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Abstract—The multiple measurement vectors (MMV) problem
refers to the joint estimation of multiple signal realizations
where the signal samples share a common sparse support
over a known dictionary, which is a fundamental challenge
in various applications in signal processing, e.g., direction-of-
arrival (DOA) estimation. We consider the maximum a posteriori
(MAP) estimation of an MMV problem, which is classically
formulated as a regularized least-squares (LS) problem with
an ℓ2,0-norm constraint and derive an equivalent mixed-integer
semidefinite program (MISDP) reformulation, which can be
solved by state-of-the-art numerical MISDP solvers at an afford-
able computation time. Numerical simulations in the context of
DOA estimation demonstrate the improved error performance
of our proposed method in comparison to several popular DOA
estimation methods.

Index Terms—DOA estimation, multiple measurement vec-
tors, joint sparsity, ℓ2,0-mixed-norm constraint, mixed-integer
semidefinite program, maximum a posteriori estimation

I. INTRODUCTION

The multiple measurement vectors (MMV) problem is a
fundamental challenge in signal processing and compressed
sensing. It involves the joint estimation of multiple signals
that share a common sparse support over a known dictionary.
The MMV problem arises in various applications, e.g., imag-
ing [1], communications [2], [3], and signal processing [4].

Similar to the classical sparse signal recovery from a
single measurement vector (SMV), the MMV problem is NP-
hard due to the combinatorial nature of the cardinality con-
straint [5], [6]. Hence, approximate procedures are convention-
ally applied. Many existing approximate approaches for the
SMV case have been extended to the MMV case, which can
be roughly divided into greedy methods [3], [7]–[9], convex
relaxation approaches based on mixed-norm minimization [3],
[10]–[13], and sparse Baysian learning methods [14], [15]. In
particular, as an extension of basis pursuit [16] or LASSO [17]
for the SMV case, the ℓ2,1-mixed-norm minimization is in-
vestigated in [3], [11]. An equivalent compact reformulation
of the ℓ2,1-mixed-norm minimization, named SPARROW, is
proposed in [12], which can be solved at a greatly reduced
running time. Recovery guarantees of several methods for the
MMV problem are established in [9], [18]–[22].

This work was supported in part by the DFG PRIDE Project PE 2080/2-1
and the EXPRESS II Project within the DFG priority program CoSIP (DFG-
SPP 1798).

Inspired by the capacity of compressed sensing [23],
sparsity-based DOA estimation methods have been developed,
where the DOA estimation from multiple snapshots is mod-
eled as an MMV problem by introducing a predefined dictio-
nary that samples the complete field-of-view (FOV) [24]–[28].
The sparsity-based approach often exhibits excellent estima-
tion performance in several demanding scenarios at affordable
running time. A comprehensive review of the sparsity-based
DOA estimation methods can be found in [27].

In this paper, we consider the MAP estimation for joint
sparse signal recovery from multiple measurement vectors,
with application to DOA estimation. This MAP estimation is
typically formulated as a regularized LS problem with ℓ2,0-
norm constraint, which can be viewed as a generalization
of the ℓ0-norm constrained LS problem investigated in [29]
for the regression from a single measurement to the MMV
case. By the reformulation techniques in [12], [29], the ℓ2,0-
norm constrained LS problem can be exactly reformulated as
a mixed-integer semidefinite program (MISDP), which can be
solved by state-of-the-art numerical MISDP solvers at an af-
fordable computation time. Simulation results demonstrate the
efficiency of our proposed methods in comparison to several
widely used DOA estimation methods. In particular, compared
to the deterministic maximum likelihood (DML) estimator
obtained by brute-force search over a multidimensional grid,
which is considered to be statistically optimal, the proposed
MISDP-based method with the SCIP-SDP solver [30] exhibits
a superior error performance at a considerably reduced run-
ning time in difficult scenarios, e.g., in the case with a limited
number of snapshots.

The paper is organized as follows. The sensor array signal
model is presented in Section II. In Section III, we briefly
review the DML estimator and the MAP estimator established
in the Bayesian framework, as two classical multi-source
estimation methods. In Section IV, the DOA estimation task
is modeled as an MMV problem and the equivalent MISDP
reformulation is established. Simulation results are presented
in Section V, and conclusions are drawn in Section VI.

II. SIGNAL MODEL

Consider a linear array of M omnidirectional sensors.
Assume that L narrowband far-field source signals are im-
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pinge from distinct directions θ1, . . . , θL ∈ [0, 180◦]. The
corresponding spatial frequencies are defined as

µl = π cos θl ∈ [−π, π) (1)
for l = 1, . . . , L and summarized in the vector µ =
[µ1, . . . , µL]

T. We consider the DOA estimation problem
with multiple snapshots, where the array output provides
measurements recorded at N time instants. We assume that
the spatial frequencies in µ remain constant within the entire
observation time. Let Y = [y1, . . . ,yN ] ∈ CM×N be the
matrix that contains the N snapshots and, specifically, the
(m,n)th entry ym,n is the output of sensor m at time instant
n. The measurement matrix is modeled as

Y = A(µ)Ψ+N , (2)
where Ψ = [ψ1, . . . ,ψN ] ∈ CL×N is the source waveform
matrix with ψl,n being the signal emitted by source l at time
instant n. The matrix A(µ) collects the L steering vectors as

A(µ) =
[
a(µ1) . . . a(µL)

]
∈ CM×L, (3)

where a(µ) = [ejµζ1 , . . . , ejµζm ]T is the steering vector corre-
sponding to the frequency µ and ξ1, . . . , ξM denote the sensor
locations in the linear array measured in half-wavelength.
Furthermore, the matrix N = [n1, . . . ,nN ] ∈ CM×N rep-
resents independent and identically distributed (i.i.d.) circular
and spatio-temporal white Gaussian noise with σ2 being the
variance of each noise entry nm,n.

III. DETERMINISTIC MAXIMUM LIKELIHOOD AND
MAXIMUM A POSTERIORI ESTIMATORS

In this section we briefly review the DML estimator and the
MAP estimator established in the Bayesian framework, as two
classical multi-source estimation methods. As those methods
are often computationally demanding, e.g., if the number of
sources is large, we propose an equivalent reformulation of the
MAP estimation problem in Section IV. The resulting MISDP
reformulation enables a computationally efficient solution to
the MAP estimation problem using state-of-the-art numerical
MISDP solvers.

In the deterministic maximum likelihood (DML) approach,
the source waveform matrix Ψ in (2) is considered to be
deterministic and unknown. According to the signal model
in (2), the snapshots yn are statistically independent and
follow the complex normal distribution

yn|ψn ∼ CN (A(µ)ψn, σ
2IM ). (4)

Thus, the DML estimator for the frequencies µ and the source
waveforms Ψ is obtained as the solution of the following
nonlinear LS problem [25]:

min
µ∈[−π,π)L,Ψ∈CL×N

∥A(µ)Ψ− Y ∥2F, (5)

where ∥·∥F is the Frobenius norm. As we are mainly interested
in estimating the DOA parameters µ, the objective function
in (5) can be concentrated with respect to the nuisance
parameters Ψ. That is, for each solution of µ, the minimizer
of the nuisance parameters Ψ can be expressed in closed
form, which can then be substituted into the original objective
function to obtain the concentrated optimization problem.

Particularly, the DML estimation problem in (5) can be
concentrated as

min
µ∈[−π,π)L

tr
(
Y HΠ⊥

A(µ)Y
)
, (6)

where Π⊥
A(µ) = IM − A

(
µ)(A(µ)HA(µ)

)−1
A(µ)H de-

notes the orthogonal projector onto the nullspace of A(µ)H.
The maximum a posteriori (MAP) estimator [26], [31]

developed in the Bayesian framework is another widely used
estimation method that is closely related to the ML estimation.
In this approach, only the DOAs are considered to be deter-
ministic, whereas the source waveforms are assumed to be
stochastic. In particular, we consider the spatio-temporal i.i.d.
assumption that the signal waveforms ψl,n are statistically
independent for different sources and snapshots. They follow
the same circularly-symmetric complex Gaussian distribution

ψn ∼ CN (0, γIL), (7)
where γ is the source power that is assumed to be known
a priori. By the Bayes’ rule, the MAP estimator for the
uncorrelated Gaussian prior in (7) is given by the solution
of the following regularized LS problem [31]:

min
µ∈[−π,π)L,Ψ∈CL×N

∥A(µ)Ψ− Y ∥2F + ρ∥Ψ∥2F (8)

with ρ = σ2/γ. (9)
The first LS data fitting term in (8) resulting from the likeli-
hood is identical to the DML cost function in (5), whereas the
prior, according to the Gaussian assumption in (7), introduces
the Tikhonov regularization term in (8). With intermediate
derivations omitted, the MAP estimation can similarly be
concentrated with respect to the nuisance parameters Ψ as

min
µ∈[−π,π)L

tr
(
Y HΠ̃⊥

A(µ)Y
)

(10)

with Π̃⊥
A(µ) = IM −A

(
µ)(A(µ)HA(µ) + ρIK

)−1
A(µ)H.

Moreover, by using the matrix inversion lemma, the matrix
Π̃⊥

A(µ) can be rewritten as Π̃⊥
A(µ) = ( 1ρA(µ)A(µ)H +

IM )−1, which leads to the following equivalent expression
of the concentrated MAP estimation in (10):

min
µ∈[−π,π)L

tr
(
Y H( 1ρA(µ)A(µ)H + IM )−1Y

)
. (11)

IV. A MISDP REFORMULATION OF MAP ESTIMATION
FOR THE MMV PROBLEM

Due to the quadratic term in the matrix inversion, both
the DML estimation in (6) and the MAP estimation in (11)
are nonconvex and multimodal with a large number of local
minima. Hence, the corresponding optimization procedure is
computationally demanding and generally requires a multi-
dimensional grid search to find the exact solution. Inspired
by the concept of compressed sensing [23], the above DOA
estimation problem can be modeled as an MMV problem by
introducing a predefined dictionary that samples the complete
FOV [27]. In this section, we first introduce the MMV-
based model for DOA estimation. For the MMV problem, a
dictionary-based MAP estimation is derived according to (8),
which is reformulated as a MISDP problem by the reformu-
lation techniques in [29] and [12]. The problem can then
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be solved by state-of-the-art MISDP solvers, e.g., SCIP-
SDP [30].

The problem of recovering the frequencies in µ from the
measurements Y can be formulated as an MMV problem by
using the following sparse representation for the model in (2):

Y = A(ν)X +N , (12)
where A(ν) = [a(ν1), . . . ,a(νK)] ∈ CM×K is an overcom-
plete dictionary constructed by sampling the FOV in K ≫ L
directions with spatial frequencies ν = [ν1, . . . , νK ]T and
X ∈ CK×N is a sparse representation of the source signal
matrix Ψ. Specifically, provided that the true frequencies µ
are contained in the frequency grid, i.e.,

{µl}Ll=1 ⊂ {νk}Kk=1, (13)
then X = [x1, . . . ,xK ]T admits a row-sparse structure,
which has only L nonzero rows corresponding to the signal
waveforms of the L sources, i.e., A(µ)Ψ = A(ν)X . Thus,
the considered DOA estimation problem can be described as
an MMV problem that aims at jointly recovering a set of
signal samples in X that have a common sparse support over
the fixed dictionary A(ν). The spatial frequencies are then
estimated from the support of the recovered row-sparse signal
matrix X̂ = [x̂1, . . . , x̂K ]T by {µ̂l}Ll=1 = {νk | ∥x̂k∥0 >
0, k = 1, . . . ,K}, where the ℓ0-pseudo-norm ∥x̂k∥0 counts
the number of nonzeros entries in x̂k. For simplicity, in the
rest of the paper, the dictionary is referred to as A = A(ν).

The ℓp,q-mixed-norms are commonly used to enforce the
row-sparsity assumption in sparse recovery problems [13].
The ℓp,q-norm for a matrix X = [x1, . . . ,xK ]T is defined
as ∥X∥p,q = ∥x(ℓp)∥q with x(ℓp) = [∥x1∥p, . . . , ∥xK∥p]T. In
particular, the ℓp,0-pseudo-norm represents the exact number
of nonzero rows of the matrix, which, however, typically
leads to an NP-hard problem due to its nonconvexity. The
SPARROW method in [12] utilizes an ℓ2,1-norm regularization
as a convex approximation of the ℓ2,0-norm, to address the
MMV problem described above. In contrast, in this paper,
we consider the exact MAP estimation for the sparse model
in (12), which, similar to (8), is formulated as the following
regularized LS problem with ℓ2,0-norm constraint:

min
X∈CK×N , ∥X∥2,0≤L

∥AX − Y ∥2F + ρ∥X∥2F. (14)

The DML approach for the sparse model in (12) is obtained
from (14) by choosing the parameter ρ to be zero. However,
compared to the DML approach, the MAP estimation in (14)
can be equivalently reformulated as a MISDP problem due
to the additional Tikhonov regularization, and then, its global
optimum can be conveniently obtained by a state-of-the-art
MISDP solver. Problem (14) with the ℓ2,0-norm constraint
can be viewed as a generalization of the ℓ0-norm constrained
LS regression problem for a single measurement, as con-
sidered by Pilanci et al. in [29], to the MMV case. In this
paper, we provide a nontrivial extension of Pilanci’s MISDP
reformulation for the SMV case to the MMV problem (14).
The regularization parameter ρ is chosen according to (9) if
the prior information of the expected power of the source

MUSIC root-MUSIC SPARROW
Proposed method via SCIP-SDP DML CRB
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Fig. 1. RMSE vs. number of snapshots for L = 3 uncorrelated sources,
M = 8 sensors, SNR = −5 dB, and K = 100 grid points.

waveforms is known and satisfies the assumption in (7).
Otherwise, if training data are available, a suitable value of ρ
may be obtained through cross-validation or, more efficiently,
with the help of the algorithm unrolling procedure [32].

In the following, we present a simplified derivation of the
MISDP reformulation for the MMV case, which, unlike that
in [29], does not involve the dual problem constructed with
the Legendre-Fenchel conjugate. First, by introducing binary
variables u ∈ {0, 1}K , the ℓ2,0-norm constrained problem
in (14) can be equivalently represented as the lifted problem

min
u∈{0,1}K

uT1≤L

min
X∈CK×N

∥AD(u)X − Y ∥2F + ρ∥X∥2F, (15)

where 1 is an all-ones vector. The matrix D(u) in (15) is
a diagonal matrix with u on its diagonal, which determines
the directions with nonzero source signals. Note that D(u) is
not required in the regularization in (15) because the rows
of X that are not selected by D(u) are not involved in
the data fitting term and, hence, enforced to all-zero by the
minimization of ∥X∥2F.1 Like the MAP estimation in (8), (15)
can be concentrated with respect to X and then reformulated
by the matrix inversion lemma as the integer program

min
u∈{0,1}K ,uT1≤L

tr
(
Y H( 1ρAD(u)AH + IM )−1Y

)
. (16)

Next, by applying the same SDP reformulation technique as
in [12], [29], the integer program in (16) can be further written
as the following MISDP problem with a slack variable T :

min
u∈{0,1}K ,T∈SN+

tr(T ) (17a)

s.t.
[ 1
ρAD(u)AH + IM Y

Y H T

]
⪰ 0, (17b)

uT1 ≤ L, (17c)
where SN+ is the set of N ×N positive semidefinite matrices.
The positive semidefiniteness of the matrix T is required
by the PSD constraint (17b). The equivalence between (16)
and (17) is shown as follows. Since 1

ρAD(u)AH + IM

1Note that the MAP estimation in (8) is often solved by grid search
in practice. By adding D(u) into the Tikhonov regularization in (15),
problem (15) can also be interpreted as a discretized version of the MAP
estimation in (8). That is, problem (15) is equivalent to solving the MAP
estimation in (8) via a brute-force search over the grid {νk}Kk=1 in (13).
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MUSIC root-MUSIC SPARROW
Proposed method via SCIP-SDP DML CRB
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Fig. 2. Performance vs. the number of snapshots for L = 5 uncorrelated
sources, M = 8 sensors, SNR = −5 dB, and K = 100 grid points.3

is positive definite, by the Schur complement formula, the
constraint (17b) is equivalent to [33]

T ⪰ Y H( 1ρAD(u)AH + IM )−1Y .

Therefore, for every given u, the minimum of tr(T ) in (17)
is achieved at T = Y H( 1ρAD(u)AH + IM )−1Y .

V. SIMULATION RESULTS

We conduct numerical experiments on synthetic data to
evaluate and analyze the performance of the proposed method
via the SCIP-SDP solver [30] of version 4.1.0.4 The nonlinear
branch-and-bound approach is chosen in the SCIP-SDP solver,
where the relaxed continuous SDP subproblems are solved
by MOSEK [34]. The proposed method is compared to the
stochastic Cramér-Rao Bound (CRB) [35] and several widely
used approaches for DOA estimation, namely, MUSIC [36],
root-MUSIC [37], the SPARROW method with coordinate
descent implementation, and the DML estimator. The DML
estimator is obtained via a brute-force search over the same
grid as in (12), which is equivalent to the solution of prob-
lem (14) with the regularization parameter ρ being zero. The
results are averaged over NR = 200 Monte-Carlo trials. In
particular, the quality of the estimated spatial frequencies
µ̂(n) = [µ̂1(n), . . . , µ̂L(n)]

T for n = 1, . . . , NR are measured
by the root-mean-square error (RMSE) with respect to the
ground-truth µ defined as

RMSE(µ̂) =
√

1
LNR

∑NR

n=1

∑L
l=1|µ̂l(n)− µl|2wa,

3In the oversampled case, to reduce the complexity of the SDP sub-
problems, a compact reformulation of (17), whose constraint dimension is
independent of the number of snapshots N , is employed based on the
reformulation technique in [12, Eq. (25)].

4The source code of SCIP-SDP and an interface for MATLAB can be
downloaded from the website https://www.opt.tu-darmstadt.de/scipsdp. In the
experiments, the SCIP-SDP solver is called from MATLAB through the
provided interface.

where |µ1 − µ2|wa = mink∈Z|µ1 − µ2 + 2kπ| denotes the
wrap-around distance between two frequencies µ1 and µ2. All
experiments were conducted on a Linux PC with an Intel Core
i7-7700 CPU and 32 GB RAM running MATLAB 2022a.

In the simulations, we consider a ULA of M = 8 half-
wavelength spaced sensors. In each Monte-Carlo trial, the
true source signals in Ψ are generated according to the
uncorrelated Gaussian prior in (7) with the variance γ = 1.
The SNR = 1/σ2 is −5 dB and the dictionary A is con-
structed from K = 100 grid points with frequencies uniformly
sampled in [−π, π). The regularization parameter ρ in (14) for
our proposed method is chosen according to the rule in (9)
and the penalty weight λ for the ℓ2,1-norm regularization
in the SPARROW method is selected by the heuristic rule
λ =

√
σ2M logM [12], [38].

In the first simulation, we compare the error performance
of the methods in a small-scale scenario of L = 3 sources
with frequencies µ = π · [−0.1, 0.35, 0.5]T, where the brute-
force search is computationally competitive. The estimation
errors of the recovered frequencies are reported in Fig. 1. As
shown in Fig. 1, due to the convex relaxation by means of
ℓ2,1-norm employed by SPARROW, the brute-force DML and
the proposed method via SCIP-SDP outperform SPARROW
in both the asymptotic and non-asymptotic regions. The brute-
force DML and the proposed method exhibit the best threshold
performance. As a result of the Tikhonov regularization in (14)
introduced by the additional prior assumption, the proposed
method exhibits a lower estimation error than DML in the
region of low sample size but, meanwhile, an asymptotic bias.

Next, we consider a scenario of L = 5 sources with
frequencies µ = π · [−0.5, 0.1, 0.35, 0.5, 0.7]T. The error
performance and computational time are reported in Fig. 2.
Although the branch-and-bound strategy employed by SCIP-
SDP enjoys improved scalability compared to the brute-force
search, to limit the total execution time of this simulation,
we terminate SCIP-SDP when 500 branch-and-bound nodes
have been explored. Even with early termination, the proposed
method via SCIP-SDP presents a more significant decrease of
the RMSE compared to DML in the region of low sample size
than that in Fig. 1, which also leads to a threshold performance
superior to DML. This suggests that, for low sample sizes,
our proposed MISDP-based method is more favorable than
the brute-force DML since it possesses not only a superior
error performance but also a reduced running time.

VI. CONCLUSION

We consider the maximum a posteriori estimation for joint
sparse signal recovery from multiple measurement vectors that
is classically formulated as a regularized least-squares (LS)
problem with ℓ2,0-norm constraint, and derive an equivalent
mixed-integer semidefinite program (MISDP) reformulation,
which can be solved by state-of-the-art MISDP solvers at an
affordable computation time. The simulations in the context of
DOA estimation show the efficiency of our proposed method
in comparison to popular DOA estimation methods.
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