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ABSTRACT
Spatial frequency estimation from a mixture of noisy sinu-
soids finds applications in various fields. The widely used
subspace-based methods provide super-resolution parameter
estimation at a low computational cost. However, they re-
quire an accurate array calibration, which is difficult for large
antenna arrays. Sparsity-based methods have been shown
to be more robust than subspace-based methods in difficult
scenarios, e.g., in the case with a small number of snap-
shots and/or correlated sources. In this paper, we consider
the direction-of-arrival (DOA) estimation in partly calibrated
rectangular arrays comprising several calibrated and identi-
cal subarrays. We derive a gridless sparse formulation for
DOA estimation based on the shift-invariance properties of
the array and develop an efficient algorithm in the alternating
direction method of multipliers (ADMM) framework. Nu-
merical simulations show the superior error performance of
our proposed method compared to subspace-based methods.

Index Terms— DOA estimation, joint sparsity, partly cal-
ibrated arrays, shift-invariance, ADMM

1. INTRODUCTION

Direction-of-arrival (DOA) estimation methods like MUSIC
[1] and ESPRIT [2, 3] are known to be sensitive to fluctua-
tions and uncertainties in the array geometry [4] and require
an accurate array calibration [5]. With the increasing array
size, array calibration becomes more difficult. As a solution,
the concept of partly calibrated arrays (PCAs) has been intro-
duced by partitioning the entire array into fully calibrated sub-
arrays with uncertain phase relation between subarrays [6, 7].

Recently, several DOA estimation methods for PCAs have
been introduced [2, 7–9]. Search-free subspace-based meth-
ods are proposed in [2, 7, 8] for PCAs with identical subar-
rays. Differently, the authors in [9] propose a search-based
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method, which applies to arbitrary subarray topologies. How-
ever, the search-based methods require an expensive spectral
search. Subspace-based methods suffer from performance
degradation in difficult scenarios, e.g., in the cases with highly
correlated source signals and/or a small number of measure-
ments. To overcome those issues, sparsity-based methods
have been considered [10, 11]. The authors in [10] propose a
grid-based sparse DOA estimation method for PCAs, which,
however, may suffer from basis mismatch due to the spec-
trum discretization. A gridless sparse method that avoids the
sampling over the field-of-view (FOV), termed shift-invariant
SPARROW (SI-SPARROW), is devised in [12] for PCAs. Al-
though the above sparse methods show a good error perfor-
mance even in difficult scenarios, both of them assume a uni-
form linear subarray structure, which allows DOA estimation
only in the azimuth direction.

In this paper, we extend the SI-SPARROW formulation
in [12] to the case with a partly calibrated rectangular ar-
ray (PCRA) with identical subarrays and unknown intersub-
array displacements, which allows DOA estimation in both
azimuth and elevation directions. In contrast to the SDP re-
formulation approach in [12], we develop an efficient algo-
rithm under the ADMM framework for the established SI-
SPARROW problem. Numerical simulations show that our
proposed method outperforms the subspace-based methods in
challenging scenarios. Moreover, compared to the SDP im-
plementation in [12], the ADMM-based solution approach for
the SI-SPARROW problem exhibits a significantly reduced
computational cost in the oversampled case.

2. SIGNAL MODEL

Consider an Mx×My partly calibrated rectangular array
(PCRA), as shown in Fig. 1(a), composed of Px×Py iden-
tical subarrays of Lx×Ly sensors with Mx=PxLx and
My=PyLy . LetM=MxMy be the total number of sensors in
the PCRA. Let ∆x

p (resp., ∆y
p) be the unknown intersubarray

displacement between the first and the pth subarray along the
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x-axis (resp., y-axis), while the perfectly known relative po-
sition of the lth sensor along the x-axis (resp., y-axis) within
each subarray is denoted by δxl (resp., δyl ). Moreover, we
assume that NS narrowband far-field source signals impinge
from distinct unknown DOAs with different azimuth and ele-
vation angles, denoted by ϕi∈[−180◦,180◦) and θi∈[0◦,90◦],
respectively, i=1,...,NS . Each direction (ϕi,θi) can be equiv-
alently represented by a pair of spatial frequencies in the
two dimensions defined as µx

i =πcos(ϕi)sin(θi)∈[−π,π) and
µy
i=πsin(ϕi)sin(θi)∈[−π,π), respectively. The spatial fre-

quencies of the NS sources are collected in µ=[µxT,µyT]T

with µx=[µx
1 ,...,µ

x
NS

]T and µy=[µy
1,...,µ

y
NS

]T. Let Y ∈
CM×N be the measurement matrix that contains the array
output in N time-slots, which is modeled as

Y =A(µ)Ψ+N . (1)
The matrix Ψ∈CNS×N contains the source waveforms with
ψi,n being the waveform from source i at time instant n. The
matrix N∈CM×N contains the independent and identically
distributed noise entries of distribution CN (0,σ2

n). The ma-
trix A(µx,µy)∈CM×NS collects the NS steering vectors as

A(µ)=
[
a(µx

1 ,µ
y
1) ... a(µx

NS
,µy

NS
)
]
, (2)

where a(µx
i ,µ

y
i )∈CM is the array dependent steering vector

corresponding to source i. For the considered PCRA, the ar-
ray steering vector in the direction (µx,µy) is expressed as the
Kronecker product a(µx,µy)=ax(µ

x)⊗ay(µ
y) with

ax(µ
x)=[1,...,ejµ

xδxLx ,ejµ
x∆x

2 ,...,ejµ
x(∆x

Px
+δxLx

)]T,

ay(µ
y)=[1,...,e

jµyδyLy ,ejµ
y∆y

2 ,...,e
jµy(∆y

Py
+δyLy

)
]T.

In the following we introduce the shift-invariance proper-
ties of the array. To this end, we define the selection matrices

Jx
p=ePx,p⊗ILx

⊗IPy
⊗ILy

, p=1,...,Px, (3a)

Kx
l =IPx

⊗eLx,l⊗IPy
⊗ILy

, l=1,...,Lx, (3b)
Jy
p=IPx

⊗ILx
⊗ePy,p⊗ILy

, p=1,...,Py, (3c)

Ky
l =IPx

⊗ILx
⊗IPy

⊗eLy,l, l=1,...,Ly, (3d)
to assign sensors to various shift-invariant groups, where
eP,p=[0,...,0,1,0,...,0]T is the P -dimensional basis vector
with the pth entry being one and all the other entries being
zero. As depicted in Fig. 1, by the operation JxT

p a (resp.,
JyT
p a), the responses of all subarrays at the pth position in

the x-axis (resp., y-axis) are selected. Similarly, Kx
l and Ky

l

are used to select all sensors at the lth position in the x-axis
and y-axis, respectively, within the subarrays. Then the shift-
invariance properties of the steering matrix are expressed as

JxT
p A(µ)=JxT

1 A(µ)Φ∆x
p (µx), p=2,...,Px, (4a)

KxT
l A(µ)=KxT

1 A(µ)Φδxl (µx), l=2,...,Lx, (4b)

JyT
p A(µ)=JyT

1 A(µ)Φ∆y
p(µy), p=2,...,Py, (4c)

KyT
l A(µ)=KyT

1 A(µ)Φδyl (µy), l=2,...,Ly, (4d)

where Φ(µx)=Diag(ejµ
x
1 ,...,ejµ

x
NS )∈CNS×NS and Φ(µy)=

Diag(ejµ
y
1 ,...,e

jµy
NS )∈CNS×NS contain the phase shifts for

δx2 δx2

∆x
2

δy2

δy2
∆y

2

Jx
1 Jx

2

Jy
1

Jy
2

x

y

(a)

Kx
1 Kx

2

Ky
1

Ky
2

(b)

Fig. 1. Different shift-invariant groups for a PCRA composed
of 2×2 subarrays with 2×2 sensors per subarray.

frequencies µx and µy on their main diagonal, respectively.
Also, due to the narrowband assumption, the responses of
each pair of sensors differ only in a phase shift. This shift-
invariance property is similarly expressed as
eTM,mA(µ)=eTM,1A(µ)Φ(∆x

p+δxk)(µx)Φ(∆y
q+δyl )(µy) (5)

for p=1,...,Px, q=1,...,Py , k=1,...,Lx, l=1,...,Ly and m=
((p−1)Lx+(k−1))My+(q−1)Ly+l. More shift-invariances
can be exploited if other array topologies are given, e.g., shift-
invariances with overlapping groups. For simplicity, we limit
our discussion to the example of the PRCA in Fig. 1.

Since the sensor displacements δxl and δyl are known, the
shift-invariance equations in (4b) and (4d) can be used to es-
timate the spatial frequencies µ by the 2D-ESPRIT methods
in [13–15], with automatic pairing.

3. SPARSE SIGNAL FORMULATION

We define a sparse representation corresponding to (1) as
Y =A(ν)X+N , (6)

where A(ν)∈CM×K is an overcomplete dictionary con-
structed according to (2) by sampling the FOV in K≫NS

directions with frequencies ν=[νxT,νyT]T, where νx=
[νx1 ,...,ν

x
K ]T and νy=[νy1 ,...,ν

y
K ]T, and X∈CK×N is the

sparse representation of the waveform matrix Ψ. Provided
that the true frequencies µ are contained in the frequency grid,
i.e., {(µx

i ,µ
y
i )}

NS
i=1⊂{(νxk ,ν

y
k )}Kk=1, then X=[x1,...,xK ]T ad-

mits a row-sparse structure, which has only NS nonzero rows
corresponding to the NS sources. For simplicity, in the rest
of the paper, the dictionary is referred to as A=A(ν). With
the model in (6), the DOA estimation is formulated as the
well-known convex mixed-norm minimization

minX∈CK×N
1
2∥Y −AX∥2F+λ

√
N∥X∥2,1, (7)

where λ>0 is the regularization parameter and the ℓ2,1-norm
is defined as ∥X∥2,1=

∑K
k=1∥xk∥2. In [11], the mixed-norm

minimization problem (7) is equivalently reformulated as the
SPARse ROW-norm reconstruction (SPARROW) problem

minS∈DK
+

tr
(
(ASAH+λIM )−1R̂

)
+tr(S), (8)

where R̂=Y Y H/N is the sample covariance matrix and DK
+

the set of K×K nonnegative diagonal matrices. The mini-
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mizers X̂ and Ŝ of problems (7) and (8), respectively, are
related by ŝk,k=∥x̂k∥2 for k=1,...,K. Problem (8) can be
further reformulated as a semidefinite program (SDP), which
can be solved by an interior-point solver, e.g., MOSEK [16].
Alternatively, a customized algorithm for problem (8) based
on coordinate descent is devised in [11], which is more scal-
able than the SDP implementation for large array size.

The grid-based formulation (8) suffers two drawbacks.
First, the on-grid assumption is usually not satisfied due to
the limited grid size, which results in spectral leakage effects
and basis mismatch [17, 18] in the recovered signal. Second,
the construction of the dictionary A requires the complete ar-
ray calibration. Thus, we develop in the following a gridless
approach by relaxing the grid-based SPARROW problem (8).

A straightforward gridless extension of problem (8) con-
sists in jointly learning a dictionary A in the array manifold.
With a slack variable Q, this gridless extension is written as

min
S∈DK

+ ,A∈AK ,Q∈SM+
Mtr

(
(Q+λIM )−1R̂

)
+tr(Q) (9a)

s.t. Q=ASAH, (9b)

where AK={A(ν)|ν∈[−π,π]2K , (νxi ,ν
y
i )̸=(νxj ,ν

y
j ) ∀i,j=

1,...,K, i̸=j} is the array manifold with K distinct frequen-
cies, and SM+ denotes the set of M×M positive semidefinte
Hermitian matrices. The equivalence between the objec-
tive functions in (9a) and (8) comes from the fact that
tr(ASAH)=Mtr(S) as the steering vectors contain unit-
modulus entries. The objective function in the reformula-
tion (9) depends only on Q whose structure is specified by the
dictionary-based constraint (9b). Also, the trace-term tr(Q)
in (9a) encourages the rank-sparsity of Q as it is equivalent
to the nuclear norm of Q for Q⪰0 [19]. From the reformu-
lation (9), one may obtain a simple gridless relaxation by
discarding the dictionary-specific structural constraint (9b).
This is equivalent to relaxing the array manifold AK to be the
complete space CM×K and, naturally, results in a poor ac-
curacy on the estimated DOAs. Hence, we introduce several
structural constraints on Q in place of the dictionary-based
constraint (9b). Applying the shift-invariance properties in (4)
to the dictionary A(ν), we obtain the following set of struc-
tural constraints that are necessary for the constraint (9b):

JxT
p QJx

p=JxT
1 QJx

1 , p=2,...,Px, (10a)

KxT
l QKx

l =KxT
1 QKx

1 , l=2,...,Lx, (10b)

JyT
p QJy

p=JyT
1 QJy

1 , p=2,...,Py, (10c)

KyT
l QKy

l =KyT
1 QKy

1 , l=2,...,Ly, (10d)
qii=q11, i=2,...,M. (10e)

The structural constraints (10) essentially require that, for any
pair of shift-invariant sensor groups, the corresponding sub-
matrices in Q must be identical. Thus, the constraints (10)
define a subspace of M×M Hermitian matrices, which is de-
noted by T M . Let f(Q) denote the function in (9a). Replac-
ing the dictionary-based constraint (9b) by the structural con-

straints (10), we obtain the following gridless shift-invariant
SPARROW (SI-SPARROW) problem:

minQ∈SM+ ∩T M f(Q). (11)

Since, in the original problem (9), Q is designed to span the
same subspace as the steering matrix A, the solution Q̂ of
problem (11) can be used in place of the sample covariance
matrix R̂ in the 2D-ESPRIT discussed in Section 2 to esti-
mate the spatial frequencies in a search-free manner.

Similar to the grid-based formulation, problem (11) can
be reformulated as a SDP problem and solved by a state-of-
the-art interior-point solver. However, to further reduce the
computational cost, we develop in the next section an algo-
rithm for problem (11) under the ADMM framework.

4. ADMM ALGORITHM FOR SI-SPARROW

In this section, we solve the SI-SPARROW problem (11)
using the ADMM algorithmic framework. The choice of
ADMM is motivated by the fact that problem (11) can be eas-
ily solved when only one of the two kinds of constraints, i.e.,
either the PSD constraint or the shift-invariance constraints,
needs to be fulfilled. Specifically, the ADMM framework
is employed to decompose the problem such that, in each
subproblem, only one of the constraints needs to be fulfilled.

To apply the ADMM framework, we first write prob-
lem (11) as the following equivalent formulation:

minQ∈T M ,Z∈SM f(Q)+g(Z) (12a)
s.t. Q−Z=0, Q+λIM≻0, (12b)

where g is the indicator function of the PSD cone SM+ . In
the reformulation (12), by introducing an auxiliary variable
Z, the shift-invariance constraints (10) are separated from
the PSD constraint Q⪰0 so that the two types of constraints
can be addressed alternatingly. The positive definiteness con-
straint in (12b) is redundant as it is a necessary condition of
Q=Z⪰0. However, it is required to ensure the convexity of
the primal subproblem in ADMM that is introduced in (14a),
since f is convex only in the subset where Q+λIM≻0.

The augmented Lagrangian of problem (12) is [20]
Lρ(Q,Z,U)=f(Q)+g(Z)+ρ

2∥Q−Z+U∥2F, (13)
where ρ>0 is the penalty parameter and U∈SM is the scaled
dual variable. Let Q(t),Z(t),U (t) be the value of the primal
and dual variables at iteration t. The scaled form of ADMM
for problem (12) consists of the three steps in each iteration:

Q(t+1)=argminQ∈T M f(Q)+ρ
2∥Q−Z(t)+U (t)∥2F

s.t. Q+λIM≻0, (14a)

Z(t+1)=PSM+

(
Q(t+1)+U (t)

)
, (14b)

U (t+1)=U (t)+Q(t+1)−Z(t+1). (14c)

The operation PSM+ is the projection onto the PSD cone SM+ ,
which can be obtained by truncating the eigenvalue decompo-
sition (EVD) of the argument [21]. In the Q-update (14a), a
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proximal mapping from Z(t)−U (t) is performed, which has
no closed-form solution. However, as subproblem (14a) is
convex, it can be easily solved by, e.g., the successive convex
approximation (SCA) framework [22] with a proper approx-
imate function. The convergence of the ADMM algorithm
applied to the considered convex problem (12) can be easily
verified according to the conditions given in [20, Sec. 3.2].

5. SIMULATION RESULTS

We conduct numerical experiments on synthetic data to evalu-
ate the performance of the developed SI-SPARROW method
for a PCRA. The complexity of the ADMM-based algo-
rithm developed in Section 4 is compared to that of the
SDP approach in [12]. The SDP reformulation is modeled
by CVX [23, 24] and solved by the interior-point solver
MOSEK [16]. From the estimated matrix Q̂, the frequencies
can be recovered by the multidimensional ESPRIT (MD-
ESPRIT) method that is implemented by the simultaneous
diagonalization or Schur decomposition [13, 25], given the
shift-invariance equations in (4b) and (4d) with the known
sensor displacements δxl and δyl . However, MD-ESPRIT can
only consider a single shift-invariance equation in each di-
mension. To utilize all the shift-invariance equations in (4b)
and (4d), we extend MD-ESPRIT by the following two steps.
First, MD-ESPRIT is applied to the multiple shift-invariance
equations by treating each shift-invariance equation as a vir-
tual dimension. It recovers the diagonal matrices Φδxl (µx)
and Φδyl (µy) in (4), whose entries form the 1D subarray
steering vectors corresponding to each frequency to be esti-
mated, i.e., µx

i and µy
i , respectively. Then the recovery of the

frequencies can be performed independently from each esti-
mated 1D steering vector by a single-source recovery method,
e.g., root-MUSIC [26] in the special case where the sensors in
each subarray are placed uniformly in each dimension. The
method described above is referred to as multi-invariance
multidimensional ESPRIT (MI-MD-ESPRIT).

We considerNS=2 sources with µx=[0.5,0.8]T and µy=
[1.5,1.2]T that follow a zero-mean complex normal distribu-
tion with unit variance and the correlation coefficientφ=0.99.
The simulation scenario includes a PCRA with 2×2 subar-
rays. Each subarray is a uniform rectangular array with half-
wavelength sensor spacing and each subarray contains Lx=4
and Ly=2 sensors in the two dimensions, respectively. The
intersubarray displacements measured in half signal wave-
length in the two dimensions are set to be ∆x

2=Lx+3 and
∆y

2=Ly+3, which are unknown for the frequency recovery.
The SNR is calculated as SNR =1/σ2

n. The parameter λ is
chosen to be λ=σn(

√
M/N+1) as recommended in [12].

The results are averaged over NR=1000 Monte-Carlo trials.
The root-mean-square error (RMSE) of the frequencies

recovered by different methods is presented in Fig. 2. The
estimation error of the proposed method (SI-SPARROW +
MI-MD-ESPRIT) is compared to that of the conventional ap-

MI-MD-ESPRIT MD-Unitary-ESPRIT SI-SPARROW + MI-MD-ESPRIT CRB

0 20 40
10−3

10−2

10−1

100

SNR (dB)

R
M

SE

(a) RMSE vs. SNR for N=5 snap-
shots

100 102 104

10−2

10−1

100

Number of snapshots N

R
M

SE

(b) RMSE vs. number of snapshots
for SNR=0 dB

Fig. 2. Error performance for NS=2 correlated sources.

100 102 104

10−3

10−2

10−1
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C
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ta

tio
n

tim
e

(s
)

MI-MD-ESPRIT
MD-Unitary-ESPRIT
SI-SPARROW (MOSEK)
SI-SPARROW (ADMM)

Fig. 3. Computation time vs. the number of snapshots for
NS=2 correlated sources and SNR=0 dB.
proach where MI-MD-ESPRIT is performed on the sample
covariance matrix R̂. Since the centro-symmetric arrays are
used, we also perform the multidimensional Unitary ESPRIT
(MD-Unitary-ESPRIT) [14,15] on the sample covariance ma-
trix R̂. The MD-Unitary-ESPRIT method is similarly im-
plemented by the simultaneous Schur decomposition. The
stochastic Cramér-Rao Bound (CRB) in the partly calibrated
case [9] is calculated as a reference for the performance evalu-
ation. Similar to the conclusion in [3], Fig. 2 shows that, while
the standard ESPRIT admits a significant degradation of the
estimation quality for correlated sources, the incorporation of
forward-backward averaging in the Unitary-ESPRIT typically
leads to an enhanced error performance compared to the stan-
dard ESPRIT. On the other hand, the proposed method out-
performs the MI-MD-ESPRIT and the MD-Unitary-ESPRIT
in both asymptotic and non-asymptotic regions, especially in
difficult scenarios, e.g., in the case with low SNR and/or with
a limited number of snapshots. Nevertheless, the proposed
method exhibits an asymptotic bias with the increase of the
number of snapshots due to the ℓ2,1-regularization.

Next, the computational costs of the different methods, in
particular, the two solution approaches for the SI-SPARROW
problem in (11), are compared in Fig. 3. In the two solution
approaches for the SI-SPARROW problem, suitable toler-
ances for the algorithm termination are selected so that they
achieve similar precisions on the estimation quality. Both MI-
MD-ESPRIT and MD-Unitary-ESPRIT admit closed-form
solutions given the simultaneous diagonalization and, hence,
they have the lowest computational costs. The two solution
approaches for SI-SPARROW exhibit similar computational
costs in the undersampled case, whereas, in the oversampled
case, the ADMM algorithm possesses a significantly lower
computational cost than the SDP implementation.
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