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ABSTRACT
Tensor completion has attracted increasing attention in signal
processing, computer vision, and biomedical engineering. By
using nuclear norm minimization, a tensor completion prob-
lem can be converted into a convex program and enjoys prop-
erties gained from matrix completion. The low rank property
has been widely used for tensor/matrix completion. However,
the prior subspace information can also be utilized, which has
been ignored and does not exhibit its full power in the ex-
isting formulation. In this paper, we propose a new frame-
work leveraging tensor subspace prior for the sum of nuclear
norm (SNN) minimization, which supports a range of ten-
sor decompositions. By using the knowledge of the self-prior
(SP)/nonself-prior (NSP) and further designing an efficient al-
gorithm based on the Alternating Direction Method of Multi-
pliers (ADMM), the performance of tensor completion can be
enhanced. The superiority of the proposed method is verified
by extensive numerical experiments.

Index Terms— Tensor completion, prior subspace infor-
mation, tensor nuclear norm, SNN, ADMM

1. INTRODUCTION

Recovering data from partial observations has been studied
for a long time. For one thing, a considerable progress has
been made in matrix completion in the last decade. The or-
ganization of data by high dimensional matrices, i.e., ten-
sors [1], provides more flexibility when dealing with color im-
ages/videos, hyperspectral data, communication signals, and
EEG waveforms [2–4] and enjoys its analogy with matrices
[5]. Thus, it is natural that tensor completion has received
increasing attention in recent years.

Among the methods tackling tensor completion, nuclear
norm minimization is an useful approach. Choosing a spe-
cific tensor decomposition, the tensor nuclear norm is defined
as a convex relaxation of the tensor rank. A family among
various tensor nuclear norms has the form as “sum of nuclear
norms” (SNN) [6], which was first defined for the Tucker de-
composition and was later considered for the low rank ten-
sor completion (LRTC) in [7]. Later, nuclear norms defined

by a tensor train (TT) decomposition [8] and a tensor ring
(TR) decomposition [9] also resemble such a SNN formula-
tion. In fact, TT and TR can be further generalized to the
newly proposed fully-connected tensor network (FCTN) de-
composition [10], which also has a SNN-like nuclear norm.
It should also be noted that though theoretical guarantee of
matrix nuclear norm minimization has been relatively well
established [11, 12], the theories of tensor nuclear norm min-
imization still need further study.

In many applications, a portion of uncorrupted data is
available and we are required to recover the others [13].
Fully exploiting such prior information of the column and
row space can potentially enhance the recovery performance,
which has already been verified in matrix recovery and matrix
completion [14]. A multi-weight strategy is proposed in [15]
to further enhance the flexibility of utilizing the subspace
prior. In tensor completion, based on the t-product and the
inherent low-tubal rank structure [16,17], a priori information
utilization specifically designed for three dimensional tensors
is proposed in [18]. Inspired by these aforementioned works,
a method leveraging tensor subspace prior for SNN mini-
mization is proposed in this paper, which supports a range of
tensor decomposition.

Our main contribution is two-fold. We propose a new
framework that leverages tensor subspace prior for SNN
minimization including SNN, TTNN, TRNN and FCTNNN,
which yields sufficient flexibility. The proposed self-prior
(SP) and nonself-prior (NSP) knowledge utilization promotes
the recovery of the underlying low rank tensor structure.
We have also designed an efficient algorithm by exploiting
the Alternating Direction Method of Multipliers (ADMM)
scheme to solve the modified framework of tensor comple-
tion incorporating subspace information.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the notation and essential definitions. In
Section 3, we introduce the new framework that leverages ten-
sor subspace prior for SNN minimization. Section 4 presents
an efficient algorithm based on the ADMM scheme to solve
the new program. Section 5 provides numerical experiments
and the conclusion is drawn in Section 6.
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Fig. 1: tensor network representation [19] of Tucker, TT, TR
and FCTN decomposition

2. PRELIMINARIES

The basic notation used in this paper is as follows: calli-
graphic, uppercase, and lowercase boldface letters denote ten-
sors, matrices, and vectors, respectively; the Hermitian of the
matrix A is written as AH; ∥ · ∥∗ and ∥ · ∥F denote the matrix
nuclear norm and the Frobenius norm, respectively; ℜ{·} and
ℑ{·} stand for taking the real and imaginary part of a complex
number, vector or matrix, respectively.

Here we introduce some essential definitions to be used
throughout the paper.

Definition 1 (Generalized Tensor Transposition) Given a
tensor X ∈ CI1×I2×···×IN and a transposition n of (1, 2, · · · ,
N), the generalized tensor transposition of X can be attained
as X⃗n = permute1 (X ,n) ∈ CIn1

×In2
×···×InN , the inverse

operation is defined as X = ipermute
(
X⃗n,n

)
Definition 2 (Generalized Tensor Unfolding) Given a ten-
sor X ∈ CI1×I2×···×IN , a transposition n of (1, 2, · · · ,
N), and a matricization step length d, the generalized
tensor matricization / unfolding of X can be attained as
X[n1:d,nd+1:N ] = reshape1

(
X⃗n,

∏d
i=1 Ini

,
∏N

j=d+1 Inj

)
∈

C
∏d

i=1 Ini
×
∏N

j=d+1 Inj , the inverse operation is defined as
X = fold

(
X[n1:d,nd+1:N ]

)
.

Here we provide the FCTN unfoldings as an example,
of which Tucker, TT, and TR unfoldings can be viewed as
degraded cases. Details of these unfoldings can be found
in [6, 8, 9] and the connection between these decompositions
by tensor network graph is shown in Fig. 1.

Example 1 (Fully-connected Tensor Network Unfoldings)
In a fully-connected tensor network decomposition, the N -
dimensional tensor X ∈ CI1×I2×···×IN has

(
N

⌊N
2 ⌋
)

unfold-
ings X[nk

1:dk
,nk

dk+1:N ] by choosing any possible reordering

1Here the matlab command is used

vector nk and perform unfolding as X[nk
1:dk

,nk
dk+1:N ] =

reshape
(
X⃗nk

,
∏dk

i=1 Ink
i
,
∏N

j=dk+1 Ink
j

)
Now we are ready to define the SNN-type tensor nuclear

norm:

Definition 3 (SNN-type Tensor Nuclear Norm) Given a ten-
sor X ∈ CI1×I2×···×IN , a set of specific matricizations {(nk,
dk)}Kk=1, and the corresponding coefficients {αk}Kk=1, the
SNN-type of tensor nuclear norm can be defined as

K∑
k=1

αk∥X[nk
1:dk

,nk
dk+1:N ]∥∗ (1)

As can be observed from Def. 3, the tensor nuclear norms
induced by the Tucker, TT, TR, and the recently proposed
FCTN decompostion all inherit such a SNN-type of tensor
nuclear norm.

3. EXPLOITING TENSOR SUBSPACE PRIOR FOR
SNN MINIMIZATION

Consider that we have already chosen a specific set of unfold-
ings to tackle a tensor completion problem:

minX

K∑
k=1

αk∥X[k]∥∗

s.t. XΩ = TΩ

(2)

where X[k] ∈ Cpk×qk (pk =
∏dk

i=1 Ink
i
, qk =

∏N
j=dk+1 Ink

j
)

is a simplified notation for X[nk
1:dk

,nk
dk+1:N ], T stands for

ground truth and Ω denotes the set of cell indices that can be
observed.

Assume that we can access a tensor Xp of the same size as
X (several strategies such as duplication and interpolation can
be performed when their sizes do not match), which stands for
the prior information at hand. Observing the matrix nuclear
norm form contained in the SNN and inspired by the matrix
subspace priori model [15], we can extract the subspace of
Xp by applying singular value decompositions (SVDs) to its
unfoldings Xp[k], k = 1, 2, · · · ,K.

Suppose that the SVD is given as Xp[k] = UkSkVk, ac-
cording to [15] we can use a linear combination of the sub-
space projectors upon Urk

k /Vrk
k

2 and upon Urk
k

⊥/Vrk
k

⊥ 3 as

PU
rk
k

= Urk
k ΛkU

rk
k

H
+ Ik −Urk

k Urk
k

H

PV
rk
k

= Vrk
k ΓkV

rk
k

H
+ Ik −Vrk

k Vrk
k

H (3)

where {Λk}Kk=1, {Γk}Kk=1 are diagonal weighting matrices.
The values in the diagonal entries stand for the confidence of
the corresponding subspace vectors and are constrained in [0,
1]. Intuitively, the more accurate the subspace estimate is, the
closer the corresponding weight should be to 0.

2Superscript r stands for the first r column space of the matrix
3Superscript ⊥ stands for the complement of the matrix column space
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Utilizing prior information, problem (2) can be redefined
as:

minX

K∑
k=1

αk∥LkX[k]Rk∥∗

s.t. XΩ = TΩ
Lk = Urk

k ΛkU
rk
k

H
+ Ik −Urk

k Urk
k

H

Rk = Vrk
k ΓkV

rk
k

H
+ Ik −Vrk

k Vrk
k

H

(4)

We have designed two methods that leverages the sub-
space prior information. When the prior information is avail-
able, we can directly construct the prior tensor Xp by align-
ing with the target tensor, which is referred as nonself-prior
(abbr. NSP). Also note that the target tensor can be viewed
as self-prior (SP), unsupervised subspace exploitation can be
achieved by adding an small outer loop to problem (4). In
each iteration Xp is set to X in the last iteration and X is ob-
tained without prior information in the first iteration. The ef-
fectiveness of SP/NSP will be verified in the experiment part.

4. ALGORITHM FOR SOLVING TENSOR
SUBSPACE PRIOR-AIDED SNN MINIMIZATION

Assuming that {Λk}Kk=1 and {Γn}Kk=1 are preset (the weights
can also be changing during the iterations), we can use
ADMM [20] to solve (4). First, we introduce auxiliary
variables {Mk}Kk=1 and the corresponding Lagrangian mul-
tipliers {Yk}Kk=1 to formulate the augmented Lagrangian
function of (4)

LXΩ=TΩ(X , {Mk}Kn=1, {Yk}Kn=1, µ1) =

N∑
n=1

αn∥LkMkRk∥∗

+ ℜ(⟨Yk,Mk −X[k]⟩) +
µ1

2
∥Mk −X[k]∥2F

(5)
Next we solve each sub-problem.

• Computing {Mk}Kk=1

Further introduce {Ak}Kk=1 and {Zk}Kk=1,

Mk = argminMk,Ak,Zk
αk∥Ak∥∗

+ ℜ(⟨Yk,Mk −X[k]⟩) +
µ1

2
∥Mk −X[k]∥2F

+ ℜ(⟨Zk,Ak − LkMkRk⟩) +
µ2

2
∥Ak − LkMkRk∥2F

(6)

– Computing Ak

Ak =argminAk
αk∥Ak∥∗

+
µ2

2
∥Ak − LkMkRk +

1

µ2
Zk∥2F

(7)

(7) has a closed form solution by singular value thresh-
olding (SVT) [21]:

Ak = Dαk
µ2

(LkMkRk +
1

µ2
Zk) (8)

where Dτ (·) is the SVT operator with threshold τ .

Algorithm 1: subspace prior-aided SNN minimization
Initialize X by linear interpolation;
Initialize {Ak}Kk=1, {Yk}Kk=1, {Zk}Kk=1 by all zeros;
while no convergence do

update {αk}Kk=1 by αk = 1
∥LkX[k]Rk∥∗

;

for k = 1 to K do
compute Ak by eq. (8);
compute Mk by eq. (10) and eq. (11);
compute Yk by eq. (14);
compute Zk by eq. (12);

end
compute X by eq. (13);

end

– Computing Mk

Mk = argminMk

µ2

2
∥Ak − LkMkRk +

1

µ2
Zk∥2F

+
µ1

2
∥Mk −X[k] +

1

µ1
Yk∥2F

(9)

Note that Mk also has a closed-form solution, which
satisfies the Sylvester equation after taking the deriva-
tives of eq. (9):

Asyl
k Mk +MkB

syl
k = Csyl

k (10)

where
Asyl

k = µ1(LkL
H
k)

−1,Bsyl
k = µ2RkR

H
k ,

Csyl
k = (LkL

H
k)

−1 · (µ1 (X[k] −
1

µ1
Yk)

+ µ2 LH
k(Ak +

1

µ2
Zk)R

H
k)

(11)

Obtaining a solution for (10) can be faster than solving
a general Sylvester equation by noting that Asyl

k and
Bsyl

k remain fixed between iterations. Also the struc-
ture of Lk saves us from computing the inversions in
Asyl

k ,Csyl
k while computing common matrix multipli-

cations instead. Such observations can be beneficial to
computational efficiency.

– Computing Zk – The Lagrangian Zk can be computed
as:

Zk = Zk + µ2(Ak − LkMkRk) (12)

• Computing X

X =argminXΩ=TΩ

K∑
k=1

∥X[k] −Mk − 1

µ1
Yk∥2F

= TΩ +

(
1

K
foldk(Mk +

1

µ1
Yk)

)
Ωc

(13)

• Computing Yk– The Lagrangian Yk can be computed as:

Yk = Yk + µ1(Mk −X[k]) (14)

The full procedures are summarized in Algorithm 1. As-
suming T iterations in all, the time complexity of Algorithm 1
is O(

∑K
k=1 pkqk(pk+qk)+T ·(

∑K
k=1 pkqk(pk+qk))) and the

first term denotes the preprocessing complexity of Xp, com-
pared to O(T · (

∑K
k=1 pkqkmin(pk, qk))), which is the time

complexity for SNN minimization without prior information.
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observed t-svd Tucker TT TT-SP TT-NSP TR TR-SP TR-NSP FCTN FCTN-SP FCTN-NSP GT

Fig. 2: Recovery results of the 1st frame of HSV with SR=0.05, band 8, 9, 10 are picked as R, G, B channels, respectively.

Table 1: mPSNR and mSSIM on CVs and HSV.
test video SR t-svd Tucker TT TT-SP TT-NSP TR TR-SP TR-NSP FCTN FCTN-SP FCTN-NSP

Shopping Mall 0.05 21.0562/0.5741 21.7537/0.6465 19.9115/0.5170 22.8134/0.5684 26.6930/0.7926 23.1046/0.6782 25.2294/0.7426 25.1273/0.7010 22.5960/0.6385 25.3865/0.7421 27.9624/0.8460
0.1 25.7541/0.8077 24.1822/0.7446 23.0162/0.6491 27.0146/0.7877 28.0677/0.8223 26.2612/0.8099 28.0655/0.8518 27.3447/0.8372 25.7845/0.7793 28.5268/0.8573 30.0200/0.8929

Escalator 0.05 18.5506/0.7344 19.2578/0.7515 14.0346/0.3340 15.7847/0.4073 20.2290/0.7609 18.3747/0.6443 19.0279/0.6609 20.3923/0.7619 17.5408/0.5696 19.2438/0.6687 21.7882/0.7991
0.1 21.8709/0.8515 20.2335/0.7937 16.6762/0.5011 18.1916/0.5855 21.6795/0.8030 21.3427/0.8017 22.4637/0.8100 22.7770/0.8614 20.5752/0.7544 22.5768/0.8284 24.1028/0.8740

HSV 0.05 29.499/0.9088 25.4651/0.8788 21.3141/0.7370 26.7266/0.8490 29.4439/0.9090 31.9739/0.9636 33.4652/0.9669 33.38/0.9718 31.6311/0.9578 34.7992/0.9771 34.8775/0.9788
0.1 33.9263/0.9668 28.259/0.9238 27.0682/0.8914 29.5353/0.9031 32.0230/0.9474 37.2084/0.9865 38.8814/0.9897 37.7029/0.9875 37.6681/0.9873 39.3964/0.9902 39.2227/0.9901

observed
0.9028

t-svd
0.0782

Tucker
0.0794

TT
0.0524

TT-SP
0.0139

TT-NSP
0.0347

TR
0.0170

TR-SP
0.0103

TR-NSP
0.0120

FCTN
0.0216

FCTN-SP
0.0112

FCTN-NSP
0.0151

GT
–

Fig. 3: Recovery results of traffic flow dataset on the 3rd day with SR=0.1. The subcaption of each image lists NMSE value.

5. EXPERIMENTS
To verify the proposed SP and NSP knowledge utilization,
experiments have been conducted on two video datasets and
a traffic flow dataset. Duplications are performed to attain
prior tensor Xp in NSP when sizes mismatch. For parameter
setting, αk is adaptively set to 1

∥LkX[k]Rk∥∗
as suggested in

[22]; singular vectors containing 85% energy are preserved
for Urk

k /Vrk
k ; the diagonal entries in Λk/Γk are set to {0.05,

0.03, 0.02} sequentially in SP and are set to 0.1 in NSP; µ1 =
µ2 = 10−2 and the program is deemed converged when the
normalized energy change of adjacent X is less than 10−7.

color and hyperspectral video impainting We have con-
ducted experiments to complete two color videos (CVs) Shop-
ping Mall and Escalator4 of size 128 × 160 × 3 × 30 (height ×
width × channel × frame) from the I2R dataset [23], and a hy-
perspectral video5 (HSV) of size 60 × 60 × 20 × 10 (height ×
width × band × frame) under sampling rates (SR) of 0.05 and
0.1. The sampling scheme is i.i.d. Bernoulli sampling and
the metrics are mean peak signal to noise ratio (mPSNR) and
mean structural index similarity (mSSIM) of all test frames.

We have included t-svd [16], Tucker [6], TT [8], TR [9],
FCTN [10] for comparison and applied the subspace tech-
nique onto TT, TR and FCTN as Tucker unfoldings are usu-
ally highly unbalanced. NSP takes 10 frames beforehand as
prior in each video. Table. 1 lists the indicators and visual re-
sults of HSV recovery are given in Fig. 2. It can be observed

4Escalator is augmented from a greyscale video.
5The data is available at http://openremotesensing.net/kb/data/.

from Table. 1 and Fig. 2 that both NSP and SP utilization can
effectively enhance the performances.

traffic data completion The test data from the GTL traf-
fic flow dataset6 has been collected by sensors from 21 road
segments for 10 days with intervals of 5 minutes thus can be
organized as a tensor 12 x 25 x 10 x 21(minute × hour × day ×
segment). Let us consider a practical scenario: the sensors are
deactivated most of the time and are only turned on during a
small amount of time in order to save energy, which forms the
need of tensor completion. Also note that these 21 segments
are from one main road and the traffic flow contains regular-
ities in the time domain, which indicates a low rank tensor
completion problem. We set the duty ratio as 0.1 and assume
clean data for 5 days before the test data can be obtained as
supervised subspace information. We adopt the normalized
mean squared error (NMSE) as the performance criterion and
the result is listed in Fig. 3. As can be observed, the usage of
subspace prior information greatly improves the completion
accuracy.

6. CONCLUSION
In this paper, a method that leverages a tensor subspace prior
for SNN minimization is proposed, which yields sufficient
flexibility. We have also designed an efficient algorithm based
on ADMM to solve the modified framework of tensor com-
pletion that incorporates subspace information. Extensive nu-
merical experiments have been conducted to validate the su-
periority of the proposed method.

6The data is available at http://gtl.inrialpes.fr/.
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