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ABSTRACT In this paper, we present an analytical performance assessment of 2-D Tensor ESPRIT in terms
of physical parameters. We show that the error in the r-mode depends only on two components, irrespective
of the dimensionality of the problem. We obtain analytical expressions in closed form for the mean squared
error (MSE) in each dimension as a function of the signal-to-noise (SNR) ratio, the array steering matrices,
the number of antennas, the number of snapshots, the selection matrices, and the signal correlation. The
derived expressions allow a better understanding of the difference in performance between the tensor and
the matrix versions of the ESPRIT algorithm. The simulation results confirm the coincidence between the
presented analytical expression and the curves obtained via Monte Carlo trials. We analyze the behavior of
each of the two error components in different scenarios.

INDEX TERMS 2-D Tensor ESPRIT, harmonic retrieval, performance assessment, first-order perturbation
analysis.

I. INTRODUCTION
Recently, the problem of high-resolution parameter estimation
(HRPE) has re-attracted the attention of the research commu-
nity in the context of next-generation mobile communications.
The state-of-the-art algorithms operate commonly on multidi-
mensional signals [1], [2]. This imposes that the correspond-
ing theoretical analysis should encompass all the features
inherent to their structure. However, despite the recognizable
prominence of the topic of multidimensional HRPE, the num-
ber of publications analyzing the theoretical performance is
rather limited due to the complexity of the task.

Among multiple available ways to tackle the problem of
the analytical performance assessment, the first-order Taylor
expansion of the spatial frequency as a function of the sig-
nal subspace has been successfully applied to compare the
efficiency of various 1-D HRPE methods in [3]. Moreover,
subsequently, it was extended to the analysis of multidimen-
sional algorithms in [4], [5], [6], including those for strictly
non-circular signals in [7], [8]. The current state-of-the-art
methods for performance analysis of multidimensional pa-
rameter estimation techniques [4], [5], [6] rely on the high
order singular value decomposition (HOSVD) and the related

intermediate quantities that must be precomputed beforehand
for every mode separately.

In this work, we present the performance analysis for 2-D
Tensor ESPRIT in terms of physical parameters. We show
that the error in the r-th mode depends only on two pertur-
bation components irrespective of the dimensionality of the
original problem. The result has lower complexity and higher
readability because it does not rely on the parameters of the
HOSVD or any intermediate expressions that could not be
calculated directly from the physical parameters. Compared
to previously reported works on perturbation analysis, we get
a simpler expression that can be directly utilized to evaluate
the performance and does not need to run computationally
expensive Monte Carlo trials. We have chosen the 2-D case
for this paper as the simplest example which admits tensor
processing. However, an extension to more dimensions (R-D
case) is also possible.

In this paper, we follow the same notation as in [2].

II. SYSTEM MODEL
We consider a multidimensional signal X o ∈ C

M1×M2×N on
a two-dimensional (2-D) lattice of size M = M1 × M2. It
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contains a mixture of the d signals that are measured during
N time instances. In this paper, we consider only the 2-D
case (R = 2) while further extensions to larger dimensions
are possible. Additionally, we present the expressions and the
derivations only for the 1-mode, while the equations for the
2-mode can be derived accordingly following the material
presented in this paper.

In the case of the 2-D harmonic retrieval problem, the
noiseless received signal can be written in the following form
using tensor notation [9]

X o = A ×3 ST = I3,d ×1 A(1) ×2 A(2) ×3 ST, (1)

where A = I3,d ×1 A(1) ×2 A(2) ∈ C
M1×M2×d is the ar-

ray steering tensor, A(r) ∈ C
Mr×d is the steering matrix

for the r-th mode with the i-th column given as a(r)
i =

[1 e jμ(r)
i · · · e j(Mr−1)μ(r)

i ]T ∈ C
Mr , μ

(r)
i ∈ (−π, π ] is the spa-

tial frequency for the i-th source, ∀r ∈ {1, 2}, ∀i ∈ {1..d }, and
S ∈ C

d×N is a matrix containing the complex-valued transmit
signals.

On the other hand, the same signal and the corresponding
economy-size singular value decomposition (SVD) can also
be written using the conventional matrix notation as

Xo = AS = U s�sV H
s ∈ C

M1M2×N , (2)

where Xo = [X o ]T
(3) and A = [A ]T

(3) = A(2) � A(1) ∈
C

M1M2×d .
Usually, the available measurements are corrupted by ad-

ditive noise so that the received signal can be represented as

X = X o + N ∈ C
M1×M2×N , (3)

where N ∈ C
M1×M2×N is the tensor with the samples of

noise. At this point, we do not make any assumptions regard-
ing the noise statistics.

Additionally, we denote the covariance matrix for the d
sources as Rs = E{ssH} ∈ C

d×d , where s ∈ C
d is the vector of

the transmitted signals at one time snapshot. While the actual
covariance matrix might be unavailable for the algorithm, we
can use an estimate of it that is calculated as R̂s = 1

N SSH ∈
C

d×d .

A. HIGHER ORDER SINGULAR VALUE
DECOMPOSITION (HOSVD)
ESPRIT-type algorithms rely on the information about the
signal subspace to obtain estimates of the spatial frequencies.
For the one-dimensional (1-D) case, the common approach
is to use the singular value decomposition of Xo to obtain this
information. On the other hand, for the multidimensional case,
it was proposed in [9] to use the truncated high-order singular
value decomposition (HOSVD) to improve the accuracy of
the parameter estimation. It represents the tensor X o in the
form of a product between a dense core tensor Ss and a series
of factor matrices U (r)

s ,∀r ∈ {1..R}. The corresponding core

tensor can be found as

Ss = X o ×1 U (1)
s

H ×2 U (2)
s

H ×3 U (3)
s

H ∈ C
d×d×d , (4)

where the factor matrices U (r)
s ,∀r ∈ {1..R} are found as the

d dominant singular vectors in every mode, i.e., [X o ](1) =
U (1)

s �
(1)
s V (1)

s
H

, [X o ](2) = U (2)
s �

(2)
s V (2)

s
H

, and [X o ](3) =
U (3)

s �
(3)
s V (3)

s
H

.
Then we can represent the original signal X o as

X o = Ss ×1 U (1)
s ×2 U (2)

s ×3 U (3)
s

= X o ×1 T (1) ×2 T (2) ×3 T (3) ∈ C
M1×M2×N , (5)

where

T (r) = U (r)
s U (r)

s
H = A(r)

(
A(r)H

A(r)
)−1

A(r)H
(6)

is the signal subspace projection matrix for the r-mode.
For notational simplicity, we assume in this paper that d <

Mr,∀r ∈ {1..R}.
Additionally, we denote the signal subspace tensor as U s ∈

C
M1×M2×d . It shares the same multidimensional subspace as

the array steering tensor A and can be written in the form
of the equality A = U s ×3 K, where K ∈ C

d×d is a full rank
matrix. Equivalently, it can also be written in the correspond-
ing matrix form as [A ]T

(3) = [U s ]T
(3) · K.

Following [6] (therein Equation 24), we can write the fun-
damental link between the matrix signal subspace and tensor
signal subspace as[U s

]T
(3) = (

T (2) ⊗ T (1) ) · U s. (7)

The subspaces are equal in the noiseless case, but the esti-
mates might differ in the presence of noise.

B. REVIEW OF 2-D TENSOR ESPRIT
The multidimensional version of the ESPRIT algorithm is
based on the tensor formulation of the shift-invariance prop-
erty. We provide an example for the 1-mode while the ex-
pressions for the 2-mode can be written accordingly. We start
with the expression for the shift-invariance equation along the
1-mode, which can be written as

A ×1 J(1)
1 ×3 �(1) = A ×1 J(1)

2 , (8)

where J(1)
1 ∈ R

(M1−1)×M1 and J(1)
2 ∈ R

(M1−1)×M1 are the se-
lection matrices for the 1-mode. Here, we assume that the
maximum overlap configuration is used [10]. The matrix

�(1) = diag(e jμ(1)
i )d

i=1 ∈ C
d×d contains the phase differences

between two subarrays in the 1-mode with information about
the spatial directions towards different sources.

The shift-invariance property for the 1-mode can also be
written in matrix form if we use the transpose of the 3-mode
unfolding as

J̃(1)
1 · [A]T

(3)
· �(1) = J̃(1)

2 · [A]T
(3)

, (9)
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where J̃(1)
1 = (IM2 ⊗ J(1)

1 ) and J̃(1)
2 = (IM2 ⊗ J(1)

2 ) are the
multidimensional selection matrices for the 1-mode.

During the estimation step, we do not know the tensor
A ∈ C

M1×M2×d , but we can calculate the corresponding ten-
sor signal subspace U s that is related to the steering tensor as
A = U s ×3 K. Hence, we rewrite (9) as

J̃(1)
1

[U s
]T

(3)
K�(1)K−1︸ ︷︷ ︸

�(1)

= J̃(1)
2

[U s
]T

(3)
. (10)

In the next step, we estimate the matrix �(1) using, for
example, the method of least squares as

�(1) =
(

J̃(1)
1

[U s
]T

(3)

)+ ·
(

J̃(1)
2

[U s
]T

(3)

)
. (11)

Since the matrix �(1) is diagonal, we can treat the product
K�(1)K−1 as the corresponding eigenvalue decomposition of
�(1). As a result, we find the diagonal entries of the ma-
trix �(1) through the eigenvalue decomposition of the matrix
�(1) = Q(1)−1

�(1)Q(1), as the entries of the diagonal matrix
�(1) ∈ C

d×d .
Finally, we compute the estimates of the spatial frequencies

μ
(1)
i ,∀i ∈ {1..d } by taking the arguments of the estimated

eigenvalues, i.e., μ
(1)
i = arg(λ(1)

i ).
Further information on the algorithm and an extension to

the general R-D case can be found in [9].

III. PERTURBATIONS OF ESSENTIAL COMPONENTS FOR
2-D TENSOR ESPRIT
A. PERTURBATION OF THE SIGNAL SUBSPACE
In [11] (therein the lemma 1), it has been shown that we can
represent the perturbation of a subspace as a leakage from the
orthogonal subspace. For the signal and the noise subspaces,
it can be written in the following way

ΔU s ≈ Un�n and ΔUn ≈ U s�s, (12)

where the amount of the leakage is defined by the matrices �n

and �s. The exact expressions for the first-order approxima-
tion of the leakage matrices have been derived in [3] and are
given by

ΔUn = −U s�
−1
s V H

s NHUn, and ΔU s = UnUH
n NV s�

−1
s ,

(13)

for the perturbation of the noise subspace and the signal sub-
space, respectively.

B. PERTURBATION OF THE SIGNAL SUBSPACE TENSOR
In [6] (therein Equation 25), it has been shown that the first-
order perturbation of the HOSVD-based signal subspace esti-
mate (7) can be written as the sum (14) shown at the bottom of
this page.

We name each perturbation term and analyze further their
impact on the estimation error. Concerning the performance
in the 1-mode, each term has a specific meaning. The first
perturbation term represents the impact of the core tensor
perturbation on the performance in the 1-mode, the second
perturbation term contains the influence of the perturbation in
the 1-mode on the performance in the 1-mode, and the third
perturbation term describes the impact of the perturbation in
the 2-mode on the performance in the 1-mode that can be
interpreted as a cross-mode contribution. We quantify the im-
pact of each term on the performance of 2-D Tensor ESPRIT
in the following part of the paper. Especially, we show that the
cross-mode impact described by the term III is equal to 0 and
can be omitted from the further consideration.

C. PERTURBATION OF THE i-TH SPATIAL FREQUENCY IN
THE 1-MODE
Following [3] (therein Equation 50), we can write the pertur-
bation of the i-th spatial frequency for the 1-mode as in (15)
shown at the bottom of this page, where ei ∈ R

d is the i-th
column of the identity matrix Id ∈ R

d×d . We denote the left
part of the argument of the imaginary part in (15) as

[
L(1)

i

]
(3)

= eT
i

((
J̃

(1)
2 A

)+
J̃(1)

2 −
(

J̃(1)
1 A

)+
J̃(1)

1

)
(16)

and assume that it represents the 3-mode unfolding of a ten-
sor L(1)

i ∈ C
M1×M2×1. Additionally, we introduce an auxiliary

variable α
(1)
i = [L(1)

i ](3) that we use further in the paper. We

derive the tensor structure of the tensor L(1)
i in the next sub-

section. This substitution allows us to shorten the notation and
write (15) as

Δμ
(1)
i = Im

([
L(1)

i

]
(3)

· [ΔU s]
T
(3) · Kei

)
. (17)

Which we can rewrite as in (18) shown at the bottom of the
next page, if we insert the definition of the perturbation for
the signal subspace tensor (14) into (17). As we can see, the
resulting perturbation of the spatial frequency μ

(1)
i depends

[ΔU s]
T
(3) = (

T (2) ⊗ T (1) ) · ΔU s︸ ︷︷ ︸
[ΔU s,I]T

(3)

+
(

IM2 ⊗ ΔU (1)
s U (1)

s
H
)

· U s︸ ︷︷ ︸
[ΔU s,II]T

(3)

+
(
ΔU (2)

s U (2)
s

H ⊗ IM1

)
· U s︸ ︷︷ ︸

[ΔU s,III]T
(3)

(14)

Δμ
(1)
i = Im

(
eT

i

((
J̃(1)

2 A
)+

J̃(1)
2 −

(
J̃(1)

1 A
)+

J̃(1)
1

)
· [ΔU s]

T
(3) · Kei

)
(15)
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on the three components. Further in the paper, we analyze the
impact of each of them.

Additionally, we should mention the pairing of the parame-
ters across the dimensions and its impact on the performance
of the algorithm. We assume that the proper pairing is en-
sured via a joint eigenvalue decomposition (JEVD) of all the
matrices �(r), ∀r ∈ 1..R. However, we do not include the
performance analysis of this step in the paper since for high
SNRs, the perturbation of the EVD in the r-mode is dominated
by the perturbation of eigenvalues, and the perturbation of
the common set of eigenvectors can be excluded from the
analysis [6] (therein Equation 31).

D. TENSOR STRUCTURE OF L(1)
i

We start deriving the tensor formulation of L(1)
i by writing

explicitly the expression

eT
i

(
J̃

(1)
2 A

)+
J̃

(1)
2 = eT

i

(
A(2) � J (1)

2 A(1)
)+

·
(

IM2 ⊗ J (1)
2

)
, (19)

where we used the property for the mixed product
(A ⊗ B )(C � D ) = AC � BD. Taking into account the ex-
pression for the pseudoinverse of a Khatri-Rao product
(C � D )+ = (CHC � DHD )−1(C � D )H, we can write (19) as

eT
i

(
A(2)H

A(2) � A(1)H
J(1)

2
T

J(1)
2 A(1)

)−1

·
(

A(2) � J(1)
2 A(1)

)H (
IM2 ⊗ J(1)

2

)
= eT

i �
(1)
2

−1
(

A(2)∗ � J(1)
2

T
J(1)

2 A(1)∗
)T

, (20)

where �
(1)
2 = A(2)H

A(2) � A(1)H
J(1)

2
T

J(1)
2 A(1). The whole ex-

pression can be viewed as the 3-mode unfolding of a tensor
with the following canonical polyadic structure [12] (therein
the Section 3)

I3,d ×1 J(1)
2

T
J(1)

2 A(1)∗ ×2 A(2)∗ ×3 eT
i �

(1)
2

−1
. (21)

Combining this result with the analogous expressions for the
second part of [L(1)

i ](3) namely eT
i (J̃(1)

1 A )+J̃(1)
1 , we can rep-

resent the tensor L(1)
i as the difference of two tensors

L(1)
i = I3,d ×1 J(1)

2
T

J(1)
2 A(1)∗ ×2 A(2)∗ ×3 eT

i �
(1)
2

−1

− I3,d ×1 J(1)
1

T
J(1)

1 A(1)∗ ×2 A(2)∗ ×3 eT
i �

(1)
1

−1
,

(22)

where �
(1)
2 = A(2)H

A(2) � A(1)H
J(1)

2
T

J(1)
2 A(1) and �

(1)
1 =

A(2)HA(2) � A(1)HJ(1)
1

T
J(1)

1 A(1).

This concludes the tensor formulation of L(1)
i .

IV. DECOMPOSITION OF ESTIMATION ERROR
In this section, we show the impact of various subspace per-
turbation terms on the resulting performance and derive the
expressions for the error of each perturbation term in (14) in
terms of physical parameters.

A. IMPACT OF THE FIRST PERTURBATION TERM
First, we consider the perturbation term I in (14) that is given
by [

ΔU s,I
]T

(3) = (
T (2) ⊗ T (1) ) · ΔU s, (23)

while the subspace perturbation ΔU s can be written as

ΔU s = UnUH
n

[N ]T
(3)

V s�
−1
s . (24)

If we insert the (23) and (24) in the expression (18) we can
write the first component of the perturbation of the spatial
frequency μ

(1)
i as in (25) shown at the bottom of this page.

We can drop the projection onto the left-nullspace UnUH
n

since [
L(1)

i

]
(3)

(
T (2) ⊗ T (1) )A

= eT
i

((
J̃(1)

2 A
)+

J̃(1)
2 A −

(
J̃(1)

1 A
)+

J̃(1)
1 A

)
= eT

i

(
Id − Id

) = 0, (26)

which means that the left part already belongs to the left-
nullspace of the steering matrix A, so we can omit another
projection. Additionally, if we consider the right part of the
expression (25), it can be rewritten as

V s�
−1
s Kei = V s�

−1
s UH

s · U sK · ei

= X+
o · A · ei = (

AS
)+ Aei = S+ei. (27)

To shorten the notation, we introduce the auxiliary variables
α

(1)
i,I ∈ C

M1M2 and β
(1)
i,I ∈ C

N given by

α
(1)
i,I

T =
[
L(1)

i

]
(3)

(
T (2) ⊗ T (1) ) and β

(1)
i,I = S+ei. (28)

Δμ
(1)
i = Im

([
L(1)

i

]
(3)

[
ΔU s,I

]T
(3) Kei

)
︸ ︷︷ ︸

Δμ
(1)
i,I

+ Im

([
L(1)

i

]
(3)

[
ΔU s,II

]T
(3) Kei

)
︸ ︷︷ ︸

Δμ
(1)
i,II

+ Im

([
L(1)

i

]
(3)

[
ΔU s,III

]T
(3) Kei

)
︸ ︷︷ ︸

Δμ
(1)
i,III

(18)

Δμ
(1)
i,I = Im

([
L(1)

i

]
(3)

(
T (2) ⊗ T (1) )UnUH

n

[N ]T
(3)

V s�
−1
s Kei

)
(25)
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It allows us to rewrite (25) as

Δμ
(1)
i,I = Im

(
α

(1)
i,I

T [N ]T
(3)

β
(1)
i,I

)
= Im

((
β

(1)
i,I ⊗ α

(1)
i,I

)T
vec

{[N ]T
(3)

})
, (29)

where we use the property for the vectorization of the prod-
uct of three matrices vec{AXB} = (BT ⊗ A )vec{X} in order
to isolate the noise component for the subsequent statistical
analysis.

B. IMPACT OF THE SECOND PERTURBATION TERM
Secondly, we consider the perturbation term II in (14) that is
given by [

ΔU s,II
]T

(3) =
(

IM2 ⊗ ΔU (1)
s U (1)

s
H
)

· U s (30)

and the corresponding perturbation in the 1-mode

ΔU (1)
s = U (1)

n U (1)
n

H [N ]
(1)

V (1)
s �(1)

s
−1

. (31)

After inserting (30) into (18), the corresponding perturbation
of the spatial frequency can be written as

Δμ
(1)
i,II = Im

([
L(1)

i

]
(3)

(
IM2 ⊗ ΔU (1)

s U (1)
s

H
)

Aei

)

= Im

([
L(1)

i

]
(3)

((
A(2)ei

)T⊗(ΔU (1)
s U (1)

s
H

A(1)ei

)T
)T
)

,

(32)

where we take into account that U sK = A and Aei = A(2)ei ⊗
A(1)ei. We can consider the expression (32) as the 3-mode
unfolding of the matrix-tensor product of the tensor L(1)

i along
the 1-mode and the 2-mode that can be written in the form of
a Tucker decomposition as

Δμ
(1)
i,II = Im

(
L(1)

i ×1

(
ΔU (1)

s U (1)
s

H
A(1)ei

)T×2
(
A(2)ei

)T)
.

Furthermore, we can use the transpose of the 1-mode un-
folding of this tensor to isolate the perturbation term at the
subsequent steps. We can do this since the resulting value
is a scalar independent of the specific unfolding we use to
calculate it.

Δμ
(1)
i,II = Im

(
eT

i A(2)T
[
L(1)

i

]T

(1)
ΔU (1)

s U (1)
s

H
A(1)ei

)
. (33)

Next, we can rewrite the projection onto the left-nullspace of

the matrix A(1) as U (1)
n U (1)

n
H = IM1 − T (1). Then, we insert

(31) into (33) and rewrite the right part of the result as

V (1)
s �(1)

s
−1

U (1)
s

H
A(1)ei = [X ]+

(1) A(1)ei

=
(

A(1) (ST � A(2) )T)+
A(1)ei =

((
ST � A(2) )T)+

ei.

(34)

To simplify the notation we introduce the auxiliary variables
α

(1)
i,II ∈ C

M1 , and β
(1)
i,II ∈ C

M2 N that are equal to

α
(1)
i,II

T = eT
i

1√
M2

A(2)T
[
L(1)

i

]
(1)

(
IM1 − T (1)

)
, (35)

β
(1)
i,II

T = eT
i

(
ST � 1√

M2
A(2)

)+
. (36)

The resulting impact of the second perturbation term on the
error can be described by the expression

Δμ
(1)
i,II = Im

(
α

(1)
i,II

T [N ]
(1)

β
(1)
i,II

)
= Im

((
β

(1)
i,II ⊗ α

(1)
i,II

)T
vec

{[N ]
(1)

})
. (37)

C. IMPACT OF THE THIRD PERTURBATION TERM
Finally, we show that the impact of the perturbation in the
2-mode on the performance in the 1-mode is equal to 0. We
consider the perturbation term III in (14) that is given by[

ΔU s,III
]T

(3) =
(
ΔU (2)

s U (2)
s

H ⊗ IM1

)
· U s (38)

and the corresponding perturbation in the 2-mode

ΔU (2)
s = U (2)

n U (2)
n

H [N ]
(2)

V (2)
s �(2)

s
−1

. (39)

Then we insert (38) into the third term of the expression (18)

Δμ
(1)
i,III = Im

([
L(1)

i

]
(3)

(
ΔU (2)

s U (2)
s

H ⊗ IM1

)
Aei

)

= Im

([
L(1)

i

]
(3)

((
ΔU (2)

s U (2)
s

H
A(2)ei

)T ⊗ (
A(1)ei

)T)T
)

,

(40)

where we also take into account that U sK = A and Aei =
A(2)ei ⊗ A(1)ei.

Considering the derived tensor structure for [L(1)
i ](3) the

argument of the imaginary part in (40) can be written in the
form of a CP decomposition as in (41) shown at the bottom of
this page, and it is equal to 0.

I3,d ×1 eT
i A(1)T

J(1)
2

T
J(1)

2 A(1)∗ ×2

(
A(2)H

ΔU (2)
s U (2)

s
H

A(2)ei

)T ×3 eT
i �

(1)
2

−1

− I3,d ×1 eT
i A(1)T

J(1)
1

T
J(1)

1 A(1)∗ ×2

(
A(2)H

ΔU (2)
s U (2)

s
H

A(2)ei

)T ×3 eT
i �

(1)
1

−1 = 0 (41)
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This can be explicitly shown if we consider the product

A(2)H
ΔU (2)

s ≈ K (2)H
U (2)

s
H

U (2)
n �n = 0, where the signal sub-

space perturbation is defined in (13) and K (2) ∈ C
d×d is a full

rank matrix. It brings us to the conclusion that Δμ
(1)
i,III = 0. It

means that the impact of the perturbation in the 2-mode on the
performance in the 1-mode, and vice versa, can be neglected.

D. DISCUSSION
We can observe that the perturbation of the i-th spatial fre-
quency in the r-th mode depends only on two components
(29) and (37) irrespective of the dimensionality of the system
model. The first component (29) comes from the perturbation
of the signal subspace, and the second component (37) ap-
pears due to the perturbation of the corresponding projection
matrix.

V. MEAN SQUARED ERROR AND STATISTICAL ANALYSIS
A. MEAN SQUARED ERROR
In this section, we continue the analysis of the performance
of the multidimensional ESPRIT-type algorithms and derive
the expression for the mean squared error (MSE) of the i-th
source in the 1-mode.

The MSE of the i-th source in the 1-mode can be written as

E

{(
Δμ

(1)
i

)2
}

= E

{(
Δμ

(1)
i,I + Δμ

(1)
i,II

)2
}

= E

{(
Δμ

(1)
i,I

)2
}

+ E

{(
Δμ

(1)
i,II

)2
}

+ 2 · E
{
Δμ

(1)
i,I Δμ

(1)
i,II

}
, (42)

where the first two terms correspond to the variances of each
perturbation term, and the last component represents the cor-
relation between the perturbation terms (29) and (37). Our
simulation results show that for practical problems, we can
neglect the correlation component and consider the perturba-
tion terms Δμ

(1)
i,I and Δμ

(1)
i,II as uncorrelated.

We start with E{(Δμ
(1)
i,I )2} that can be written as

E

{(
Δμ

(1)
i,I

)2
}

= 1

2

(
β

(1)
i,I ⊗ α

(1)
i,I

)H
R∗

n

(
β

(1)
i,I ⊗ α

(1)
i,I

)

− 1

2
Re

((
β

(1)
i,I ⊗ α

(1)
i,I

)T
R̃n

(
β

(1)
i,I ⊗ α

(1)
i,I

))
, (43)

where Rn = E{vec{N } · vec{N }H}, while vec{N } =
vec{[N ]T

(3)}=vec{[N ](1)}∈C
M1M2 N , and R̃n =E{vec{N } ·

vec{N }T}. Additionally, we used the property Im(z ) Im(z ) =
1
2 Re(zz∗ ) − 1

2 Re(zz ) that is valid for any complex number
z ∈ C.

The variance of the second term can be written as

E

{(
Δμ

(1)
i,II

)2
}

= 1

2

(
β

(1)
i,II ⊗ α

(1)
i,II

)H
R∗

n

(
β

(1)
i,II ⊗ α

(1)
i,II

)

− 1

2
Re

((
β

(1)
i,II ⊗ α

(1)
i,II

)T
R̃n

(
β

(1)
i,II ⊗ α

(1)
i,II

))
. (44)

The correlation between terms is given by

2 · E
{
Δμ

(1)
i,I Δμ

(1)
i,II

}
=
(
β

(1)
i,I ⊗ α

(1)
i,I

)H
R∗

n

(
β

(1)
i,II ⊗ α

(1)
i,II

)
− Re

((
β

(1)
i,I ⊗ α

(1)
i,I

)T
R̃n

(
β

(1)
i,II ⊗ α

(1)
i,II

))
. (45)

In general, we need to evaluate the expressions (43) and
(44) to find a good enough description for the performance
of the i-th spatial frequency in the 1-mode. Note that we
can derive closed-form expressions if we impose additional
assumptions on the noise statistics.

B. SPECIAL CASE OF ZMCSCG NOISE
To this end, we assume that the elements of the tensor N
are independent and are drawn from a zero mean circularly
symmetric complex Gaussian (ZMCSCG) distribution with
variance σ 2

n . Then the covariance matrix turns into Rn =
σ 2

n IMN , while R̃n = 0. In this case, the updated expressions
for the components of the MSE are given by

E

{(
Δμ

(1)
i,I

)2
}

= σ 2
n

2
· E
{∥∥∥α(1)

i,I

∥∥∥2

2

∥∥∥β(1)
i,I

∥∥∥2

2

}
, (46)

E

{(
Δμ

(1)
i,II

)2
}

= σ 2
n

2
· E
{∥∥∥α(1)

i,II

∥∥∥2

2

∥∥∥β(1)
i,II

∥∥∥2

2

}
. (47)

The updated expression for the cross-mode component of
the MSE is given by

2 · E
{
Δμ

(1)
i,I Δμ

(1)
i,II

}
= σ 2

n · E
{(

β
(1)
i,I ⊗ α

(1)
i,I

)H (
β

(1)
i,II ⊗ α

(1)
i,II

)}
. (48)

C. FURTHER SIMPLIFICATIONS
The current expressions for the parameters β

(1)
i,I and β

(1)
i,II

include the instantaneous realization of the source signal snap-
shots S. In this part, we eliminate and replace them with the
signal covariance matrix∥∥∥β(1)

i,I

∥∥∥2

2
= eT

i

(
SH )+ (S)+ ei = 1

N
eT

i R̂
−1
s ei, (49)

where R̂s = 1
N SSH. Also, we can write

∥∥∥β(1)
i,II

∥∥∥2

2
= eT

i

(
ST � 1√

M2
A(2)

)+ (
ST � 1√

M2
A(2)

)+H

ei

= eT
i

(
S∗ST � 1

M2
A(2)H

A(2)
)−1

ei

= 1

N
eT

i

(
R̂

∗
s � 1

M2
A(2)H

A(2)
)−1

ei. (50)

Following [13] (therein the Section 5b) we can show that

E

{∥∥∥β(1)
i,I

∥∥∥2

2

}
= 1

N
eT

i R−1
s ei, (51)
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E

{∥∥∥β(1)
i,II

∥∥∥2

2

}
= 1

N
eT

i

(
R∗

s � 1

M2
A(2)H

A(2)
)−1

ei. (52)

Furthermore, we omit the conjugate of the covariance matrix
Rs since we are interested only in the diagonal entries of the
corresponding inverse that are real-valued.

D. FINAL EXPRESSIONS
The resulting MSE of the i-th spatial frequency in the 1-mode
of 2-D Tensor ESPRIT comprises two terms

MSESTE
(1)
i = MSESTE

(1)
i,I + MSESTE

(1)
i,II, (53)

The term MSESTE
(1)
i,I in (54) shown at the bottom of this page,

describes the error caused by the perturbations of the original
signal subspace (23) and MSESTE

(1)
i,II in (55) shown at the

bottom of this page, corresponds to the error caused by the
perturbations in the 1-mode (30). Additionally, following the
analogous derivations as in [14], it can be shown that the MSE
for 2-D ESPRIT [15] can be written as in (56) shown at the
bottom of this page. We use it as a reference for the simulation
results. We use the following parameters and quantities for the
provided expressions: Rs is the signal covariance matrix, A(r)

is the steering matrix in the r-th mode, ei is the i-th unit vector,
L(1)

i is defined in (22), and T (r) comes from (6).

E. DISCUSSION
Observing the resulting expressions for the MSE, we can
notice additional projections onto each mode in (54) in com-
parison to (56) that reduces the norm of [L(1)

i ](3) which
belongs to the left-nullspace of A. Additionally, the expres-
sion (52) contains the elementwise product with the matrix

1
M2

A(2)H
A(2) in contrast to (51) which provides the reason

for the resistance against the impact of correlation for (55)
(even if Rs is rank deficient), especially for spatially sepa-
rated sources. We can explain it by noticing that for spatially
separated sources, the product A(2)H

A(2) is approximately a
diagonal matrix. As a result, the condition number of the
product Rs � 1

M2
A(2)H

A(2) will be reduced in comparison to
the condition number of the matrix Rs only.

VI. SIMULATION RESULTS
In this section, we present selected simulation results to
demonstrate the validity of the derived expressions for the
performance analysis.

We analyze the derived expressions of the performance
analysis and compare them to the curves obtained via Monte
Carlo trials to verify the obtained results. For all the sim-
ulation results, the red lines correspond to the performance
analysis of the 2-D Standard ESPRIT algorithm (SE), the blue
lines describe the behavior of 2-D Standard Tensor ESPRIT
(STE), and the gray lines are the various error components
in (42). All the curves obtained via Monte Carlo trials are
given as solid lines and depicted with “em”. The analytical
expressions are represented with dashed lines and the label
“an”. The analytical performance of 2-D Standard ESPRIT is
computed with the expression (56), and the analysis of 2-D
Standard Tensor ESPRIT is based on (53), (54), and (55).
We label the first MSE component (54) that is caused by
the perturbation of the signal subspace itself (23) as “core”.
Moreover, we label the second MSE component (55), which
is caused by the perturbation of the corresponding projection
matrix in every mode (30) as “mode”. The impact of the cross
product between two error terms (29) and (37) on the MSE is
denoted as “cross” and is computed based on the expression
(48). We use the root mean squared error (RMSE) to quantify
the overall performance and the impact on each individual
component in (42). The overall RMSE is calculated using the
expression

RMSE =
√√√√
E

{
1

2d

2∑
r=1

d∑
i=1

(
μ

(r)
i − μ̂

(r)
i

)2
}

. (57)

Each Monte Carlo result was obtained by averaging over
10,000 realizations of the noise.

We denote the correlation coefficient between modes as ρ

and use it to create the source signal correlation matrix as

Rs = ρ1 + (1 − ρ)Id , (58)

where 1 ∈ R
d×d is a matrix of ones. We calculate the noise

variance as a function of the SNR, i.e., σ 2
n = 10− SNR

10 . The
location of each individual spatial frequency μ

(r)
i is sampled

from a uniform distribution on the interval (−π, π] and then
fixed for all Monte Carlo trials. For the presented simulation
results, we use the following realization of spatial frequencies

MSESTE
(1)
i,I = σ 2

n

2 N

(
R−1

s

)
i,i

·
∥∥∥∥[L(1)

i

]
(3)

(
T (2) ⊗ T (1) )∥∥∥∥2

2
(54)

MSESTE
(1)
i,II = σ 2

n

2 N

((
Rs � 1

M2
A(2)H

A(2)
)−1

)
i,i

·
∥∥∥∥eT

i
1√
M2

A(2)T
[
L(1)

i

]
(1)

(
IM1 − T (1)

)∥∥∥∥2

2
(55)

MSESE
(1)
i = σ 2

n

2 N

(
R−1

s

)
i,i

·
∥∥∥∥[L(1)

i

]
(3)

∥∥∥∥2

2
, where

[
L(1)

i

]
(3)

= eT
i

((
J̃(1)

2 A
)+

J̃(1)
2 −

(
J̃(1)

1 A
)+

J̃(1)
1

)
(56)
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FIGURE 1. Performance analysis for 2-D Tensor ESPRIT in terms of physical parameters.

(modes × sources)

μ =
[
−3.13 0.99 0.55 −0.59

2.27 1.18 −0.86 −0.40

]
∈ R

R×d , (59)

unless otherwise stated. The key simulation parameters for
each figure can be found in Table 1. In Fig. 1(a), we depict

TABLE 1. Simulation Parameters
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the impact of the SNR on the resulting RMSE and the MSE
components. We can see that all the error components de-
crease linearly on a logarithmic scale. We can notice that STE
has a better performance in comparison to SE due to a better
performance for correlated sources.

In Fig. 1(b), we can observe the impact of the number
of snapshots on the resulting error and its individual parts.
Tensor ESPRIT outperforms Standard ESPRIT due to a better
ability to handle correlated signals. We notice that the error
for the cross-product component has a steeper dependency on
the number of snapshots and decreases faster. Based on this
observation, we exclude the cross-product component from
consideration and the resulting expressions for the MSE of
the i-th source in the r-mode.

In Fig. 1(c), we depict the dependency of MSE on the
correlation between two sources. The contributions of each
error component can be seen. We can notice that the “mode”
error component has a smaller dependency on the correlation
due to its structure given in (55), where the Hadamard product
helps to decorrelate the covariance matrix via the element-
wise product with 1

Mr
A(r)H

A(r), ∀r ∈ {1, 2} and reduces the
condition number of the result. We show the corresponding
simulation results for the 1-mode in Fig. 1(f). It presents the
condition numbers as a function of the spatial separation be-
tween two sources μ

(r)
1 = 0 and μ

(r)
2 = Δμ(r), ∀r = {1, 2} for

the matrix Rs and for the product Rs � 1
M2

A(2)H
A(2) assuming

a correlation of ρ = 0.7. We can conclude that for the spatially
separated sources, when �μr ≥ 2π

Mr
, ∀r = {1, 2} the impact

of correlation to the “mode” component can be neglected.
As a result, further analyzing the simulations in Fig. 1(c), we
can say that for the region of high correlation, the “mode”
component (55) less dependent on the correlation, while the
“core” component (54) has similar behavior to Standard
ESPRIT but it is lower due to the additional projections in
(54). At the same time, such projection helps to reduce the
impact of spatial separation on the “core” component, as we
will see in Fig. 1(d). On the contrary, we can also observe that
for the region of small values of correlation, Tensor ESPRIT
has a similar overall performance as Standard ESPRIT.

In Fig. 1(d), we analyze the impact of the source separa-
tion on the performance. In this simulation, we consider two
sources μ

(r)
1 = 0 and μ

(r)
2 = Δμ(r), ∀r = {1, 2}. The total

range is equal to Δμ(r) ∈ [0, 2π
Mr

]. We notice that the impact

of the “core” part of the error substantially decreases with
an increase in the source separation, where the “mode” com-
ponent has the dominant impact on the MSE.

In Fig. 1(e) we compare various ‖α‖2
2 terms for the 1-mode.

In general, the parameter α characterizes the error of the signal
subspace estimation as a function of spatial separation. For

this particular figure, we present α
(1)
i

T = [L(1)
i ](3) in (16) for

Standard ESPRIT, and the “core” and “mode” error com-
ponents of Tensor ESPRIT in (28) and (35), correspondingly.
Additionally, we can show that the norm of α

(1)
i for a single

source using Standard ESPRIT is equal to

∥∥∥α(1)
1

∥∥∥2

2
= 2(

M1 − 1
)2

M2

. (60)

We use it as a reference line that does not depend on spatial
separation and where we do not need to calculate the pseu-
doinverse as in (16). Using a solid gray line, we show the
performance without the projection onto the left-nullspace of
A(1) in the “mode” component (35)

α′(1)
i,II

T = eT
i

1√
M2

A(2)T
[
L(1)

i

]
(1)

. (61)

We can observe that the “core” component has a much
smaller dependency on the spatial separation due to an addi-
tional projection to the signal subspace in each mode. On the
other hand, we can see that α

(1)
i,II for the “mode” component

also has a smaller norm than α
(1)
i for Standard ESPRIT be-

cause of its structure, which comprises the product with A(2)

and the projection onto the left-nullspace of A(1). Finally, we
can notice that the performance difference between Standard
ESPRIT and Tensor ESPRIT vanishes for spatially separated
sources. There, the error is mostly dominated by the “mode”
component of Tensor ESPRIT.

Overall, the presented simulation results confirm that the
derived expressions for the performance analysis reflect the
behavior of 2-D Tensor ESPRIT. Additionally, the simulation
results show that the cross-product term (48) between differ-
ent error terms can be dropped, which further simplifies the
MSE expression.

VII. CONCLUSION
In this paper, we present a performance analysis of 2-D Ten-
sor ESPRIT in terms of physical parameters. We show that
the error in the r-mode depends only on two perturbation
components, irrespective of the dimensionality of the original
problem. The provided closed-form expressions do not rely
on the intermediate quantities from the HOSVD and have
better tractability. Compared to previously reported works on
perturbation analysis, we get a simpler expression that can be
directly utilized to evaluate the performance of ESPRIT-type
algorithms. The derived results can be applied on the system
level to optimize the system parameters.
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