
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Parallel Channel Estimation for RIS-Assisted
Internet of Things

Zhen Chen , Senior Member, IEEE, Lei Huang , Senior Member, IEEE, Shuqiang Xia,
Boyi Tang, Student Member, IEEE, Martin Haardt , Fellow, IEEE, and Xiu Yin Zhang, Fellow, IEEE

Abstract— Reconfigurable intelligent surfaces (RISs) are
deemed as a potential technique for the future of the Internet
of Things (IoT) due to their capability of smartly reconfiguring
the wireless propagation environment using a large number of
low-cost passive elements. To benefit from RIS technology, the
problem of RIS-assisted channel state information (CSI) acquisi-
tion needs to be carefully considered. Existing channel estimation
methods usually ignored the different channel characteristics
of direct channel and reflected channels. In fact, the reflected
channel can be smartly configured by adjusting the phase shifts
of the RIS, which is different from the direct channel due
to the different path loss exponents between the transmitter
and receiver. Therefore, it is necessary to further develop a
RIS-assisted channel estimation to determine the direct and
reflected channels, respectively. In this paper, we study a RIS-
assisted channel estimation that jointly exploits the properties of
the direct and the reflected channel to provide more accurate
CSI. The direct channel is estimated using weighted ℓ1 norm
minimization, while the reflected channel is modeled based upon
the robust ℓ1,τ norm minimization to sequentially estimate
the channel parameters. Moreover, by combining the gradient
descent and the alternating minimization method, a flexible
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and fast algorithm is developed to provide a feasible solution.
Simulation results demonstrate that an RIS-aided MIMO system
significantly reduces the active antennas/RF chains compared to
other benchmark schemes.

Index Terms— Channel estimation, compressed sensing, recon-
figurable intelligent surface, mmWave MIMO.

I. INTRODUCTION

IN THE era of the Internet of Things (IoT), a large physical
size of antenna arrays has significantly improved the rate of

wireless networks to serve multiple single-antenna IoT devices
simultaneously [1]. To support massive connectivity and meet
the requirement of huge data transmission demands, massive
multiple-input-multiple-output (MIMO) is a key enabling tech-
nology for the IoT systems. However, a massive number of
antenna arrays at the base station (BS) leads to high hardware
costs and power consumption. It will inevitably aggravates
the coverage issue for IoT communications [2]. To tackle
these challenges, reconfigurable intelligent surfaces (RISs)
have lately gained increasing interest as a candidate technology
to enhance the spectral efficiency (SE) of fifth generation
(5G) networks [3]. An RIS is generally composed of a large
number of hardware-efficient passive elements [4], [5], e.g.,
phase shifters, which can dynamically modify the propagation
direction of the incident signal by adjusting its phase shifters,
and effectively improve the propagation environment with
almost negligible power consumption. It is worth mentioning
that RISs can also be utilized to bypass some barriers on the
channel, or avoid the signal to be monitored. Due to its cost-
effective, low-cost hardware and ease of placing, RISs have
been recognized as one of the key enablers of the IoT vision,
which has become a hot spot in the field of communications.

It was observed that existing cellular standards, including
4G LTE, are unable to support massive IoT devices con-
nectivity. Furthermore, an acquisition of the channel state
information (CSI) is needed for effective transmissions. This
will give rise to huge overheads, and thus will make IoT
communications even more challenging. Moreover, compared
with cellular networks, there are some new characteristics
in RIS-assisted massive MIMO IoT systems, which include
low latency [6], massive connectivity [7], physical layer secu-
rity [8], and so on. Among them, the massive connectivity
is caused by the large number of IoT devices. This massive
connectivity characteristic necessitates much more channel
accessing than that of cellular networks and thus, results in
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a huge consumption in channel estimation overhead. On the
other hand, the promising gains brought by RISs critically
depend on the accuracy of the acquired CSI that plays a crucial
role in determining the error performance and the capacity, due
to the large number of channel coefficients associated with the
reflecting elements of an RIS [9].

Considering that CSI is essential to RIS-assisted IoT
applications, e.g., sensor data transmission, it is of great sig-
nificance to study channel estimation in RIS-assisted massive
MIMO IoT systems. There have been attempts to achieve
more accurate channel estimation [10], [11], [12]. In [13],
the authors developed a machine learning (ML)-based channel
estimation concept. In [14], by taking advantages of hybrid
evolutionary algorithm, a compressed sensing (CS)-based
channel estimator was derived for RIS-assisted system, which
can improve significantly the performance of channel estima-
tion. Also, in [15], a low-complexity passive beamforming
design for distributed RIS systems was proposed. However,
satisfactory estimation result can only be achieved with large
antenna arrays, which limits the approach in practical applica-
tions. By utilizing the CS-based dictionary learning method,
a two-stage channel was estimated for RIS-assisted time-
division duplexing system [16]. Most recent works considered
an ideal RIS which has a uniform response, such as, the
authors in [17] considered an RIS-assisted time-varying reflec-
tion model for orthogonal frequency division multiplexing
(OFDM) system, where low-resolution phase shifters were
employed in practical RISs. To reduce the training overhead,
the works in [18] considered the semi-passive elements-
aided channel estimation framework by exploiting the channel
coherence time differences. After that, a three phase channel
estimation scheme was developed, which improve the accuracy
of estimation [19]. By leveraging the deficient structure of
the RIS channels, practical residual neural networks were
proposed to improve the RIS-assisted channel estimation accu-
racy [20]. In [21], a control protocol enabling linear square
estimation was presented for the multiple-input single-output
(MISO) channel. According to this protocol, partial elements
of RISs were activated for maximizing downlink received
power. Moreover, a scalar ambiguity estimation method based
on maximum likelihood (ML) was recently exploited for blind
channel estimation [22]. Considering the characteristics of the
angles of departure/arrival (AoDs/AoAs), the atomic norm
minimization was conducted to achieve the angular parameters
and angle differences estimation [23]. The authors in [24]
designed a minimum variance unbiased estimator for optimal
channel estimation, in which the elements of RISs followed
an optimal series of activation patterns. More recently, a joint
channel training and RISs reflection coefficient optimization
framework was investigated by maximizing the achievable rate
of massive MIMO systems [25]. To mitigate the excessive
pilot signaling overhead, a RIS-assisted codebook design with
learning mechanism was developed to be more suitable for
ultra-dense network [26]. In addition, time-varying Ricean
fading channels were considered to RIS-aided high-mobility
system design that providing reliable coverage [27]. More
recently, RIS is considered to jointly optimize problem of the

transmit precoding matrix of dual functional radar and com-
munication (DFRC), the amplification matrix and the phase
shift matrix of the active RIS [28]. Furthermore, the authors
in [29] considered a trade-off design between communication
and radar for RIS-Assisted DFRC System.

To exploit the sparse structure of the RIS channel in
practical systems, such a sparse channel model is attracting
more and more attention. The introduction of CS attracted
an additional interest in RIS-assisted channel estimation and
then the corresponding phase shift optimization schemes and
algorithms were proposed [30], [31], [32], [33]. By explor-
ing the properties of Kronecker products and the sparsity
of the RIS channel, the cascaded channel estimation was
formulated as a sparse signal recovery problem [34], and
then a hybrid-based multiobjective optimization algorithm was
exploited to determine the cascade millimeter wave (mmWave)
channel. In [35], the authors combine CS and deep neural
networks to reduce the pilot overhead of channel estimation
by maximizing the achievable sum-rate of the system. In [36],
the majorization-minimization-based algorithm was developed
to estimate RIS channels, which performs better than least-
squares (LS) approach. By virtue of the advantages of deep
learning (DL), a deep denoising-based neural network frame-
work was proposed to improve the effectiveness of channel
estimation [37]. To reduce the estimation delay, the authors
utilize CS and offset learning, recovering the RIS-assisted
channel with a few pilot symbols [38]. On the basis of this
analysis, DL-aided residual learning was exploited to tackle
the intractable channel optimization problem [39]. In addition,
considering the incident sign affect, an DL-based channel
estimation algorithm was investigated to suppress this useless
signal [33]. It is worth mentioning that the CS-based method
usually involves complex mathematical problems as well as
non-convex cost function due to the underdetermined sampling
constraints. The DL-based channel estimation can overcome
this issue, but needs the prerequisite of a large number of
training samples.

To the best of our knowledge, the above-mentioned works
on channel estimation are limited to hybrid RIS-assisted
channels, in which the direct and the reflected channels are
estimated together. However, the reflected channel is different
from the direct channel due to the different path loss exponents
between the direct and the reflected paths. Thus, they are
inapplicable to practical IoT scenarios. This motivates us to
put forward a RIS-assisted joint sparse channel estimation
for the mmWave MIMO systems by exploiting the properties
of the reflected and direct channels. To reduce the training
time, a joint channel estimator of the weighted ℓ1 and ℓ1,τ
norm is developed by exploiting CS theory. To facilitate the
performance improvement, an alternate iteration algorithm
is proposed to estimate the direct and reflected channels,
respectively. Simulation results verify the performance of the
proposed scheme in accordance with the results of numerical
calculation. The main contributions of this paper can be
summarized as follows:

• We propose the parallel RIS-assisted channel estimation
scheme, which can estimate the direct and reflected
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channels separately. In the proposed channel estimation
framework, the weighted ℓ1 norm minimization is devel-
oped to obtain a better direct channel estimation solution.
It is due to the fact that a properly reweighted ℓ1 norm
approximates the ℓ0-pseudo-norm, which actually needs
to be minimized, better than the standard ℓ1 norm. On the
other hand, considering the fact that the characteristic of
the reflected channel is generally different from the direct
channel, the robust ℓ1,τ norm minimization model is
exploited to refine more accurate CSI, which can capture
the changes of the channel condition in real time.

• To reduce the training overhead of the channel estimation
solution, a flexible and fast optimization tool is devel-
oped by combining gradient descent and the alternating
minimization method. As a consequence, the proposed
approach is able to yield an approximate close-form
solution, ending up with an efficient iterative implemen-
tation. Furthermore, an adaptive strategy is employed to
determine the reasonable parameter in each iteration.

• To verify the theoretical result of the proposed scheme,
the corresponding mean squared error (MSE) and error
vector magnitude (EVM) for channel estimation are
introduced to evaluate the performance of the proposed
framework. In comparison to various benchmarks, numer-
ical results confirm the superiority and accuracy of the
proposed method, which is more suitable for RIS-assisted
IoT systems, in particular in the high signal-to-noise ratio
(SNR) regime.

A. Organization and Notation

The remainder of this paper is organized as follows.
Section II presents an RIS-assisted system model along with
the channel estimation problem, while Section III proposes the
basic idea and provides the details about the proposed opti-
mization procedure based on an alternate iteration algorithm.
In Section IV, the theoretical findings are validated including
comprehensive simulation results and assessments. Section V
draws the conclusions we discuss the potential directions for
future investigation.

Notation: Lower case bold faced and upper case bold faced
letters are used to denote vectors and matrices, respectively.
For a vector a, (a)T , and (a)H refer to the transpose, and the
conjugate transpose, respectively; diag(·) is the diagonalization
operation. Moreover, tanh(·) and cosh(·) denote hyperbolic
tangent and hyperbolic cosine function, respectively. The
Euclidean norm of a complex vector is denoted by ∥ · ∥,
arctanh(·) is the inverse hyperbolic tangent function, ∇a f (a)
represents the gradient vector with respect to a, and |·| denotes
the absolute value of a complex scalar. The symbol ⊗ stands
for the Kronecker product operator.

II. SYSTEM MODEL

We introduce a RIS-assisted mmWave MIMO system as
shown in Fig. 1, where a RIS with NRIS reflecting elements is
modeled by a uniform planar array (UPA) that is deployed to
assist communucation. The BS equipped with NBS antennas to
serve NUE antennas of the user. We define HBU ∈ CNUE×NBS

Fig. 1. The RIS-assisted downlink mmWave MIMO system.

as the direct channel from the BS to the user link. For RIS-
assisted mmWave MIMO systems, we usually have Np < NBS

due to the large number of transmit antennas NBS and the
limited number of pilots Np. We also consider a limited
number of reflecting elements NRIS, which is also larger than
the number of pilots Np. It is worth noting that the channel
estimation scheme can be implemented at the transceiver,
without any operation or algorithm needs to be executed at
the RIS.

As shown in Fig. 1, the channel H consists of a direct
channel and reflected channels, which is given by

H = HBRU + HBU

= HBR8HRU︸ ︷︷ ︸
reflected channels

+ HBU︸︷︷︸
direct channels

, (1)

where HBRU ∈ CNUE×NBS denotes the channel frequency
response of the BS-RIS-user cascade channel. Here, HBR and
HRU denote the channel matrix associated with the BS-RIS
channel, and the channel matrix between the RIS and user,
respectively. Then, the operation of the RIS is described by
the diagonal matrix 8 = diag{ϕ1, . . . , ϕNRIS

}. To study a
generalized model, first we assume F1 is the ideal RIS case,
i.e., both the amplitudes and phase shifts of ϕi associated with
the reflecting elements can be controlled independently and
continuously [40], i.e.,

F1 ≜ {ϕi ||ϕi |≤ 1} , i = 1, . . . , NRIS (2)

However, the RISs are limited by the hardware implemen-
tation of metamaterials in practice. Therefore, non-ideal RIS
cases should be considered. Based on this, we define the F2 as
the general case, where only the phase of ϕi can be controlled
continuously, and we also define the F3 as the discrete case,
where the low-resolution phase of ϕi corresponds to discrete
phase shifts, i.e.,

F2 ≜ {ϕi ||ϕi |= 1} , (3a)

F3 ≜
{
ϕi | ϕi ∈

{
1, e j 2π

L , . . . , e j 2π(L−1)
L

}}
, (3b)

where L indicates that F3 contains L discrete phase shifts [41].
By exploiting the sparse scattering characteristics of

mmWave channels, the optimization problem can be for-
mulated as a sparse recovery problem (e.g., [42], [43]).
More specifically, the channel estimation problem of interest
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involves finding a sparse geometric channel model, which is
expressed as follows

HBU =

L̃BU∑
l=1

αlαBS(θBS,l)α
H
UE
(θUE,l), (4a)

HBR =

L̃BR∑
l=1

βlαBS(φBR,l)α
H
RIS
(φRIS1,l), (4b)

HRU =

L̃RU∑
l=1

δlαRIS(ψRIS2,l)α
H
UE
(ψRE,l), (4c)

where L̃BU , L̃BR and L̃RU are the number of BS-UE, BS-
RIS and RIS-UE paths, respectively. θl , φl ∈ [0, 2π ] are
the associated AoD and AoA, and αBS ∈ CNBS (αUE ∈

CNUE ,αRIS ∈ CNRIS) are the array response vectors associated
with the BS, UE, and RIS, respectively.

Moreover, αl = α̃l
√

G(θl)L(dBS), βl = β̃l
√

G(ϕl)L(dRIS)

and δl = δ̃l
√

G(θl)L(dUE); α̃l , β̃l and δ̃l are the complex
gain of the lth path, G(θl), G(ϕl) and G(θl) are directional
beamforming antenna arrays that are deployed to compensate
the significant path-loss in the considered system. Thus, the
antenna pattern of users can be approximated by a sectored
antenna model in [44] which is given by

G(4l) =

{
G, if |4l | ≤ θc

g, otherwise.
(5)

where 4l = {θl , ϕl , φl}, distributed in [0, 2π ], is the angle
between the BS and the user, between the BS and the RIS,
between the RIS and the user, respectively. θc denotes the
beamwidth of the main lobe, G and g are respectively the array
gains of main and sidelobes. L(dBS), L(dRIS) and L(dUE) refer
to the pathloss, which divided into two scenario.

For the first communication scenario without a RIS, dif-
ferent path loss equations are applied to model the LoS and
NLoS links as [45]

L(d) =

{
d−ςi , if BS − UE is LOS link
d−ςi i , if BS − UE is NLOS link.

(6)

where ςi and ςi i are the LoS and NLoS path loss exponents,
respectively.

For the second communication scenario with the assistance
by the RIS, recently, the free-space path loss models of RIS-
aided wireless communications are developed for different
situations in [46]. Thus, we obtain

L(dBU, dBRU) = CBUCBRUd−2
BUd−2

BRU, (7)

where CBU and CBRU denote the path loss intercepts of BS-
RIS and RIS-user links, respectively.

To formulate the channel estimation as a sparse signal
recovery problem, a beamspace MIMO representation of the
direct channel for the RIS-assisted system is expressed as

HBU = ABSHαAH
UE, (8)

where ABS ∈ CNBS×L̃ is the array manifolds of BS, which
has L̃ column vectors of dimension NBS . AUE ∈ CNUE×L̃

is the array manifolds of user, which has L̃ column vectors
of dimension NUE . The array manifold in the horizontal and
vertical directions can be formulated as

ABS ≜ [αBS(θBS,1), . . . ,αBS(θBS,L̃)], (9a)

AUE ≜ [αUE(θUE,1), . . . ,αUE(θUE,L̃)] (9b)

and Hα ∈ CL̃×L̃ is the angular domain sparse matrix with L̃
non-zero entries corresponding to the channel gains {αl}.

Due to the limited scattering nature and small angular
spreads, the number of non-zero entries of the sparse matrix
Hα is less than L , i.e., L̃ < L . Similarly, the BS-RIS channel
and the RIS-user channel are defined as

HBR = ABRHβAH
RIS1

, (10a)

HRU = ARIS2HδAH
RE, (10b)

where ABR ≜ [αBS(φBR,1), . . . ,αBS(φBR,LBR)] that
has LBR column vectors of dimension NBS . ARE ≜
[αUE(φRE,1), . . . ,αRE(φRE,LRU)] that has LRIS column vectors
of dimension NUE . ARIS1 ≜ [αRIS(φRIS,1), . . . ,αRIS(φRIS,LBR)]

that has LBR column vectors of dimension NRIS .
ARIS2 ≜ [αRIS(ψRIS,1), . . . ,αRIS(ψRIS,LBR)] that has LRIS
column vectors of dimension NRIS . Hβ ∈ CLBR×LBR and
Hδ ∈ CLRIS×LRIS are sparse matrices corresponding to the
transmission path gains {βl}

LBR
l=1 and {δl}

LRIS
l=1 , respectively,

when all channel parameters lie in the array response matrices.
Due to the sparse scattering characteristics of RIS-assisted

systems, the beamspace channel matrices Hβ and Hδ are
sparse matrices with a few non-zero entries. Suppose any
sparse matrix in {Hβ , Hδ} contains at most Np nonzero entries,
we usually have Np < min{LBR, LRIS}.

The transmitter employs the active transmit precoder F(t) to
transmit the T data symbols s(t) ∈ CN ; and then, the receiver
is combined with the corresponding receive beamformer z(t).
Based on the above definitions, the signal y(t) combined at
the receiver can be written as

y(t) = zH (t)HF(t)s(t)+ n(t), ∀t = 1, . . . , T, (11)

where H ∈ CM×N is the cascaded channel matrix that is given
in (1). Here, n(t) denotes the additive Gaussian noise. Without
loss of generality, the pilot signal is set as s(t) = 1 during the
training phase.

It is worth mentioning that the receiver often cannot directly
observe H. Instead, it observes a noisy version of zH HF,
which causes a limitation to the application of the channel
subspace sampling, especially when N and M are large for the
channel matrix H ∈ CM×N , which makes channel estimation
a challenging problem [47].

Fortunately, mmWave channels exhibit sparse scattering
characteristics that can be utilized to substantially reduce
the training overhead [48]. To facilitate channel estimation,
we attempt to exploit the properties of Kronecker products and
CS theory. Specifically, substituting (9) into (8), the received
symbol is given by (12), shown at the bottom of the next page,
where (a) is derived from

vec(HBRU)

= vec
(

ABSHβAH
RIS,18ARIS,2HδAH

UE

)
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=
(
A∗

UE ⊗ ABS
)

vec
(

HβAH
RIS,18ARIS,2Hδ

)
=

(
A∗

UE ⊗ ABS
) (

HT
δ ⊗ Hβ

)
vec

(
AH

RIS,18ARIS,2

)
=

(
A∗

UE ⊗ ABS
) (

vec
(
AH

RIS,18ARIS,2

)T
⊗ I

)
vec

(
HT
δ ⊗ Hβ

)
=

(
A∗

UE ⊗ ABS
) (

AT
RIS,2 ⊗ AH

RIS,1

)T
hBRU, (13)

Here, (·)∗ represents the complex conjugate operator, hBU ≜
vec(Hα) and hBRU ≜

(
vec(8)T ⊗ I

)
vec

(
HT
δ ⊗ Hβ

)
, where ⊗

denotes the Kronecker product.
By collecting all measurements y(t), the corresponding

signal are stacked into a vector form y ≜ [y(1), . . . , y(T )]T .
Then, we can obtain the expression in (14), as shown at the
bottom of the next page, where

9BU =

 FT (1)⊗ zH (1)
...

FT (T )⊗ zH (T )

 (
A∗

BU,2 ⊗ ABU,1
)

(15)

and

9BRU =

 FT (1)⊗ zH (1)
...

FT (T )⊗ zH (T )

 (
A∗

UE ⊗ ABS
)

×

(
AT

RIS,2 ⊗ AH
RIS,1

)T
. (16)

Since hBU and hBRU are sparse, the channel estimation
problem based on (14) becomes a sparse recovery problem.
The CS-based sparse signal recovery method has the potential
to achieve a substantial training overhead reduction [34].
It follows that a high-dimensional sparse channel can be
estimated by using the CS sparse recovery algorithm.

III. PARALLEL RIS-ASSISTED CHANNEL ESTIMATION

In this section, we will address the parallel channel esti-
mation of RIS-assisted systems. In the proposed RIS-assisted
mmWave system, the whole RIS-assisted channel is decom-
posed into a direct and the reflected channels. We can adjust
the reflecting elements of the RIS to change the channel
propagation environment. As illustrated in Fig. 1, the direct
channel denotes the straight line channel from the BS to the
user, while the reflected channel means that the incident signal
is reflected by the RIS from the BS to the user.

A. Proposed RIS-Assisted Channel Estimation Framework

In this subsection, we will introduce the sparse repre-
sentation framework of RIS-assisted channel estimation in
detail. Based on (14), we aim to estimate the direct and
reflected channels, simultaneously. As in the aforementioned

observation, different regularizes lead to different properties of
the representation of the channel coefficients. Therefore, it is
unreasonable to assign equivalent regularization terms to the
direct and the reflecting channels. To mitigate this issues, two
regularization terms are developed to improve the performance
of channel estimation. For the direct channel, there is a strong
direct channel between the BS and the user. One way to
enforce the sparsity of the solution is to use the reweighted
ℓ1-norm penalty term gBU(hBU). The reflecting channel suffers
from a longer range than the direct channel, and the longer
the distance, the greater the path loss. Therefore, the reflecting
channel is much weaker than the direct channel. To capture
weakly reflecting channels, the robust ℓ1,τ regularization term
gBRU(hBRU) is proposed to achieve a better performance. To be
more specific, the optimization problem can be formulated as

min
h,hBU ,hBRU

1
2
∥y − 9h∥

2
2 + µBU gBU(hBU)+ µBRUgBRU(hBRU),

(17)

where 9 =
[
9BU 9BRU

]
and h =

[
hT

BU
hT

BRU

]T
, µBU and µBRU

denote the regularization parameters, respectively. It is difficult
to solve the nonconvex optimization problem (17), due to the
multiple variables and the coupling between them.

To solve the optimization problem (17), the received signal
y is divided into yBU and yBRU by exploiting the linearity
of the direct and the reflected channels, respectively. Thus,
we introduce the auxiliary variable u to reformulate the
optimization problem (17) as

min
h,hBU ,hBRU

1
2
∥y − 9BUhBU − 9BRU hBRU∥

2
2 + µBU gBU(hBU)

+ µBRU gBRU(hBRU)+
κ

2
∥h − u∥

2
2

s.t. u = hBU + hBRU . (18)

It follows that the optimization problem (18) includes three
variables, which can be solved by the alternative optimization
scheme. Then, we introduce the gradient descent-based alter-
nating direction iterative framework to determine the direct
and the reflected channels, respectively.

B. Direct Channel Estimation

In this subsection, the direct channel is estimated by exploit-
ing the weighted ℓ1-norm regularization model. It is due to the
fact that a properly reweighted ℓ1 norm approximates the ℓ0-
pseudo-norm, which actually needs to be minimized. It yields
better results than the standard ℓ1 norm. To this end, the direct
channel hBU is optimized by fitting the hBRU as follows

min
hBU

1
2
∥yBU − 9BU hBU∥

2
2 + µBU gBU(hBU), (19)

y(t) =

(
FT (t)⊗ zH (t)

)
vec(H)+ n(t)

(a)
=

(
FT (t)⊗ zH (t)

) (
A∗

UE ⊗ ABS
)

hBU +

(
FT (t)⊗ zH (t)

)
vec (HBR8HRU)+ n(t) (12)

=

(
FT (t)⊗ zH (t)

) (
A∗

UE ⊗ ABS
)

hBU +

(
FT (t)⊗ zH (t)

) (
A∗

UE ⊗ ABS
) (

AT
RIS,2 ⊗ AH

RIS,1

)T
hBRU + n(t).
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where yBU = y −9BRU hBRU and µBU > 0 denotes a regulariza-
tion parameter. For the direct channel between the transmitter
and receiver, since minimizing the ℓ1-norm is an relaxation
for ideal ℓ0-norm minimization, the direct channel with the
standard ℓ1-norm minimization is limited to reflect the desired
CSI requirements [49]. Compared with the standard ℓ1-norm
regularization, the successful application of weight ℓ1-norm
regularization indicates the better direct channel estimation,
sparsity enhancement, and robustness to noise. Therefore,
we utilize a weighted ℓ1-norm regularization to characterize
the direct channel information, which can be expressed as

gBU(hBU) = µBU

LBU∑
i=1

w(i)|hBU(i)|, (20)

where hBU(i) is the i-th element of the channel hBU and w(i) =
1

|hBU (i)|+ε
is the i-th element of the weight vector, where ε >

0 is a small constant, whose role is to prevent the denominator
from reaching zero.

To exploit the weighted ℓ1-norm regularization (20), the
optimization problem (19) is rewritten as

min
hBU

1
2
∥yBU − 9BUhBU∥

2
2 + µBU

LBU∑
i=1

w(i)|hBU(i)|. (21)

Solving the problem (21) directly will incur huge com-
plexity. To address this issue, we construct a proximal
regularization of the problem (21) with simple algebra opera-
tions, which leads to an iterative scheme as

min
hBU

1
2t

∥∥∥h(k)
BU

+ t9T
(

yBU − 9BU h(k)
BU

)
− h(k+1)

BU

∥∥∥2

2
, (22)

where t is the step-size. It is observed that the solution
of problem (22) is close to the optimal solution of (21),
accompanied by a substantial reduction in the complexity.

To improve iteration speed and estimation accuracy, the iter-
ative shrinkage thresholding algorithm with soft thresholding
is utilized to (22), which yields

h(k+1)
BU

= S
(

h(k)
BU

+ t9T (yBU − 9BU h(k)
BU
)
)
. (23)

where the shrinkage operator SBU(i) can be expressed as

SBU(i) = sign
(

h(k)
BU

) ∣∣∣|hBU | −
µBU

t
w(i)

∣∣∣ , (24)

and
µBU

t is the thresholding value that plays a role in control-
ling the stepsize of each iteration.

C. Reflected Channel Estimation

In this subsection, the effectiveness and robustness of
the ℓ1,τ regularization term is developed to capture weakly
reflecting channels by fitting the direct channel hBU . Then,
the solution to the problem (18) with respect to hBRU can be
rewritten as

min
hBRU

1
2
∥yBRU−9BRUhBRU∥

2
2 + µBRU gBRU(hBRU), (25)

where yBRU = y − 9BUhBU .
To achieve precise performance, a robust ℓ1,τ -norm is

utilized to estimate the reflected channel by adjusting the
parameter τ . To elaborate this phenomenon, an example is
provided in Fig. 3. It is observed that different τ may lead
to different solutions. However, the parameter τ is difficult to
adjust because the ℓ1,τ -norm model is non-convex. Therefore,
it is important to determine the optimal value of the parameter
τ , and an adaptive parameter τ is considered in this paper.
Based on this, the robust ℓ1,τ regularization function is uti-
lized, which can be expressed as follows

gBRU(hBRU) =
1
τ

LBR∑
i=1

log (cosh (τhBRU(i))). (26)

It is evident that the ℓ1,τ regularization function in (26) is
integrated into the problem (25), which may lead to the non-
convex optimization problem. To address this issue, we utilize
the first-order Taylor expansion to approximate gBRU(hBRU). Let
Q(hBRU) = log (cosh (τhBRU)), which can be given by

Q(hBRU) = Q(h(k)
BRU
)+

〈
∇Q(h(k)

BRU
),hBRU − h(k)

BRU
,
〉
, (27)

where Q(h(k)
BRU
) is the k-th iteration of the solution. By remov-

ing the constants, the derivative of (27) can be formulated as

Q′(hBRU) = µBRU

〈
∇ tanh(τh(k)

BRU
),hBRU

〉
, (28)

which may lead to the problem (25) as

min
hBRU

1
2
∥yBRU − 9BRUhBRU∥

2
2

+ µBRU

〈
∇ tanh(τh(k)

BRU
),hBRU

〉
, (29)

By utilizing the Karush-Kuhn-Tucher (KKT) condition, the
solution of the problem (29) can be given by

h(k+1)
BRU

= (9H
BRU

9BRU)
−1

(
9H

BRU
y(k) + µBRU tanh(τh(k)

BRU
)
)
.

(30)

It follows that the channels hBU and hBRU can be optimized
by alternating the solutions to the above two subproblems (19)
and (25).

y =

 FT (1)⊗ zH (1)
...

FT (T )⊗ zH (T )

 (
A∗

BU,1 ⊗ ABU,2
)

hBU +

 FT (1)⊗ zH (1)
...

FT (T )⊗ zH (T )

 (
A∗

UE ⊗ ABS
) (

AT
RIS,2 ⊗ AH

RIS,1

)T
hBRU + n

=
[
9BU 9BRU

] [
hBU
hBRU

]
+ n = 9h + n. (14)
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Fig. 2. The procedure of the proposed algorithm at the k-th iteration.

Fig. 3. The robust ℓ1,τ -norm regularization function gBRU (hBRU ) =

1
τ

L∑
i=1

log (cosh (τhBRU (i))).

D. Parameter τ Updating

As we can see that the choosing of the parameter τ directly
affects the ability of the regularization term. To reduce the
artificial error, the parameter τ is updated in every iteration.
The problem in (25) can be written as

min
hBRU

1
2
∥yBRU−9BRUhBRU∥

2
2 + µBRU log

(
cosh (τhBRU)

)
. (31)

It is not difficult to observe that the optimization problem is
a general convex constrained quadratic program whose optimal
solution can be obtained by exploiting the KKT condition.
That is

τ (k)h(k)
BRU

= arctanh
(

1
µBRU

9H
BRU

(
9BRU hBRU − y(k)

BRU

))
. (32)

After taking the ℓ2-norm at both sides of (32), the corre-
sponding solution of the parameter τ (k) can be rewritten as

τ (k) =

∥∥∥arctanh
(

1
µBRU

9H
BRU
(9BRUhBRU − y(k)

BRU
)
)∥∥∥

2∥∥h(k)
BRU

∥∥
2 + η

, (33)

where a small constant η > 0 is provided to avoid the
denominator from getting close to zero. It follows that the
parameter τ can be updated in each iteration.

E. Hybrid Channel Updating

After the direct channel hBU and the reflected channel hBRU

are estimated, the following optimization channel model is
developed to characterize the hybrid channel, which can be
formulated as

min
h

1
2
∥y − 9h∥

2
2 +

κ

2
∥h − u∥

2
2. (34)

It is obvious that the optimization problem (34) is a convex
problem. By utilizing the Karush-Kuhn-Tucher (KKT) condi-
tion, we have

h =

(
9H 9 + κI

)−1 (
9H y + κu

)
. (35)

Through above three-stage scheme, the channels hBU , hBRU

and h can be effectively decoupled and provide better results,
which is illustrated in Algorithm 1. To ensure that the proposed
Algorithm 1 can converge to a stable value, the stopping
criterion ∥h(k) − h(k−1)

∥
2
2 ≤ ε is considered for the end of

Algorithm 1. When the error between the current iteration and
the previous iteration is less than ε (e.g., ε = 10−3), it implies
that the proposed algorithm can converge to the neighborhood
of the stable value. We also provide a diagram to explain the
k-th iteration procedure of the proposed algorithm in Fig.2.

F. Complexity Analysis

It is shown in Algorithm 1 that the hBU , hBRU and h
are alternatingly optimized. We estimate the computational
complexity of the proposed Algorithm 1 by computing the
number of required multiplications. Assumption the number
of iteration for the Algorithm 1 is Iiter. Under this assumption,
the overall computational complexity of Algorithm 1 is caused
by solving the problem (17), which consists of a series
of subproblems, e.g., the direct channel estimation subprob-
lem (19), the reflected channel estimation subproblem (25)
and the hybrid channel estimation subproblem (34). For the
direct channel estimation subproblem (19), the solution with
respect to hBU , whose complexity is O(T LBRLRU). For the
reflected channel estimation subproblem (25), the parameter
τ need to be calculated, which introduces the complexity of
O((M N )2T + M N T 2), and the complexity of estimating hBRU

is approximated as O((M N )3 + M N T + M N T 2). For the
solution with respect to h, (9H 9 + κI)−1 and 9H y can
be computed in advance and the complexity of estimating
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Algorithm 1 Parallel Channel Estimation Algorithm
1: Input: Given the measurement y, and the matrices 9BRU ,

9BU

2: Initialization: k = 0, h(0) = 0;
3: repeat
4: Update yBU with yBU = y − 9BRU hBRU ;
5: 1. estimate hBU by solving
6: min

hBU

1
2∥yBU − 9BUhBU∥

2
2 + µBU gBU(hBU);

7: Update yBRU with yBRU = y − 9BU hBU ;
8: 2. estimate hBRU by solving
9: min

hBRU

1
2∥yBRU − 9BRU hBRU∥

2
2 + µBRUgBRU(hBRU);

10: Update the parameter τ by solving (33);
11: Update u with u = hBU + hBRU ;
12: 3. estimate h(k+1) by solving
13: min

h
1
2∥y − 9h∥

2
2 +

κ
2 ∥h − u∥

2
2

14: until
∥∥h(k+1)

− h(k)
∥∥

2 ≤ ε

15: end
16: Output hBU , hBRU h.

O(T Nτ1 Nτ2 Nτ1 Nτ2). Based on the analysis above, the com-
plexity of Algorithm 1 is expressed as O(Iiter(T LBRLRU +

(M N )3 + M N T 2
+ T Nτ1 Nτ2 Nτ1 Nτ2)).

IV. SIMULATION RESULTS

In this section, we carry out the simulations to illustrate the
effectiveness of our proposed algorithm. The RIS is practically
deployed with a planar antenna array to enhance the com-
munication link. The system bandwidth and carrier frequency
are set to 20 MHz and 2 GHz, respectively. The simulation
parameters are set as NUE = 6 and Nt = 128. Due to the
limited pilot resources, we consider the reflecting elements
NRIS = 16, 36, 64, 128, respectively. To help prospective
readers to see the different parameters, the parameter settings
are listed in Table I. To quantify the estimator performance,
the average normalized MSE between the estimated and the
original channel are calculated through Monte Carlo simula-
tions, which are averaged over the channel realizations. The
corresponding normalized MSE is defined as

NMSE =
∥h − ĥ∥

2
2

∥h∥
2
2

, (36)

where h and ĥ are the original and the estimated channels,
respectively. To verify the estimation performance, we also
define the EVM as the performance metric that is calculated
as

EVM = 10 log 10


1
N

N∑
k=1

ek

1
N

N∑
k=1
(I 2

k + Q2
k)

 , (37)

where ek is the estimated error that can be expressed as ek =

(Ik − Îk)
2

+ (Qk − Q̂k)
2. Here, Ik and Qk denote the In-

phase (I) component and the Quadrature phase (Q) component,
respectively.

TABLE I
THE PROPOSED CHANNEL FRAMEWORK PARAMETERS FOR SIMULATION

Fig. 4. NMSE performance of the proposed channel estimator versus the
SNRs in dB.

A. Performance Comparison

The proposed channel estimator is compared with the con-
ventional schemes, such as the LS, OMP [50] and hybrid
evolutionary-based channel estimator [14]. As observed from
Fig. 4, the simulation results show that the proposed estimator
is consistent with the theoretical curves along with the increase
of SNRs. Meanwhile, as the SNR level increases, the NMSEs
for all those estimators decreases and gradually stabilizes. This
favorable result can be attributed to the fact that when the SNR
level is low, the effect of noise gives a dominant influence
on the performance of channel estimation. It is acknowledged
that the LS estimator is vulnerable to noise, this conclusion
also is validated in our simulations that the LS estimator
performs poorly in the low SNR zone. The main reason is that
the LS estimation contains both scale-factor and bias errors.
The scale-factor error is caused by the auto-correlation of the
stochastic parametric uncertainties in the measurement matrix,
and the bias error comes from the correlation between the
uncertain stochastic parameters and measurement noises. That
is to say, the proposed scheme is more robust than the LS
estimator. Meanwhile, the OMP estimator reaches a similar
performance as the LS estimator without prior knowledge of
CSI. The simulation results show that whenever the SNR value
is small or large, the proposed algorithm always achieves a
performance improvement compared with the LS and the OMP
estimators, which verifies that the proposed scheme can well
be applied to the different SNR levels.
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Fig. 5. EVM performance of the proposed channel estimator versus the
SNRs in dB.

In addition, the hybrid evolutionary-based channel estimator
also is employed for comparison. Simulation results confirm
that a significant improvement is obtained by the proposed
estimator under the RIS-assisted channel. It is important to
point out that the effect of noise can be almost ignored in
the high SNR zone, and hence it can be seen that the three
estimators converge to a stable state, when the SNR levels
are not lower than 20. More importantly, it can be observed
that the curves “Ideal RISs case” and “ non-ideal F2 case”
are very close. The essential reason is that actually most of
the RIS elements have an amplitude equal to 1. It implies that
they are not need to design an amplitude-controllable RIS for
wireless communications.

Next, we study of the EVM performance on the different
SNR levels for the different estimators in Fig. 5. We can
observe that as the SNR increases, the EVM performance of all
estimators improve. Furthermore, as can be observed in Fig. 5
that the proposed scheme achieves a better performance in the
entire SNR range, and the hybrid evolutionary-based channel
estimator is close to the proposed scheme at low SNRs,
while the hybrid evolutionary-based channel estimator suffers
from a slight performance degradation at high SNRs. Another
interesting observation is that the EVM performance of the LS
reduces rapidly with the increase of SNRs, while for the OMP
estimator, it reduces slowly. Moreover, the performance gap
between the proposed estimator and the hybrid evolutionary-
based channel estimator becomes larger as the SNR increases,
which proves that the proposed channel estimator is available
in RIS-assisted communication scenarios, especially in the
higher SNR regime.

In Figs. 6 and 7, the simulated NMSE of the channel
estimation approach for the direct and the reflected channels
are depicted, where the SNR levels from -20 dB and 30 dB.
As seen from Fig. 6, it is observed that the NMSEs of the direct
and reflected channels decrease significantly with the SNR
levels increasing. Moreover, we observe a similar behavior in
Fig. 7. The EVMs of the direct and the reflected channels
are differences as the SNR increases. This is because the
proposed scheme utilizes the weighted ℓ1-norm and robust
ℓ1,τ -norm to improve the estimation accuracy. From these
results, we observe that the direct and the reflected channels

Fig. 6. NMSE performance comparisons between the direct and the reflected
channel estimation.

Fig. 7. EVM performance comparisons between the direct and the reflected
channel estimation.

both offer a promising performance in terms of NMSEs and
EVMs. This will attract a great attention in the application
of the RIS to the existing IoT systems to boost the channel
estimation process.

Finally, the pilot contamination problem is investigated to
verify the robustness of the proposed estimator for different
pilot lengths and radio frequency (RF) chains. All simulation
results are depicted in Fig. 8. It is obvious that there exists
an increasing NMSE performance loss when the number of
the pilots is reduced. Similar results are also demonstrated in
Fig. 9 as the EVM performance of all estimators exhibit similar
results as the NMSE performance. These results verify the
effectiveness of the proposed estimator. However, as depicted
in Fig. 8 and 9, the performance of the proposed channel
estimator is almost unaffected by the high SNR levels. This is
because the effect of the noise can be almost ignored in the
high SNR zone, and hence our findings show that the proposed
estimator has the best performance in terms of NMSE and
EVM values.

B. Extension to the Impact of the Number of RIS Elements

As a further experiment, we investigate the impact of the
number of RIS elements on the achievable rate. Fig. 10 shows
the impact of the number of RIS elements between the BS
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Fig. 8. NMSE performance of the proposed channel estimator versus the
number of RF chains.

Fig. 9. EVM performance of the proposed channel estimator versus the
number of RF chains.

and the RIS on the achievable rate performance. It can be
seen that the performance of the proposed algorithm degrades
when the number of RIS elements increases under the given
pilot overhead, due to the fact that the number of parameters
(sparsity level) to be estimated increases. This finding is
also in agreement with similar observations found in the
achievable rate studied in the previous section, which verifies
the superiority of the proposed system model and design once
again.

C. Convergence Analysis

In this subsection, the convergence behavior of the paral-
lel channel estimation algorithm is evaluated by illustrating
how the number of iterations affect the NMSE performance
behavior. It can be seen in Fig. 11 that the proposed algorithm
can converge to a stable value, and the different SNR levels
affect the convergence result of the algorithm. In particular,
the NMSE value gradually decreases and converges to a fixed
value after approximately 13 iterations. This result demon-
strates that the proposed algorithm has the ability to converge
to a stable point.

Fig. 10. Achievable rate versus the number of RIS elements performance.

Fig. 11. NMSE performance of the proposed channel estimator versus the
number of iteration.

V. CONCLUSION

In this paper, we investigate the problem of parallel channel
estimation for RIS-assisted IoT systems using merely a small
number of the pilot symbols. Under the proposed framework,
the weighted ℓ1-norm minimization and the robust ℓ1,τ -
norm minimization criterion are utilized to efficiently perform
the direct and the reflected channel estimation, respectively.
Then, we reformulate the channel estimation problem as a
sparse recovery problem and utilize the gradient descent-based
alternating direction algorithm to obtain a feasible solution
with a few pilot symbols. Simulation results confirm the
desirable performance of the proposed scheme compared to
the LS, the OMP and the hybrid evolutionary-based estimator,
as all of them work for RIS-assisted communication scenarios.
Moreover, it is interesting to observe that the number of RIS
unit elements and RF chains have a significant effect on the
performance of the proposed estimator.
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