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ABSTRACT

This paper presents a high-resolution coupled rank-(Lr, Lr, 1)
block-term decomposition-based near-field localization scheme for
multi-static MIMO radar systems. The proposed COBRAS (COu-
pled Block-term decomposition for multi-static RAdar Systems)
algorithm uses the exact wavefront model to estimate the target
location parameters in 3D space and can be applied to arbitrary
array geometries. Compared to the far-field models, the exact near-
field wavefront model allows exploiting the distance information
for high-accuracy positioning. Moreover, we consider a system
with massive antenna arrays, which increases the Fresnel region
and expands the range of the near-field assumption. The COBRAS
algorithm includes the initial tensor decomposition of the data and
further post-processing steps that allow extracting the location pa-
rameters. Additionally, we compare the performance of different
rank-(Lr, Lr, 1) block-term decomposition algorithms and demon-
strate how the employment of coupling improves the localization
performance compared to the non-coupled solutions.

Index Terms— Near-field, spherical wavefront, MIMO radar,
block-term decomposition, data fusion.

1. INTRODUCTION

The near-field region provides new opportunities and challenges for
communication and sensing applications. Compared to the far-field
design, the near-field allows exploiting the distance information.
Therefore, near-field beamforming can yield a higher spatial mul-
tiplexing gain by transmitting different data to users located at
different locations in the same direction. Moreover, the near-field is
highly beneficial in radar systems: in contrast to far-field systems,
it allows a more accurate localization with not only angle but also
distance parameters. Until recently, most applications of wireless
systems have focused on the far-field assumption. However, opera-
tions in the mmWave and THz bands, the use of large antenna arrays,
and the deployment of reconfigurable intelligent surfaces make the
exploitation of the near-field essential and inevitable [1]: the near-
field region increases, and the wavefronts cannot be considered as
planar anymore.

Commonly, publications that focus on near-field signal pro-
cessing consider the Fresnel approximation of the spherical wave-
fronts [2–6], which uses a Taylor expansion of the true phase dis-
tribution of the wavefront across antennas. Alternatively, some
authors [4, 7–9] avoid using the Fresnel approximation and utilize
the exact spherical wavefront model, which avoids systematic errors
introduced by the Fresnel approximation and improves the estima-
tion accuracy. Other tools that demonstrate promising results in the
area of multiple-input multiple-output (MIMO) radar signal pro-
cessing include tensor decompositions and multidimensional signal

processing. For example, a canonical polyadic (CP) decomposition-
based localization and channel estimation algorithm for massive
antenna arrays is proposed in [9]. The authors in [4, 7, 8] employ
the CP decomposition for parameter estimation in bistatic MIMO
radar systems. The multi-static MIMO radar scenario is considered
in [10, 11]. The authors propose to use the coupled CP and cou-
pled rank-(Lr, Lr, 1) decompositions to localize the targets in the
far-field. However, the algorithm suggested in [10] is limited to
2D space localization when considering a uniform rectangular array
(URA) antenna configuration due to the chosen wavefront model.
Tensor-based techniques are also widely employed for direction-of-
arrival estimation using a planar wavefront model [12–16].

This contribution focuses on multi-static MIMO radar systems
with multiple receiving and transmitting massive antenna arrays. We
consider the parameter estimation of multiple targets in 3D space us-
ing the exact spherical wavefront model. Moreover, we use the sig-
nal model from [10] to arrange the received data as a low-rank ten-
sor and employ a robust coupled block-term decomposition (BTD)
algorithm that we presented in [17] to estimate the steering matrices.
We also develop appropriate post-processing steps, such as phase
unwrapping, the solution of the system of linear equations, and the
parameter extraction to obtain the final parameter estimates. We re-
fer to the proposed algorithm as ”COBRAS” (COupled Block-term
decomposition for multi-static RAdar Systems). In contrast to the al-
gorithm in [10], our approach is designed for near-field systems and
uses the exact spherical wavefront model. Additionally, we compare
the performance of the different BTD algorithms in terms of their
impact on localization accuracy.

Notation. Matrices and vectors are denoted by upper-case (A)
and lower-case (a) bold-faced letters, respectively. Bold-faced cal-
ligraphic letters denote tensors (A). The superscripts {·}T and {·}H

denote the transpose and Hermitian transpose, respectively. More-
over, we use ◦ to denote the outer product.

2. SYSTEM MODEL

We consider a multi-static multi-pulse MIMO radar system that uses
MT transmit and MR receive arrays to localize R targets. Each
transmitter emits temporally orthogonal signals that impinge on the
targets, and their reflections are intercepted by receiving arrays. At
the receiver side, the signals are matched-filtered using the known
waveforms from the transmitter side. The targets are assumed to be
in the near-field region of both arrays, such that the wavefronts of the
impinging and reflecting waves can be considered spherical, and the
target radar cross section (RCS) is assumed to be uncorrelated from
pulse to pulse (Swerling 2 model [18]). In the sequel, we focus on
uniform rectangular arrays and describe a high-resolution algorithm
to estimate the range, azimuth, and elevation parameters of the dom-
inant wavefronts in 3D space. However, the COBRAS algorithm is
also applicable to arrays of arbitrary (known) geometries.
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Fig. 1: Scenario geometry with R = 3 targets, MT = 3, and MR = 2
URAs. The parameters of one of the targets are given w.r.t. the transmit and
receive reference antennas of the 1st transmit and the 1st receive arrays.

2.1. Scenario

An example scenario is shown in Fig. 1. The antennas in the trans-
mit and receive arrays are depicted with red and blue dots, respec-
tively. The black dots denote targets. Each transmit and receive
array consists of N [mT]

T , mT ∈ {1, . . . ,MT} and N
[mR]
R , mR ∈

{1, . . . ,MR} antennas, respectively. In the following, to ease the
notation, we skip the superscripts [mT] and [mR] in the notations
of NT and NR, and assume an equal number of antennas in all
transmit and all receive arrays. However, the algorithm supports
scenarios with different numbers of elements in the antenna arrays.
We denote the Cartesian coordinates of the transmit antennas as{
x
[mT]
T,nT

, y
[mT]
T,nT

, z
[mT]
T,nT

}
, nT ∈ {1, . . . , NT} and the Cartesian co-

ordinates of the receive antennas as
{
x
[mR]
R,nR

, y
[mR]
R,nR

, z
[mR]
R,nR

}
, nR ∈

{1, . . . , NR}.

Every rth target in 3D space is characterized by a set of
parameters Θ

[mT]
T,r =

{
ρ
[mT]
T,r , ϕ

[mT]
T,r , θ

[mT]
T,r

}
and Θ

[mR]
R,r ={

ρ
[mR]
R,r , ϕ

[mR]
R,r , θ

[mR]
R,r

}
, r ∈ {1, . . . , R}, where ρ

[mT]
T,r and ρ

[mR]
R,r

are the distances from the rth target to the reference transmit and re-
ceive antennas of the transmit and receive arrays, respectively. More-
over, ϕ[mT]

T,r and ϕ
[mR]
R,r are the azimuth, and θ

[mT]
T,r and θ

[mR]
R,r are

the elevation angles, defined with respect to the transmit and the
receive systems of coordinates. We assume that the reference an-
tennas of the transmit and receive arrays are located at the origin
of the ”local” system of coordinates (at every array). Furthermore,
we introduce a ”global” system of coordinates with the origin at the
reference antenna of the first transmit array. Then the coordinates
{xT,mT , yT,mT , zT,mT} and {xR,mR , yR,mR , zR,mR} denote the
locations of the mTth and mRth reference antennas with respect to
the global origin. Additionally, we introduce a set of Cartesian co-
ordinates of the rth target as Θ[mT]

T,r =
{
x
[mT]
T,r , y

[mT]
T,r , z

[mT]
T,r

}
and

Θ
[mR]
R,r =

{
x
[mR]
R,r , y

[mR]
R,r , z

[mR]
R,r

}
defined with respect to the refer-

ence antennas at the transmit and receive arrays, respectively.

2.2. Signal Model

The received signal Y [mR]
p ∈ CNR×T at the mRth receiving array

in the pth pulse can be written as [10]

Y
[mR]
p =

∑MT
mT=1

∑R
r=1 α

[mR]
r ϱ

[mR,mT ]
r,p b

[mR]
r a

[mT]T
r S[mT]T +N

[mR]
p ,

(2)
where mT, mR, r, and p are the transmit array, the receive ar-
ray, the target, and the pulse indices. The complex gain parame-
ters α

[mR]
r represent such effects as attenuation and random phase

shifts. The complex quantity ϱ
[mR,mT ]
r,p is the reflection coeffi-

cient of the rth target relative to the mRth receive and mTth trans-
mit array in the pth pulse. The matrix S[mT] ∈ CT×NT con-
tains the transmitted signal during one pulse period after matched-
filtering at the receiver, where T is the number of time snap-
shots in each pulse. The matrix N

[mR]
p ∈ CNR×T repre-

sents the independently and identically distributed (i.i.d.) zero
mean spatially and temporally white additive noise with variance
σ2
n. Moreover, the transmit and receive array steering vectors

for the rth target are defined in terms of the path differences as

a
[mT]
r =

[
1, e−j 2π

λ
δ
[mT]
T,r,2 , . . . , e

−j 2π
λ

δ
[mT]

T,r,NT

]T
∈ CNT

and b
[mR]
r =

[
1, , e−j 2π

λ
δ
[mR]
R,r,2 , . . . , e

−j 2π
λ

δ
[mR]

R,r,NR

]T
∈

CNR , respectively.
The exact expression for the geometric path differences δ[mT]

T,r,nT

and δ
[mR]
R,r,nR

between the reference antenna and the nTth (nRth) an-
tenna in the array depends on the chosen wavefront model, which
can be planar if the sources are in the far-field [19], approximated
spherical (Fresnel approximation [2]) or exactly spherical [4,8,9,20].
In this work, we adopt the exact spherical wavefront model given in
equation (1) (for the receiving side) on the bottom of this page.

By stacking the matrices Y
[mR]
p with fixed mR and varying

p along the 3-mode, the data received at the mRth array for P

pulses can be represented as a three-dimensional tensor Y ′[mR]

(:,:,p) =

Y
[mR]
p ∈ CNR×T . After permuting the first and the third in-

dices in Y ′[mR] ∈ CNR×T×P , we can rewrite it as the tensor
Y [mR] ∈ CP×T×NR (due to the page limitations, we refer the reader
to [10] for detailed derivations) in the following way

Y [mR] =
R∑

r=1

α[mR]
r

(
F [mR]

r CT
r

)
◦ b[mR]

r +N [mR] ∈ CP×T×NR ,

(3)
where the columns of the matrix of reflection coefficients F [mR]

r =[
f

[mR,1]
r , . . . , f

[mR,MT ]
r

]
∈ CP×MT are expressed as

f
[mR,mT ]
r =

[
ϱ
[mR,mT ]
r,1 , . . . , ϱ

[mR,mT ]
r,P

]T
∈ CP . More-

over, the matrix Cr =
[

c
[1]
r , . . . , c

[MT]
r

]
∈ CT×MT is con-

structed from the vectors c[mT]
r = S[mT]a

[mT]
r ∈ CT that combine

the transmitted signal and the transmit steering vectors. The repre-
sentation of the data in (3) corresponds to the noise-corrupted cou-
pled rank-(Lr, Lr, 1) BTD [10,17,21] with the MR tensors coupled
in the 2-mode since the arrays receive the same transmitted data.
We assume that the matrices F [mR]

r ∈ CP×MT and Cr ∈ CT×MT

δ
[mR]
R,r,nR

=

√(
x
[mR]
R,r − x

[mR]
R,nR

)2
+
(
y
[mR]
R,r − y

[mR]
R,nR

)2
+
(
z
[mR]
R,r − z

[mR]
R,nR

)2
− ρ

[mR]
R,r , ∀nR,∀mR. (1)
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in (3) have a full column rank equal to MT, i.e., the number of pulses
and snapshots is greater than MT. In this case, the rank-(Lr, Lr, 1)
BTD is identifiable [22], and the matrices in (3) can be estimated
through the coupled rank-(Lr, Lr, 1) decomposition. Then, the final
target parameter estimates are obtained via the solution of a system
of linear equations and further processing, which we cover in the
following.

3. COUPLED BTD-BASED TARGET LOCALIZATION

This section describes the main steps of the proposed COBRAS al-
gorithm that utilizes the coupled rank-(Lr, Lr, 1) decomposition for
target localization in multi-static near-field radar systems. It includes
the estimation of the initial decomposition of the received data, phase
unwrapping, the solution of the system of linear equations, and the
parameter extraction to calculate the final estimates.

3.1. Tensor decomposition and phase unwrapping

The first step of the algorithm is an estimation of the matrices
F

[mR]
r , Cr , and the vectors b

[mR]
r which can be performed via an

approximate coupled rank-(Lr, Lr, 1) decomposition of the tensors
Y [mR] with the block-rank R and the Lr-ranks equal to MT. Sev-
eral authors have proposed algorithms to compute the coupled rank-
(Lr, Lr, 1) decomposition, for example, the coupled SECSI-BTD
algorithm that we propose in [17], structured data fusion algorithms
in [23], or simultaneous diagonalization (SD) methods in [21,23,24].
In this study, we focus on the solution from [17] and compare its per-
formance to the other schemes.

At this point, we should mention the additional matrix product
ambiguity that occurs in the rank-(Lr, Lr, 1) decompositions when

estimating the product
(
F

[mR]
r CT

r

)
as shown in [22]. Since the am-

biguities in
(
F

[mR]
r CT

r

)
are difficult to resolve, in this paper, we

focus on the estimation of the steering vectors b
[mR]
r at the receive

arrays, which are essentially unique (up to an arbitrary permutation
and scaling) [21, 22] and can be used for the localization of the tar-
gets. We denote the estimated vectors b[mR]

r as b̂[mR]
r and use them

as columns in the matrices B̂[mR] = [b̂
[mR]
1 , . . . , b̂

[mR]
R ] ∈ CNR×R.

Based on the knowledge that at the reference (first) antenna, the path
difference is equal to zero, the BTD scaling ambiguity can be cor-
rected by dividing the vectors b̂[mR]

r by their first element.
As described in [8], to acquire the correct phases of the steer-

ing vectors b̂
[mR]
r , the unwrapping procedure has to be performed

on the extracted phase angles as δ̂
[mR]
r = λ

2π
· U
{
∠b̂[mR]

r

}
, ∀r,

where δ̂[mR]
r is the vector of path difference estimates and U {•} de-

notes the unwrapping algorithm. For uniformly distributed geome-
tries, such as Uniform Linear Arrays (ULAs) or URAs, the correct
phase unwrapping is possible if the element spacing is not larger
than λ/2 with a simple 1-dimensional unwrapping algorithm [25]
(in case of a URA it should be applied row- and column-wise). For
other types of array geometries, 2- (or 3-) dimensional unwrapping
algorithms should be applied [8, 26].

3.2. Solving the system of linear equations

In order to calculate the target location parameters, the following
post-processing steps are applied independently for every δ̂

[mR]
r , ∀r,

∀mR. Since the processing steps are the same for every receiving
array, for notational simplicity, we drop the superscript [mR] and

the subscript R, denoting the array number and the receive side, re-
spectively. Substituting the estimated path difference δ̂r,nR into (1),
moving ρr to the left side, and taking the square results in(

δ̂r,nR + ρr
)2

= (xr − xnR)
2 + (yr − ynR)

2 + (zr − znR)
2 .

(4)
By expanding (4) further, we get

δ̂2r,nR
+ 2ρr δ̂r,nR + ρ2r = x2

r + y2
r + z2r︸ ︷︷ ︸

ρ2r

+x2
nR

+ y2
nR

+ z2nR︸ ︷︷ ︸
d2nR

−2 (xrxnR + yrynR + zrznR) .
(5)

which results in a set of NR−1 linear equations (since the reference
antennas are located at the origin of the system of coordinates, x1 =

y1 = z1 = 0, and δ̂r,1 = 0, ∀r) [8]

2


x2 y2 z2 δ̂r,2
x3 y3 z3 δ̂r,3
...

...
...

...
xNR−1 yNR−1 zNR−1 δ̂r,NR−1


︸ ︷︷ ︸

Xr∈R(NR−1)×4

pr =


d22 − δ̂2r,2
d23 − δ̂2r,3

...
d2NR−1 − δ̂2r,NR−1


︸ ︷︷ ︸

yr∈R(NR−1)×1

(6)
where d2nR

= x2
nR

+ y2
nR

+ z2nR
is the distance from the reference

antenna (located at the origin) to the nRth antenna, and

pr =


xr

yr
zr√

x2
r + y2

r + z2r

 =

ρr cos(ϕr) cos(θr)
ρr sin(ϕr) cos(θr)

ρr sin(θr)
ρr

 . (7)

The set of equations in (6) allows estimating the location of tar-
gets in the full 3D space around the receive array if the antenna array
geometry exhibits diversity in all spatial directions (i.e., the arrays
are not planar). In the case of planar antenna arrays, for example,
URAs, the matrix Xr in (6) will not have full column rank. In such
a situation, we choose a local system of coordinates with the origin
at the reference antenna such that all antennas lie in the x-y-plane.
Then, znR = 0, ∀nR and the parameter vector pr reduces to (7)
without the third row. Consequently, the matrix Xr in (6) is trans-
formed into a matrix of size (NR − 1) × 3 (Xr in (6) without the
third column). In this case, the parameter estimation is only possible
in the upper half of the 3D space where zr > 0 (or 0 ≤ θr ≤ π/2).

The solution vector can, for example, be found by means of least
squares (LS) or total least squares (TLS) [27].

3.3. Parameter extraction

In the general 3D case, the final range, azimuth, and elevation esti-
mates can be computed as

ρr = (p̂r)(4) , ϕr = atan2

(
(p̂r)(2)
ρr

,
(p̂r)(1)
ρr

)
, (8a)

θr = atan2

 (p̂r)(3)
ρr

,

√
(p̂r)

2
(1) + (p̂r)

2
(2)

ρr

 , (8b)

where atan2(y, x) denotes the four quadrant arctangent function
and (a)(i) denotes the ith element of a.
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Fig. 2: CCDF vs. errors in terms of the Euclidian distance between true and
estimated locations. SNR = 30dB. 1000 Monte-Carlo trials.

If all the array antennas are in the same plane (e.g., URA case),
the range is ρr = (p̂r)(3) and the elevation is computed as

θr = cos−1


√

(p̂r)
2
(1) + (p̂r)

2
(2)

ρr

 . (9)

The equation (9) additionally provides a simple reliability test that

can be applied in this case. If the value of
√

(p̂h)
2
(1) + (p̂h)

2
(2)/ρh

is larger than one, then the test has failed, and the location estimates
should be considered as not reliable.

4. SIMULATION RESULTS

This section presents the empirical validation of the COBRAS algo-
rithm, demonstrating its performance and the impact of the different
rank-(Lr, Lr, 1) decomposition algorithms on the localization accu-
racy.

For the simulations, we consider a multi-static MIMO radar sys-
tem with MT = 3 transmitting arrays and MR = 2 receiving arrays.
The carrier frequency is fc = 50GHz which results in a wavelength
of λ = c/fc ≈ 0.6 cm. As the transmitting and receiving arrays,
we use URAs of 10 × 10 elements, resulting in NT = NR = 100.
The antenna element spacing is set to λ/2. The Cartesian coordi-
nates of the reference transmit antennas are {0, 0, 0}, {0, 12λ, 0},
and {0, 24λ, 0}, and the coordinates of the receiving reference an-
tennas are {16λ, 0, 0}, {16λ, 17λ, 0}. The antenna arrays are ro-
tated about the y-axis by the angles γT = 140◦ and γR = 30◦,
for the transmit and receive sides, respectively. The number of
time snapshots is set to T = 200, and the number of pulses is
P = 100. The size of the received data tensors Y [1] and Y [2] is then
100×200×100. The range, azimuth, and elevation parameters of the
R = 3 closely spaced targets with respect to the reference antennas
of two receive arrays are Θ

[1]
R,1 = {22λ, 116.6◦, 44.7◦}, Θ[1]

R,2 =

{21λ, 112.9◦, 45.7◦}, Θ[1]
R,3 = {23.4λ, 110.6◦, 43.1◦}, Θ[2]

R,1 =

{17.9λ,−156.8◦, 63.8◦}, Θ
[2]
R,2 = {16.4λ,−148.4◦, 66◦}, and

Θ
[2]
R,3 = {17.1λ,−170.5◦, 69.1◦}, respectively. The example sce-

nario used for the simulations is illustrated in Fig. 1. The reflection
coefficients and the transmitted signal after matched-filtering at the
receiver are drawn from a zero mean complex Gaussian distribution
with unit variance. The additive noise tensor N [mR] is modeled as

an i.i.d. zero mean spatially and temporally white additive noise with
variance σ2

n. The simulations were performed for K = 1000 trials.
We evaluate the accuracy of the target localization, defining the

errors in terms of the Euclidean distance between the true (ur) and
the estimated (ûr,k) location of the target as

err =

√
η(ûr,k) ∥ur − ûk,r∥2 ∀r, ∀k, (10)

where k ∈ 1, . . . ,K is a trial index and the

η(û) =

{
1, if û passed the reliability test

0, otherwise
(11)

represents the indicator function of the reliability test described at the
end of Section 3.3. Therefore, only the trials in which the reliability
test did not fail are taken into account.

The complementary cumulative distribution function (CCDF) of
the errors in terms of the Euclidian distance for the SNR = 30dB is
shown in Fig. 2 (these are the results for the second array averaged
among all targets; for the first array, the results are similar). The
colored vertical lines in the plots represent the mean values for each
curve. The dash-dotted line denotes the minimum separation dis-
tance between targets [9]. We compare three BTD algorithms for the
estimation of the steering matrices (the other steps are performed ac-
cording to COBRAS): (i) coupled rank-(Lr, Lr, 1) BTD algorithm
from [17] (nonlinear least squares (NLS) with SECSI-based initial-
ization, blue curve); (ii) NLS solution for coupled rank-(Lr, Lr, 1)
BTD from [28] (random initialization, orange curve); and (iii) non-
coupled solution from [29] (purple curve). In the third case, only the
data from one given array is processed. Therefore, there is no joint
processing, and the coupling is not considered. As can be observed,
the SECSI-NLS scheme outperforms the considered alternatives, es-
pecially the non-coupled approaches. This can be explained by the
more reliable initialization provided by the SECSI algorithm, which
reduces the number of outliers. Conversely, the NLS solution with
random initialization does not always converge. The inferior perfor-
mance of the single BTD demonstrates the benefits of the coupling:
the localization is more accurate and reliable when data from both
arrays is processed jointly.

The estimation performances can be further improved by, for
example, constructing the system in (6) using the estimates from
both arrays and using a weighted least squares solution. Another
solution is to consider only the estimates from the array that passed
the reliability test in (11) or take into account only the estimates from
the array that is located closer to the target.

5. CONCLUSIONS

This paper presented a high-resolution coupled rank-(Lr, Lr, 1)
decomposition-based near-field localization algorithm for multi-
static MIMO radar systems. The COBRAS algorithm performs the
target location parameters estimation in 3D space based on the ex-
act wavefront model and is applicable to arbitrary array geometries.
Compared to the far-field planar wavefront, the use of the exact
wavefront model enables the estimation of not only the direction-of-
arrival parameters but also the range and, consequently, the position
of the target. Moreover, the use of massive antenna arrays increases
the Fresnel region and makes the near-field assumption applicable
in practical scenarios. Furthermore, the algorithm utilizes a relia-
bility measure, which allows discarding unreliable parameter esti-
mates. The simulation results show that the employment of coupling
and joint processing of the data from multiple arrays improves the
localization performance compared to the non-coupled solutions.
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