithms rely on the estimation of the
signal subspace to find the target parameters.

B. Perturbation of the shift-invariance equation

In the case of perturbed subspaces, the perturbation of the shift-
invariance equation (8) can be written as

G1,B (Us +∆Us) (Υ+∆Υ) = G2,B (Us +∆Us) ,

G1,BUs∆Υ+G1,B∆UsΥ ≈ G2,B∆Us, (15)

where we have dropped the second-order terms. As a result, the
perturbation of the matrix Υ is equal to

∆Υ = (G1,BUs)
+ (G2,B∆Us −G1,B∆UsΥ) . (16)

C. Perturbation of eigenvalues

At the next stage, we derive the expression for the perturbation of
the eigenvalues of the matrix Υ.

Υ = QΛQ−1 = TΩT−1. (17)

Following [15], we can link the perturbation of the original matrix
and the corresponding eigenvalues via

Υ+∆Υ = QΛQ−1 +Q∆ΛQ−1 +O
(
∆2) . (18)

Taking into account that Υ = QΛQ−1 and keeping only the first-
order terms of the expansion (18) we obtain

∆Λ ≈ Q−1︸︷︷︸
PH

∆ΥQ, (19)
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G1,M =



1 e−j π
M 0 · · · 0 0

0 e−j π
M e−j 2π

M · · · 0 0

0 0 e−j 2π
M · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · e−j(M−2) π
M e−j(M−1) π

M

(−1)M 0 0 · · · 0 e−j(M−1) π
M


and G2,M =



1 ej
π
M 0 · · · 0 0

0 ej
π
M ej

2π
M · · · 0 0

0 0 ej
2π
M · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · ej(M−2) π
M ej(M−1) π

M

(−1)M 0 0 · · · 0 ej(M−1) π
M


(7)

which brings us to the following expression for the i-th eigenvalue

∆λi ≈ pH
i ∆Υqi, (20)

where we substitute the expression (16) and use the definition Υqi =
λiqi

∆λi ≈ pH
i (G1,BUs)

+ (G2,B∆Us −G1,B∆UsΥ) qi,

= pH
i (G1,BUs)

+ (G2,B∆Us − λiG1,B∆Us) qi,

= pH
i (G1,BUs)

+ (G2,B − λiG1,B)∆Usqi. (21)

D. Perturbation of spatial frequencies and angles

The eigenvalues of the matrix Υ are the complex-valued exponen-
tial functions in the form of ejµi , where µi is the spatial frequency
for the i-th source. The Taylor expansion for the i-th eigenvalue can
be written as

ej(µi+∆µi) = ejµi + j∆µi · ejµi +O
(
∆2)

≈ λi + j∆µiλi. (22)

Therefore, for small perturbations of the eigenvalues, we can write

λi +∆λi = λi + j∆µiλi,

∆λi = j∆µiλi → ∆µi = Im

(
∆λi

λi

)
. (23)

As a result, we get a complete set of expressions to describe the
performance of ESPRIT-type algorithms in DFT beamspace. The
complete expression (24) is found by substituting the expression
(14) in (21) and then in (23). It depends only on the instantaneous
realization of the perturbation term ∆YDFT, i.e., it does not rely on
statistics.

A similar expression was derived in [3] for the element space
version of the ESPRIT algorithm.

E. Perturbation of spatial frequencies in terms of physical parame-
ters

In this section, we further simplify the expression (24) following
[16]. We can see from the expression (17) that the matrix T collects
the right eigenvectors of the matrix Υ, while T−1 collects the left
eigenvectors of the matrix. Using this observation, we can redefine
the i-th pair of eigenvectors pi and qi as

pH
i = eT

i T−1 and qi = T ei, (25)

where ei ∈ Rd is the unit vector which corresponds to the i-th
column of the identity matrix Id. We also take into account that the

matrix T converts the signal subspace into the beamspace steering
matrix, i.e., B = UsT . Then we can rewrite (21) as

∆µi = Im

(
eTi T

−1
(
G1,BUs

)+ (
1

λi
G2,B −G1,B

)
∆UsTei

)
.

(26)

We can observe that on the one hand

T−1 (G1,BUs)
+ = (G1,BUsT )+ = (G1,BB)+ (27)

and on the other hand

eT
i
1

λi
T−1 (G1,BUs)

+ = eT
i Ω

−1 (G1,BUsT )+

= eT
i (G1,BBΩ)+ = eT

i (G2,BB)+ . (28)

As a result, we can write

∆µi = Im
(
eTi

((
G2,BB

)+
G2,B −

(
G1,BB

)+
G1,B

)
∆UsTei

)
.

(29)

The expression (29) can be further simplified if we follow [16]
and take into account that ∆Us = UnU

H
n ∆YDFTVsΣ

−1
s and(

(G2,BB)+ G2,B − (G1,BB)+ G1,B

)
B = 0, i.e., the term be-

longs to the left-nullspace of B. As a result we can drop the
additional projection onto the noise subspace UnU

H
n . It leads to

∆µi =

Im
(
eTi

((
G2,BB

)+
G2,B −

(
G1,BB

)+
G1,B

)
∆YDFTVsΣ

−1
s Tei

)
.

(30)

We can also rewrite the right part of the expression (30) as

VsΣ
−1
s Tei = VsΣ

−1
s UH

s UsTei = Y +
DFTBei. (31)

To simplify this expression, we introduce the auxiliary variables

αT
i =

√
MeT

i

(
(G2,BB)+ G2,B − (G1,BB)+ G1,B

)
∈ C1×B

(32)

and

βi = Y +
DFTBei ∈ CN . (33)

In this way, the perturbation of the i-th spatial frequency turns into

∆µi = Im
(
c ·αT

i ·∆YDFT · βi

)
= Im

(
c · (βi ⊗αi)

T · vec {∆YDFT}
)

= Im
(
c · (βi ⊗αi)

T ·∆yDFT

)
, (34)

where ∆yDFT = vec {∆YDFT} ∈ CBN and c = 1√
M

.
In fact, the expression (34) uses the quantities c, αi and βi that

are written only in terms of physical parameters. It can already be

∆µi = Im

pH
i (G1,BUs)

+

(
1

λi
G2,B −G1,B

)
UnU

H
n ∆YDFTVsΣ

−1
s︸ ︷︷ ︸

∆Us

qi

 (24)
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used to evaluate numerically the performance of 1-D ESPRIT in DFT
beamspace.

In the next section, we analyze the statistical properties of this
expression.

V. STATISTICAL ANALYSIS OF THE PERTURBATION ERROR

A. Mean value

Assuming zero-mean perturbations E {∆yDFT} = 0, the mean
value of the error ∆µi can be written as

E {∆µi} = E
{
Im

(
c · (βi ⊗αi)

T ·∆yDFT

)}
= Im

(
c · (βi ⊗αi)

T · E {∆yDFT}
)

= Im
(
c · (βi ⊗αi)

T · 0
)
= 0. (35)

Analyzing the mean value of the first-order perturbation extension,
we can conclude that 1-D ESPRIT in DFT beamspace is an unbiased
estimator.

B. Variance

The mean squared error (MSE) of the i-th source can be found as
MSE = E

{
∆µ2

i

}
. We can write it explicitly in terms of the available

parameters if we substitute in it the expression (34), i.e.,

E
{
∆µ2

i

}
=E

{
Im

(
c · (βi ⊗αi)

T ·∆yDFT

)
× Im

(
∆yT

DFT · (βi ⊗αi) · c
)}

. (36)

Then we can show that for any complex number z ∈ C the following
equality holds Im (z) Im (z) = 1

2
Re (zz∗)− 1

2
Re (zz) and we can

write

E
{
∆µ2

i

}
=

=
1

2
c2 Re

(
(βi ⊗αi)

T E
{
∆yDFT∆yH

DFT

}
(βi ⊗αi)

∗)
−

1

2
c2 Re

(
(βi ⊗αi)

T E
{
∆yDFT∆yT

DFT

}
(βi ⊗αi)

)
, (37)

which is the last stage that we can obtain without any assumptions
about the statistics of the perturbation.

C. Special case of ZMCSCG noise

Next, we assume that samples of noise are drawn from a zero
mean circularly symmetric complex Gaussian (ZMCSCG) distribu-
tion with variance σ2

z . We also take into account the structure of the
perturbation vector, namely

∆yDFT = vec {∆YDFT} = vec
{
WH

BZ
}
=

(
IN ⊗WH

B

)
· z, (38)

where z = vec {Z} ∈ CMN is the vectorization of the original
perturbation matrix. Then the following expression holds

E
{
∆yDFT∆yH

DFT

}
=

(
IN ⊗WH

B

)
· E

{
zzH

}
︸ ︷︷ ︸
σ2
zIMN

· (IN ⊗WB) = Mσ2
zIBN , (39)

where we take into account that WH
BWB = MIB and B is the

number of beams. We can also show that the second term vanishes,

E
{
∆yDFT∆yT

DFT

}
=

(
IN ⊗WH

B

)
· E

{
zzT

}
︸ ︷︷ ︸

0MN

· (IN ⊗W ∗
B) = 0. (40)

Therefore, the expression of the MSE of 1-D Standard ESPRIT in
DFT beamspace (SBE) can be significantly simplified to

MSESBE = E
{
∆µ2

i

}
=

σ2
z

2
∥αi∥22 ∥βi∥22 , (41)

where we also take into account that c2M = 1.
Next, we show, how we can further simplify the expression (41)

by rewriting ∥βi∥22 in terms of physical parameters as

∥βi∥22 = βH
i βi = eTi B

H
(
Y +
DFT

)H
Y +
DFTBei

= eTi B
H(BH)+

(
SSH

)+
B+Bei =

1

N
eTi R̂

−1
s ei, (42)

where R̂s =
1
N
SSH is the estimate of the data covariance matrix.

In the current form (42), ∥βi∥22 is a random variable since it
depends on the instantaneous realization of the random matrix S.
For the MSE we need to calculate the expectation over random
realizations of signals in S, i.e.,

E
{
∥βi∥22

}
=

1

N
eT
i E

{
R̂−1

s

}
ei, (43)

which we can rewrite using the Neumann series and assuming that
the perturbation ∆R = R̂−R of the covariance matrix R is zero-
mean and small enough so that we can only consider the first-order
term to approximate the inverse

E
{
R̂−1

s

}
= E

{
(Rs +∆Rs)

−1}
≈ E

{
R−1

s −R−1
s ∆RsR

−1
s

}
= R−1

s , (44)

since E {∆Rs} = 0.
As a result, the expression for the MSE in terms of physical

parameters can be written as

MSESBE =
σ2
z

2N
· ∥αi∥22 ·

(
R−1

s

)
κ,κ

. (45)

D. Special case of a single source

In the case of a single source (d = 1) we can derive the expression
for ∥α1∥22 in a closed form.

We consider case of two consecutive beams bκ and bκ+1, i.e.,
B = [ bκ, bκ+1 ]T. In this way, the selection matrices G1,2 and
G2,2 can be written as

G1,2 =
[
e−j γκ

2 , e−j
γκ+1

2

]
and G2,2 =

[
ej

γκ
2 , ej

γκ+1
2

]
. (46)

Inserting B, G1,2, and G2,2 in (32), the vector α1 can be written
as in (47). It leads us to the following expression of ∥α1∥22

∥α1∥22 =
4M sin2

(
π
M

) (
b2κ + b2κ+1

)(
b2κ + b2κ+1 + 2 cos

(
π
M

)
bκbκ+1

)2 . (48)

For the particular case, when the spatial frequency µ is chosen such
that bκ(µ) = bκ+1(µ) and (µ− γκ) =

π
M

, i.e., the spatial frequency
is in the middle between two beams, the expression can be further
simplified to

∥α1∥22 = 2M
sin4

(
1
2

π
M

)
cos2

(
1
2

π
M

) , (49)

which in case of M ≫ 1 can be approximated by the first order terms
of the Taylor expansion for the numerator and the denominator as

∥α1∥22 ≈ 2M

(
1

2

π

M

)4

=
π4

8M3
, (50)

this is the desired result which concludes the derivation.
The final expression for the MSE of 1-D Standard ESPRIT in DFT

beamspace (SBE) in case of a single source can be written as

MSESBE =
σ2
z

2
· π4

8M3N
·
(
R−1

s

)
(k,k)

. (51)
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αT
1 =

√
M

[
ej

γκ
2

ej
γκ
2 bκ + ej

γκ+1
2 bκ+1

− e−j γκ
2

e−j γκ
2 bκ + e−j

γκ+1
2 bκ+1

,
ej

γκ+1
2

ej
γκ
2 bκ + ej

γκ+1
2 bκ+1

− e−j
γκ+1

2

e−j γκ
2 bκ + e−j

γκ+1
2 bκ+1

]

=
√
M

[
−2j sin

(
π
M

)
bκ+1

b2κ + b2κ+1 + 2 cos
(

π
M

)
bκbκ+1

,
2j sin

(
π
M

)
bκ

b2κ + b2κ+1 + 2 cos
(

π
M

)
bκbκ+1

]
(47)
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Fig. 2: Performance analysis for 1-D ESPRIT in DFT Beamspace in terms of physical parameters.
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Note that in the case of the element space, the asymptotic perfor-
mance of ESPRIT for a single source that is based on the first-order
perturbation expansion [3] is given by the expression

MSESE =
σ2
z

2
· 2

(M − 1)2N
·
(
R−1

s

)
(k,k)

. (52)

Comparing (51) and (52) we can observe that the MSE for ESPRIT
in DFT beamspace decreases by one order of magnitute faster than
for element space ESPRIT as a function of M . In the next section,
we confirm this observation via simulations.

VI. SIMULATION RESULTS

In this section, we present the selected simulation results to demon-
strate the validity of the derived expressions for the performance
analysis of 1-D ESPRIT in DFT Beamspace. For the simulations,
we consider a uniform linear array with M = 32 antennas with
equidistant spacing λ

2
. The number of snapshots is N = 100

samples unless otherwise stated. We use samples drawn from the
zero-mean circularly symmetric complex Gaussian distribution for
the perturbation matrix. We calculate the variance per element of the
distribution as a function of the SNR, i.e., σ2

z = 10−
SNR
10 .

The estimation accuracy is measured in terms of the Root Mean
Squared Error (RMSE) that is calculated using the expression

RMSE =

√√√√E

{
1

d

d∑
i=1

(µi − µ̂i)2

}
. (53)

We illustrate the empirical (em) RMSE in solid lines and the
analytical (an) RMSE in dashed lines, which were obtained by
averaging over different realizations of the perturbation. Also, we
show all results for 1-D Standard ESPRIT (SE) in red and 1-D
Beamspace ESPRIT (SBE) in blue. For Standard ESPRIT in element
space [17], the performance analysis is taken from [3]. For the
analytical performance of Beamspace ESPRIT (SBE), we use the
expression (45). In all simulations, we build the beamforming matrix
for the beamspace algorithm by selecting the 2 closest beams to each
spatial frequency. We control the correlation between the sources via
the parameter ρ by defining the data correlation matrix as

Rs = ρ1+ (1− ρ)Id, (54)

where 1 is a matrix of ones. We assume ρ = 0 unless otherwise
stated. All simulations presented in this paper were averaged over
10000 realizations of random perturbations and data. For the pre-
sented simulations, we used the following realization of the spatial
frequencies

µ = [ − 2.5, − 2.3, 0.5, 2.1, 2.5, 3.1 ]T , (55)

unless otherwise stated. The key simulation parameters for each figure
can be found in Table I.

In Figure 2(a), we show the behavior for different values of SNRs.
We can observe that the simulation results follow the analytical
prediction of beamspace ESPRIT. We can also notice a linear decrease
on a logarithmic scale of the RMSE versus the SNR, as predicted by
the expression (45).

TABLE I: Simulation parameters

Figure Parameters
2(a) M = 32 N = 100 - d = 6 ρ = 0
2(b) M = 32 - SNR = 20 dB d = 6 ρ = 0
2(c) M = 32 N = 100 SNR = 20 dB d = 1 ρ = 0
2(d) - N = 100 SNR = 20 dB d = 1 ρ = 0
2(e) M = 32 N = 100 SNR = 20 dB d = 6 -
2(f) M = 32 N = 100 SNR = 20 dB d = 2 ρ = 0

In Figure 2(b), we analyze the impact of the number of snapshots
on the performance. We vary N in the range of [10...1000] snapshots.
We can also observe a linear decrease on a logarithmic scale of the
RMSE with an increase in the number of snapshots.

In Figure 2(c), the RMSE over a range of spatial frequencies is
presented. Only two beams b0 and b1 are selected for the algorithm.
The centers of the beams are shown with the gray dashed vertical
lines. The space between the two centers forms the SoI. We observe a
better performance in the SoI range and a rapid degradation outside of
it. We notice that the expression (45) for the analytical performance
is able to represent the behavior of the empirical results accurately
enough. Additionally, we depict two special points that correspond to
closed-form expressions in the case of a single source - the blue star
point ”SBE an(CF)” that corresponds to the RMSE of ESPRIT
in DFT Beamspace (51) and the red star point ”SE an(CF)”
corresponds to the RMSE of ESPRIT in element space (52).

In Figure 2(d), we show the impact of the number of antennas
on the performance. We choose d = 1 with the spatial frequency
µ = π

M
, where M is in the range [2...2000]. We can observe that

the slope of the RMSE for the beamspace version of the algorithm
is steeper, which is ≈ O

(
M−1.5

)
for beamspace ESPRIT versus ≈

O
(
M−1

)
for the element space counterpart. This result corresponds

to the impact of M in the analytical expressions (51) and (52).
In Figure 2(e), we present the dependence of the RMSE on the

correlation between two sources. As expected, the correlation has
an identical impact on ESPRIT in DFT beamspace and in element
space. A better performance within the SoI range of ESPRIT in DFT
beamspace can explain the shift between the lines.

In Figure 2(f), we depict the impact of the source separation on
the performance. We consider two sources µ1 = 0 and µ2 = ∆µ.
The total range is equal to ∆µ ∈

[
0, 2π

M

]
. We can observe a slightly

better ability of ESPRIT in DFT beamspace to handle closely spaced
sources than in element space. We use B = 3 closest beams to each
spatial frequency during the sectorization procedure to determine the
beamforming matrix.

Observing the simulations, we can confirm that the results based
on Monte Carlo trials match the analytical expressions derived in the
paper.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we present an analytical performance assessment
of 1-D ESPRIT in DFT Beamspace. A simplified expression for the
mean squared error is derived in terms of the physical parameters. We
show the impact of the beamspace transformation on the performance
of the algorithm. The presented analytical expression allows us to
predict with high accuracy the performance of 1-D ESPRIT in DFT
Beamspace, especially for the range of high SNRs. Additionally, we
present a simplified expression for the cases of perturbations caused
by white noise and a single source.

The results presented in this paper can be extended to multiple di-
mensions to analyze the performance of multidimensional parameter
estimation algorithms in DFT beamspace, such as Unitary Tensor-
ESPRIT-type algorithms in DFT beamspace. An additional analysis
of the impact of forward-backward-averaging (FBA) and spatial
smoothing can be performed.
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