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Abstract—This paper proposes novel linear precoding algo-
rithms for Multiple-Input Multiple-Output Bit-Interleaved Coded
Modulation (MIMO-BICM) systems that maximize the achiev-
able rate subject to power constraints. To overcome the nonlinear
and nonconvex nature of the optimization problem, we rewrite
the achievable rate in terms of the log-likelihood ratio (LLR)
and introduce manifold-based gradient ascent (MGA) precoding
and low-complexity non-iterative algorithms. Simulation results
show significant gains in achievable rate and block error rate
compared to existing techniques. Additionally, we extend our
investigation to linear precoding with the constraint that the
precoding matrix is selected from the codebook type-I adopted
in Fifth-Generation New Radio (5G NR) networks. We propose
heuristic algorithms that exploit the Kronecker and Discrete
Fourier Transform (DFT) structure of the codebook and consider
the singular vector decomposition (SVD) precoder as the optimal
reference precoder. The traditional exhaustive search methods
require a high complexity, especially for large codebook sizes.
However, our proposed algorithms apply a combination of direct
estimation and a low-dimensional search for deriving the indices,
resulting in a reduced number of codebook precoder candidates.
Simulation results show that our proposed low-complexity algo-
rithms perform comparably to exhaustive search baselines.

Index Terms—Bit-Interleaved Coded Modulation (BICM), 5G
New Radio (NR), Precoder Matrix Index (PMI), channel state
information (CSI), Type-I Codebook.

I. INTRODUCTION

Bit-Interleaved Coded Modulation (BICM) is a reliable data
transmission scheme that combines error-correction coding
and modulation, separated by an interleaving permutation.
BICM is widely adopted in modern communication systems
such as wireless communications and satellite communications
standards, including High Speed Packet Access (HSPA) , IEEE
802.11a/g/n, Long-Term Evolution (LTE), and the latest Dig-
ital Video Broadcasting (DVB) standards (DVB-T2/S2/C2). It
has also been used in the design of Fifth-Generation New
Radio (5G NR) systems and is likely to become the de facto
choice for most future standards.

The BICM decoder treats the transmission as multiple
parallel bit channels, with the symbol decoding metric being
the product of the bit decoding metrics. The achievable rates
can be evaluated using generalized mutual information (GMI),
which is the sum of the individual bit channel’s GMI [1].
The modulation and coding scheme (MCS) chosen for BICM
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affects the achievable rate, which is a trade-off between error-
correction capability and data transmission rate [2]. In single-
antenna systems, BICM with Gray labeling has been shown
to significantly improve system performance and can approach
the theoretical limit of channel capacity [3], [4]. The success of
BICM in single-antenna systems motivated researchers to ex-
tend this technique to Multiple-Input Multiple-Output (MIMO)
systems [5], [6]. Today, MIMO-BICM has become an essential
component of 3GPP LTE and 5G NR systems, providing
high data transmission rates and reliable communication over
wireless channels.

Linear precoding is a crucial signal processing technique
that enhances the performance of MIMO systems by leverag-
ing channel knowledge to preprocess signals before transmis-
sion. Precoders are typically designed from an information-
theoretical perspective, where the capacity or mutual infor-
mation is utilized as the criteria for optimization. Current
information-theoretical approaches for precoding design can
be categorized into two groups: 1) capacity-based design,
which uses the channel capacity for precoding design [7].
However, these designs are based on the impractical Gaussian
input assumption, resulting in a significant performance loss
when applied to practical systems that use discrete constel-
lations, such as quadrature amplitude modulation (QAM).
2) Mutual information-based design, which maximizes the
mutual information between a finite-alphabet input and the
corresponding output [8]–[11]. While the maximum mutual
information can be achieved by multi-level coding and multi-
stage decoding techniques [12], the high complexity of multi-
stage decoding renders it impractical for use in most appli-
cations. Therefore, for practical MIMO-BICM systems, the
maximum input-output mutual information is not achievable,
and the corresponding designed precoder based on the mutual
information is far from optimal.

The area of precoding in MIMO-BICM systems has re-
ceived relatively scant exploration. Key references, such
as [13], have introduced linear precoding approaches for
achieving full diversity while minimizing receiver complexity
using an iterative decoder. Meanwhile, [14] introduced BICM
Beamforming (BICMB), combining BICM with singular vec-
tor decomposition (SVD) beamforming under specific criteria
on code rate and spatial stream to achieve full diversity.
Authors in [15] demonstrated that by employing a constel-
lation precoding technique, these conditions can be overrid-
den, enabling the simultaneous achievement of full diversity
and spatial multiplexing. Similarly, [16] designed a partial
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algebraic precoder for transmitting multiple spatial streams
with full diversity over a transmit beamformed MIMO-BICM
channel. Our study innovates by presenting a novel method for
designing optimal linear precoders for MIMO-BICM systems,
focusing on maximizing the achievable BICM mutual infor-
mation using finite-alphabet input constellations. This marks
our work as a pioneering study from an information-theoretical
perspective in this domain, to the best of our knowledge.

In Closed-loop MIMO systems, beamforming gains are
achieved by leveraging channel state information (CSI) feed-
back from the user equipment (UE) to adapt precoding strate-
gies based on the downlink CSI [17]. Codebook-based pre-
coding, which involves reporting the precoder matrix indicator
(PMI) to the gNodeB (gNB), is used in 5G NR systems to re-
duce the feedback complexity and the overhead. A brute-force
search is typically used to select the precoder that maximizes
the channel capacity or another related metric by searching
through the codebook for the best PMI. However, this search
becomes prohibitively complex as MIMO dimensions increase
due to the codebook size scaling with the number of antennas.

Various PMI selection techniques have been proposed to
reduce the complexity of exhaustive search methods. Some
examples include a link adaptation and a PMI selection method
based on mutual information maximization in [18], while
[19] considers joint PMI and rank indicator (RI) selection
using the minimum mean-square error (MMSE) equalizer.
Another approach, presented in [20], estimates the optimal
PMI directly from the singular vectors of the channel matrix
by exploiting the Discrete Fourier Transform (DFT) structure,
utilizing an iterative linear phase estimation (ILPE). However,
these methods were designed for LTE and legacy systems and
may not meet the requirements of 5G NR. To overcome this
limitation, authors in [21] proposes a neural network-based
approach for direct precoder matrix selection from the Type-
I codebook in 5G NR, with the objective of maximizing the
corresponding channel capacity. In a recent study [22], the
proposed algorithms exploit the Kronecker and DFT structure
of the codebook to efficiently find the optimal PMI indices in
MIMO-BICM systems. The algorithms utilize a combination
of direct estimation and low-dimensional search techniques,
resulting in improved PMI selection performance.

Inspired by this, the aim of the second part of this pa-
per is to expand the scope of precoding design in BICM-
MIMO systems by introducing the constraint of selecting the
precoding matrix from a predefined codebook. We present
low-complexity algorithms that facilitate the selection of the
optimal precoding matrix and its corresponding PMI indices
from the Type-I codebook in 5G NR. Compared to the PMI
selection proposed in [22], our method achieves lower com-
putational complexity by employing a one-dimensional search
for the singular-vector (SV)-based approach, as opposed to the
two-dimensional search stage in [22]. In summary, the key
contributions of this paper are as follows:
● A manifold-based gradient ascent (MGA) algorithm is

proposed to maximize the achievable rate of MIMO-
BICM under a power constraint. The algorithm takes
into account the channel matrix, the signal-to-noise ra-
tio (SNR), discrete alphabet constellation, and the soft

MIMO detector used to compute the log-likelihood ratio
(LLR).

● A non-iterative algorithm is introduced that utilizes the
mathematical structure of the optimal linear precoder to
design near-optimal precoders for MIMO-BICM with low
complexity.

● The benefit of applying the proposed MGA and low-
complexity algorithms in a MIMO system with LDPC
codes is that maximizing the achievable MIMO-BICM
rate is an effective approach to minimize the block
error rate (BLER), leading to improved overall system
performance.

● We introduce novel algorithms that efficiently select PMI
from the Type-I codebook, aiming to maximize BICM
rate while keeping computational complexity low. To
address the challenges arising from discrete variables
and the absence of a closed-form objective function, we
propose a heuristic two-stage SV-based procedure for
PMI selection, leveraging the channel covariance matrix.

● The proposed PMI selection methods are evaluated
through computer simulations, employing MIMO corre-
lated channels with cross-polarized antennas as per [23],
and a realistic non-line-of-sight (NLOS) propagation
model compliant with 3GPP TR 38.901 [24]. Perfor-
mance comparisons are made with exhaustive search
based on the BICM rate and MMSE capacity metrics.

The remainder of the paper is organized as follows. Section
II presents the system model and problem statement. In
Section III, we propose two precoding design techniques for
MIMO-BICM systems without codebook constraints, namely
the MGA and the low complexity precoding design. In Section
IV, we extend our investigation to the codebook-based pre-
coding design and discuss the Type-I codebook single-panel
structure. Then, we present novel algorithms for selecting
the best PMI from the Type-I codebook in terms of the
achievable rate for MIMO-BICM systems. We also provide
a computational complexity analysis of the proposed PMI
selection algorithms. Section V presents simulation results,
and finally, Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a 5G NR system operating in the Frequency
Range 1 (FR1), where a gNB with MT antennas transmits NL

layers to a receiver equipped with MR receive antennas. The
antenna panel consists of N1 horizontal antennas and N2 ver-
tical antennas with cross-polarization. Hence, the total number
of transmit antenna ports for each panel is MT = 2N1N2. The
payload bit-stream is segmented and processed by a BICM
scheme with a capacity-approaching code like LDPC. The
encoded bit-stream is divided into code blocks (consisting of
up to 8448 bits), interleaved, and then mapped to a symbol
constellation, e.g., QAM via the Gray mapping. At the next
stage, the data symbols are demultiplexed into NL layers,
and each layer is further mapped to the BS antennas by a
precoding scheme. Assuming linear precoding, the frequency-
domain received signal on subcarrier k can be expressed as

yk =HkPksk +nk ∈ CMR , (1)
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where Hk ∈ CMR×MT represents the MIMO channel matrix,
Pk ∈ CMT×NL is the linear precoding matrix, and nk ∈ CMR

denotes the additive noise vector with zero mean and co-
variance matrix σ2IMR

, for k ∈ {1, ...,K}. The transmitted
symbol vector sk ∈ SNL is taken from the symbol alphabet S .

To account for the MCS in the precoder optimization, the
optimization metrics, such as BLER and BICM mutual infor-
mation, may be considered. We utilize mutual information as
the optimization metric for efficient precoder design in MIMO-
BICM systems. This metric offers a comprehensive evaluation,
accounting for modulation schemes, channel conditions and
noise levels, ensuring overall link capacity and robustness.
The notable advantage of utilizing BICM mutual information
is its effectiveness in assessing the BLER in a comprehen-
sive communication system equipped with capacity-achieving
error-correction codes. Through our simulations, we illustrate
that selecting BICM mutual information as the optimization
criterion ensures that the resulting precoder, is nearly optimal
for practical coded systems, thereby minimizing BLER.

For notational simplicity, we drop the subscript k, in other
words we consider a single carrier system without loss of
generality and the generalization to multi-carrier transmission
will be discussed later. By using the optimum soft detection at
the receiver, we use the channel observation y along with a-
priori information P (s) to generate the intrinsic log-likelihood
ratio (LLR) value for each biq , which denotes the qth bit in
the ith stream. By defining the equivalent channel H̄ ≜HP ,
for a given constellation S , we have

Liq = ln
p (biq = 1 ∣y, H̄ )

p (biq = 0 ∣y, H̄ )
= ln

∑
s∈S1

iq

exp(−
∥y−H̄s∥2

σ2 )

∑
s∈S0

iq

exp(−
∥y−H̄s∥2

σ2 )

, (2)

where p (biq ∣y, H̄ ) is the conditional probability mass func-
tion of biq given (y, H̄), Sbiq denotes the set of transmit
vectors given biq = b ∈ {0,1}.

The calculation of (2) becomes exponentially complex as
the number of data streams NL increases. However, one can
adopt the max-log approximation log∑

k
exp(xk) ≈max

k
xk, to

simplify the LLR computation. This results in the following
approximation of the LLR:

L̃iq =
1

σ2

⎡
⎢
⎢
⎢
⎣
min
s∈S0

iq

∥y − H̄s∥
2
− min

s∈S1
iq

∥y − H̄s∥
2
⎤
⎥
⎥
⎥
⎦
. (3)

By avoiding logarithmic and exponential operations, the ap-
proximate LLR in (3) can be computed efficiently using
sphere decoding algorithms [25]- [26]. Afterwards, the esti-
mated symbols based on LLR values are demodulated, de-
interleaved, and decoded, yielding the estimated payload bit-
stream.

For a constellation with Q bits per symbol and a cardinality
of ∣S ∣ = 2Q, the MIMO-BICM system is represented as a set
of NLQ independent parallel binary-input channels. Assuming

i.i.d. uniform code bits, we obtain the mutual information
between bits and the corresponding LLRs as

RBICM =
NL

∑
i=1

Q

∑
q=1
I(biq;y∣H̄) =

NL

∑
i=1

Q

∑
q=1
(1 −H (biq ∣y, H̄ )),

(4)

where H (biq ∣y, H̄ ) is the conditional entropy of biq given
y and H̄ . According to the definition in (2), the probability
mass function p(biq ∣y, H̄) can be expressed as the function
of the LLR

p(biq ∣y, H̄) =
1

1 + e(1−2biq)Liq
. (5)

Therefore, the conditional entropy is given as

H (biq ∣y, H̄ ) = E (log2 (1 + e
(1−2biq)Liq)) , (6)

where the expectation is over (biq, Liq). By substituting (6)
into (4) and leveraging the approximate LLR provided in (3),
we can derive the approximate achievable rate as follows:

R̃BICM = NLQ −E
⎛

⎝

NL

∑
i=1

Q

∑
q=1

log2 (1 + e
(1−2biq)L̃iq)

⎞

⎠
. (7)

With the assumption of E (ssH) = INL
, the average trans-

mit power at the transmitter will be E (∥Ps∥
2
) = tr (PHP ).

The precoding design problem is approached with the goal of
maximizing the achievable rate of MIMO-BICM system while
maintaining a power constraint. The formulation, based on the
achievable rate with approximate LLR as indicated in Eq. (7),
is presented below:

max
P

R̃BICM

s.t. tr (PHP ) = γ
P ∈W ,

(8)

where γ is the maximum transmit power and W is the type-
I codebook. We investigate the BICM maximization problem
in two scenarios. First, we drop the codebook constraint and
consider the problem in a general setting, as discussed in
Section III. Then, in Section IV, we further extend our study by
assuming that the precoder matrix is constrained to be chosen
from the type-I codebook, and we aim to find the best PMI
for low-dimensional CSI feedback under this constraint.

We can compare problem (8) with an existing MIMO
precoding problem with finite-alphabet inputs [9]. In the coded
modulation (CM) scheme, a linear precoder is designed by
maximizing the input-output mutual information, denoted by
RCM, given by

RCM = I(s;y∣H̄) = I({bik}ik ;y∣H̄). (9)

Comparing (4) and (9), we can conclude that RBICM ≤ RCM,
as BICM receivers neglect the dependencies between code
bits. The gap between RBICM and RCM increases with the
condition number of the channel and the cardinality of the
constellation, as the correlation between code bits increases.
Therefore, the optimal precoder designed by maximizing RCM

may not be optimal for MIMO-BICM systems.
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III. PRECODER DESIGN WITHOUT CODEBOOK
CONSTRAINT

In this section, we present two approaches for solving the
BICM rate maximization problem, to design the precoder
without the codebook constraint. The first solution is the MGA
approach, which can provide a high-accuracy solution at the
cost of increased computational complexity. The second solu-
tion is based on the SVD of the channel matrix which provides
a near-optimal performance while reducing the computational
complexity.

A. Manifold-Based Gradient Ascent (MGA) Precoding Design

In this section, we will focus on developing numerical
algorithms for problem (8) by first deriving the complex
gradient of R̃BICM with respect to the precoder P . To do this,
we start by expressing the approximate LLR in (3) as the
difference of two minimum distance problems. Let s0iq and s1iq
be the solutions to the following minimum distance problems,
respectively:

s0iq = argmin
s∈S0

iq

∥y −HPs∥
2
,

s1iq = argmin
s∈S1

iq

∥y −HPs∥
2
.

(10)

Then, the approximate LLR value can be expressed as

L̃iq =
1

σ2
[∥y −HPs0iq∥

2
− ∥y −HPs1iq∥

2
] . (11)

Suppose that the precoder is updated from P to P + ∆P ,
and the solutions of minimum distance problems s0iq and
s1iq remain unchanged as long as ∆P → 0. Based on this
assumption, we can derive the complex gradient of L̃iq , which
is provided in the following lemma.

Lemma 1: The complex gradient of L̃iq with respect to P
is given by

∂L̃iq

∂P ∗
=

1

σ2
HH[(y −HPs0iq)(s − s

0
iq)

H

− (y −HPs1iq)(s − s
1
iq)

H],

(12)

where s is the transmit vector and y is the receive vector.
Proof: See Appendix A.

The following theorem provides the complex gradient of
R̃BICM with respect to P , utilizing Lemma 1.

Theorem 1: The complex gradient of R̃BICM with respect to
P is given by

∂R̃BICM

∂P ∗
= E [G(s,y)] . (13)

Here, G (s,y) is defined as

G(s,y) =
1

σ2
HH
[(y1T

MR
−HPS0

)Λ(s1T
MR
−S0
)
H

−(y1T
MR
−HPS1

)Λ(s1T
MR
−S1
)
H
],

(14)

where 1MR
is the column vector of length MR with all

elements equal to one, S0 = [s011,s
0
12, ...,s

0
NLQ
], S1 =

[s111,s
1
12, ...,s

1
NLQ
], and Λ is a diagonal matrix. Let p =

(i − 1)Q + q, the pth diagonal element of Λ is given as

Λpp = −
1

ln(2)
⋅
(1 − 2biq) exp [(1 − 2biq)L̃iq]

1 + exp [(1 − 2biq)L̃iq]
. (15)

Proof: To compute the complex gradient of R̃BICM, we
apply the chain rule in differentiation. Specifically, we first
obtain the complex gradient of R̃BICM with respect to L̃iq .
Next, we utilize the complex gradient of L̃iq with respect to
the precoder P , which is obtained from Lemma 1. Therefore,
the proof is concluded.

The expectation in (13) does not have a closed-form expres-
sion, and therefore the gradient needs to be evaluated using the
Monte Carlo method1. Given a large number of N independent
samples {sn,yn}

N
n=1 generated by (1), an estimate of the

complex gradient in (13), denoted as Ω, can be obtained by
using the sample average as follows:

Ω =
1

N

N

∑
n=1

G(sn,yn
). (16)

Since E(Ω) = ∂R̃BICM
∂P ∗ and the variance of Ω decreases quadrat-

ically with increasing N due to the central limit theorem, we
can use the noisy gradient Ω to design an efficient algorithm.

To solve problem (8) using noisy gradient information, we
propose a manifold-based gradient ascent (MGA) algorithm.
At the ℓth iteration, the algorithm updates the current solution
Pℓ to Pℓ+1 using the following rule:

Pℓ+1 = Proj [Pℓ +
µ
√
ℓ
∇P R̃BICM] , (17)

where µ√
ℓ

is the step-size, Proj(P ) is given by

Proj(P ) =

√
γ

Tr(PHP )
P , (18)

and ∇P R̃BICM is the gradient of R̃BICM with respect to P
on the sphere manifold M = {P ∣Tr(PHP ) = γ}. To obtain
∇P R̃BICM, we project Ω onto the tangent space of M. This
can be achieved by solving the optimization problem:

∇P R̃BICM = argmin
G∈TM

∥Ω −G∥
2
, (19)

where the tangent space TM is defined as TM =

{G∣Tr(GHP +PHG) = 0}. Using the Lagrangian multiplier
method, we compute the closed-form expression of ∇P R̃BICM
as

∇P R̃BICM =Ω −
Re{Tr[ΩHP ]}

γ
P . (20)

The complete MGA algorithm is summarized in Algorithm 1.

1This process can occur at either the UE (FDD mode) or gNB (TDD
mode). By generating multiple independent samples {sk} and simultaneously
computing {yk} via equation (1), with independent Gaussian noises {nk}
generated by the Box-Muller method, there’s no need to regenerate samples
when the channel or precoder changes. Instead, the UE/gNB can store and
reuse independent samples {sk,nk} to compute {yk}.
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Algorithm 1 MGA Precoding

1. Initialization: Generate an initial precoder P1.
2. for ℓ = 1 to ℓmax do

● Generate N independent samples {sn,yn} with Pℓ.
● Compute Ω at Pℓ by (16).
● Compute ∇P R̃BICM by (20).
● Update Pℓ to Pℓ+1 according to (17).

end for
3. Output: Pℓmax .

B. Low Complexity Precoding Design

In this subsection, we explore the structure of the optimal
precoder and propose a low-complexity non-iterative algo-
rithm to design a near-optimal precoder. Given that optimal
precoders with discrete input alphabets are non-diagonal,
requiring precoding across all subchannels [8], our approach
involves a two-stage precoding strategy. Initially, we utilize a
reference SVD-based precoder known for maximizing capac-
ity. Subsequently, we refine it with a second precoding sub-
matrix, implemented through rotation matrices. We specifically
consider the X-code structure for this second stage, enhancing
diversity and optimizing it to maximize the BICM rate.

Let the singular value decomposition (SVD) of H be

H =KΣLH , (21)

where K ∈CMR×rank(H) is a unitary matrix with left singular
vectors, Σ∈Crank(H)×rank(H) is a diagonal matrix with singular
values arranged in decreasing order, and L ∈ CMT×rank(H)

is a unitary matrix of right singular vectors. To start, we
state the following proposition as a direct application of [27,
Proposition 1].

Proposition 1: Given the SVD of the precoder matrix, the
left singular vectors of the optimal precoder P can always be
chosen to be the first NL columns of L.

Based on the above proposition, we factorize P into the
following form

P = L(∶,1 ∶NL)Θ, (22)

where Θ ∈ RNL×NL is an orthogonal matrix. Then, the
equivalent system model is given by

ȳ =KHy =ΣHΘx +KHn. (23)

The generation of the orthogonal matrix Θ is based on the
Givens rotation matrix, which is designed to decompose (23)
into ⌊NL

2
⌋ parallel 2 × 2 MIMO subsystems [28]. Inspired by

optimal diversity order strategies in [28], our approach pairs
the k′-th subchannel with the (NL − k

′ + 1)-th subchannel for
k′ ∈ {1,2, ..., ⌊NL

2
⌋}. This strategy pairs a strong subchannel

with a weaker one, followed by symbol rotation by an angle
θ, to leverage the stronger channel for enhanced detection of
symbols from the weaker channel. Therefore, each pair of
(p, q) corresponds to a subsystem of (p, q)-th data streams
which are precoded together by the submatrix Θ(pq) ∈ R2×2.

This submatrix is formed by selecting the (p, q)th rows and
columns of Θ, i.e.,

Θ(pq) = [
Θpp Θpq

Θqp Θqq
] , (24)

where Θpq is the (p, q)th element of Θ. To parameterize the
2×2 orthogonal submatrix Θ(pq), we use the following form:

Θ(pq) = [
cos(θ) − sin(θ)
sin(θ) cos(θ)

] , (25)

where θ ∈ [0, π
4
] is a parameter that needs to be optimized.

Therefore, the orthogonal matrix Θ depends on a single pa-
rameter θ. To derive the optimal θ for a 2Q−QAM constellation,
a set of 2 × 2 channels and noise variances, denoted as
{Hi, σ

2
i }

N
i=1, is generated. Subsequently, for each {Hi, σ

2
i },

a one-dimensional search is employed to find the optimal θ
that maximizes the BICM mutual information:

θ⋆i = argmax
θi

R̃BICM(θi∣Hi, σ
2
i ). (26)

Here the notation R̃BICM(θi∣Hi, σ
2
i ) denotes that R̃BICM is

a function of θi, given {Hi, σ
2
i }. The corresponding optimal

code rate is then defined as:

r⋆i =
R̃BICM(θ

⋆
i ∣Hi, σ

2
i )

2Q
.

Analyzing the data {θ⋆i , r
⋆
i }

N
i=1, three key observations are

made:
● When r⋆i is below a threshold β1, the optimal angle θ⋆i

is nearly zero.
● When r⋆i is above a threshold β2, the optimal angle θ⋆i

is nearly a constant.
● When β1 < r

⋆
i < β2, the optimal angle θ⋆i is monotonically

increasing with respect to r⋆i .
Based on these observations, we determine β1 and β2 from the
data. A quadratic equation models the relationship between θ⋆i
and r⋆i when β1 < r

⋆
i < β2, given by:

θ⋆i = a1(r
⋆
i )

2
+ a2r

⋆
i + a3, i = 1,2, ...,N

Expressing these equations in the following matrix form allows
us to determine the unknown parameters {a1, a2, a3} directly
through the least squares method:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θ⋆1
...
θ⋆N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(r⋆1)
2 r⋆1 1

...
...

...
(r⋆N)

2 r⋆N 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (27)

This shows that the optimal orthogonal matrix Θ(θ) is mainly
determined by the modulation order and code rate. The optimal
values of θ as a function of the code rate range, are given in
Table I for different modulation schemes of QPSK, 16QAM,
and 64QAM.

Given the code rate, we can compute the optimal θ and the
corresponding near-optimal precoder P = L(∶,1 ∶NL)Θ(θ).
If the code rate is unknown, we can use an initial θ0 = 0.2 to
estimate the code rate r0 =

R̃BICM
NLQ

at P = L(∶,1 ∶NL)Θ(θ0),
and then compute the optimal θ and the corresponding optimal
precoder based on r0.
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Table I: Optimal value of θ for different code rates and modulation orders

QPSK 16QAM 64QAM
r∈[0,0.4) θ = 0 r∈[0,0.47) θ = 0 r∈[0,0.58) θ = 0

r∈[0.4,0.69] θ = −3.88r2+5.43r−1.46 r∈[0.47,0.62] θ = −0.84r2+2.44r−0.95 r∈[0.58,0.8] θ = −4.54r2+7.3r−2.7
r∈(0.69,1] θ = 0.44 r∈(0.62,1] θ = 0.24 r∈(0.8,1] θ = 0.235

IV. THE CODEBOOK-BASED PRECODING DESIGN

To solve the optimization problem (8) with the codebook
constraint, an exhaustive search over all precoder candidates
in the codebook is required. However, evaluating the BICM
rate using Monte Carlo simulations or numerical methods can
be computationally expensive. To address this, capacity and
signal-to-interference plus noise-ratio (SINR) are commonly
used as quality indicators and the MIMO demodulators with
lower complexity, consisting of a linear equalizer followed by
per-layer scalar soft demodulators, can also be used for de-
coding. This approach has been studied using minimum mean-
square error (MMSE) and zero-forcing (ZF) equalization [29].
We propose using MMSE equalization to decouple the layers
and assess performance by considering the sum of mutual
information over NL sub-channels. Utilizing the orthogonality
principle, the MMSE equalizer is given by

G = (PHHHHP + σ2INL
)
−1

PHHH , (28)

and the corresponding post-MMSE SINR of the lth output
layer is expressed as [30]

γl =
1

σ2 [(PHHHHP + σ2INL
)
−1
]
l,l

− 1, (29)

where, [.]l,l denotes lth diagonal element of the inverse matrix.
Therefore, the achievable capacity in the equalized lth sub-
channel is computed as

CMMSE,l = log2 (1 + γl). (30)

The sum of the achievable capacity over NL sub-channels
could serve as a cost function for searching the codebook,
and our baseline method for selecting the precoder from the
codebook can be given as

max
P

NL

∑
l=1

log2 (1 + γl)

s.t. tr (PHP ) = γ
P ∈W .

(31)

The PMI of the optimal precoder, which maximizes the
post-equalization mutual information, will be reported for the
CSI feedback. We will consider the optimization problem with
the BICM rate criterion maximization and propose a lower
complexity solution in the next subsections. We will also
compare the performance of our proposed method with the
exhaustive search method used to solve the MMSE capacity
maximization problem, which serves as a baseline.

A. The codebook type-I single-panel structure

The precoder matrix W for type-I single-panel CSI can
be expressed as W = W1W2, with W1 ∈ C2N1N2×2L and
W2 ∈ C2L×ν , where L = ⌈ν

2
⌉. The matrix W1 targets wideband

and long-term channel properties, while W2 represents the
subband and frequency dependent part of the channel. Type-I
codebooks support precoding matrices up to rank 8, reported
as the rank indicator ν ∈ {1,2, ...,8} to the gNB [31].

The matrix W1 defines a beam or group of beams pointing
in various directions and can be expressed as W1 = I2 ⊗B.
The first column of B ∈ CN1N2×L, denoted by vlm (or ṽlm for
ν ∈ {3,4} and MT ≥ 16, can be expressed as the Kronecker
product of two column vectors, given as

{
ṽl,m = ṽl ⊗um, if ν = 3 or 4 and PCSI-RS ≥ 16
vl,m = vl ⊗um, otherwise, (32)

where

vl = [1 e
j 2πl
O1N1 ⋯ e

j
2πl(N1−1)

O1N1 ]
T
, (33)

um = [1 e
j 2πm
O2N2 ⋯ e

j
2πm(N2−1)

O2N2 ]
T
,

ṽl = [1 e
j 4πl
O1N1 ⋯ e

j
4πl(N1/2−1)

O1N1 ]
T
,

and the values of l and m have been determined in [32].
The parameters O1 and O2 are the over-sampling factors
for the horizontal and the vertical directions, respectively.
For higher ranks, ν > 1, the rest of the columns could be
defined similarly as vl′,m′ = vl′ ⊗ um′ , vl′′,m′′ = vl′′ ⊗ um′′

and vl′′′,m′′′ = vl′′′ ⊗ um′′′ , using coefficients l′, l′′, l′′′ and
m′,m′′,m′′′, respectively.

The codebook precoder is generated using predefined in-
dices known as PMI, which consist of either three or four
indices depending on the supported rank. The precoder con-
struction involves using the indices i1,1 and i1,2 to determine
l and m, respectively. Moreover, the index i1,3 is mapped to
k1 and k2 to derive additional parameters l′ and m′ for ranks
2, 3, and 4. Similarly, for ν > 4, discrete Fourier transform
coefficients are derived by adding constant values to l and
m. Assuming that constants α and β are added to l and m,

respectively, we define vα = [1 e
j 2πα
O1N1 ⋯ e

j
2πα(N1−1)

O1N1 ]
T

and uβ = [1 e
j 2πβ
O2N2 ⋯ e

j
2πβ(N2−1)

O2N2 ]
T

. Then, the second
and subsequent columns of B can be derived based on the first
column by calculating the element-wise Hadamard product
between vl (or um) and vα (or uβ). Thus, we have

vx = vl ⊙ vα =Dαvl,

uy = um ⊙uβ =Dβum. (34)

Here, x ∈ {l′, l′′, l′′′}, y ∈ {m′,m′′,m′′′}, Dα = Diag (vα) and
Dβ = Diag (uβ), where Diag (.) creates a diagonal matrix by
placing the vector argument along its main diagonal. Finally,
the corresponding column of B can be obtained by taking the
Kronecker product of these two vectors as

vx ⊗uy = (Dαvl)⊗ (Dβum) =Dαβvl,m, (35)
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where, Dαβ = Dα ⊗ Dβ . This shows the dependencies
between the first column and the remaining columns of B.

The W2 matrix chooses a group of DFT vectors from W1

and applies phase shifts over panels and/or polarizations. It
can be expressed as the following Khatri-Rao product

W2 =Ψ ◇E, (36)

where the permutation matrix E ∈ {0,1}
L×ν selects the

intended beam from the DFT column vectors of B. The
phase shifting between two polarizations is performed by

Ψ = [
1T
ν

φ̃T
ν
] ∈ C2×ν , where 1ν is a column vector of length ν

with all elements equal to one, and another length-ν vector φ̃ν

specified in [32], containing elements from the set {±1,±φn},
with φn = e

jπn
2 .

B. Proposed PMI selection algorithms for BICM rate maxi-
mization

To maximize the BICM rate in a codebook-based pre-
coder selection scheme, the exhaustive search algorithm is
the most straightforward but time-consuming and impractical
for large system dimensions. Due to the discrete parameters
and the constant-modulus constraints of DFT-based codebook
precoders, the problem (8) becomes combinatorial, making
it impractical to solve optimally. There are two solution
methods for combinatorial optimization problems: exact and
heuristic methods. However, even using the MMSE capacity
cost function, an exact solution is difficult to obtain due to
the non-convex nature of the problem and multiple variables.
Numerical and optimization techniques used to solve these
problems often require iterative procedures and may only
converge to a local optimum. As such, a heuristic approach
is necessary to balance exploration and exploitation and find
optimal or near-optimal solutions.

In the absence of a per-antenna transmit power constraint,
it is well-known that the optimal precoder can always be
chosen to coincide with the right singular vectors of the
channel matrix H through its SVD or equivalently found by an
eigenvalue-decomposition (EVD) of HHH [27]. To minimize
the mean squared error (MSE) and maximize the capacity,
the optimal rank-NL precoder can be constructed from the
first NL columns of L, which correspond to the NL largest
eigenvalues of HHH [17]. Given this reference precoder, to
approximate the closest precoder from the codebook for a
given rank of ν = NL, it is sufficient to estimate its com-
ponents, which are vl,m (ṽl,m when ν ∈ {3,4} and MT ≥ 16),
the cophasing term φn, the third component which is vxy

for y ∈ {m′,m′′,m′′′}, x ∈ {l′, l′′, l′′′} when ν > 1, and the
additional component θp when ν ∈ {3,4} and MT ≥ 16. These
components are associated with the PMI indices (i1,1i1,2),
i2, and i1,3. Therefore, the proposed approach to derive these
constituent elements of the codebook precoder is to utilize
the dominant right singular vector of the channel matrix. It is
evident that the columns of the codebook precoder are inter-
related, and performing a column-wise mapping of it to the
optimal SV-based precoder is inefficient since it may converge
to inconsistent solutions. Additionally, jointly optimizing these

three constructing elements is challenging, and there is no
explicit solution to this problem. To overcome this issue, we
propose a simple and effective heuristic approach that involves
a combination of searching over predefined values of one
or two variables and mapping the remaining variables to the
optimal singular-vector (SV)-based precoder.

For ν = 2 or ν ∈ {3,4} with MT < 16, deriving PMI indices
for the codebook precoder involves estimating the vector vl,m

and the variables k1 and k2, which determine the DFT phases
of the second (and fourth) column(s) of the codebook matrix
precoder. This is a non-trivial task as the PMI index i1,3 is
mapped to the variables k1 and k2, but the reverse mapping
from k1 and k2 to i1,3 is not always unique for all antenna
configurations. Furthermore, according to (35), if the value
of the variable i1,3 is given, the sub-vector vl′,m′ can be
constructed in terms of the sub-vector vl,m. In the case of
ν ∈ {3,4} with MT > 16, the PMI index i1,3 determines the
variable θp, which is a phase-shifting term in constructing the
codebook precoder columns.

As there are only limited specified values for the variable
i1,3, a practical way to find near-optimal values of the PMI
indices is to fix i1,3 to one of its permitted values and then
estimate i1,1, i1,2, and i2 by mapping the first column of the
codebook precoder to the dominant eigenvector.

Let L = [l1, l2, ..., lMT
] represent the right singular vectors

of the channel matrix, and let wi denote the ith column of the
codebook precoder W . We assume that the first column l1
can be regarded as the first column of the codebook precoder
matrix, denoted by w1, plus an error term due to the mapping
to a unit-modulus codebook [20], and we have:

l1 =w1 + ϵ. (37)

where ϵ stands for the mapping error. The first column can be
written as

w1 = [
vl,m

φnvl,m
]= [

1
φn
]⊗ vl,m. (38)

The elements of w1 are unit-modulus DFT-like components
with a Kronecker structure composed of three different DFT
vectors: vl, um, and [1 φn]

T
. By examining the relationship

between the elements of vl,m in

vl,m = vl ⊗um = [uT
m e

j 2πl
O1N1 uT

m ⋯ e
j
2πl(N1−1)

O1N1 uT
m
]
T
,

(39)

we can see that starting from the first element, every N2 con-
secutive elements are associated with um, and we have N1 and
2N1 copies of it along vl,m and w1, respectively. Similarly,
the first N2 consecutive elements of vl,m are multiplied by the
first element of vl, the second N2 consecutive elements of vl,m

are multiplied by the second element of vl, and so on until
the end, which implies that there are N2 and 2N2 copies of
each element of vl in vl,m and w1, respectively. Moreover, the
second N1N2 elements of w1 are φn phase-shifted versions
of the first N1N2 elements.

Let us have N observations of a complex-valued sinusoidal
signal buried in noise

x(k) = aejϕk + ϵ(k), k = 0,1, ...,N − 1 (40)

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2024.3383106

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Ilmenau. Downloaded on April 01,2024 at 10:55:51 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON COMMUNICATIONS 8

where a is a complex-valued amplitude, and ϕ ∈ (−π,π) is the
normalized phase and ϵ is the noise term. Using N samples
of the noisy signal x(k), the covariance method of linear
prediction is employed for the phase estimation and the first
order estimator is

ϕ̂ =∠(
N−2
∑
k=0

x∗(k)x(k + 1)) mod (2π), (41)

which is called linear frequency estimation in [33]- [34] and
linear phase estimation (LPE) in [20]. In the subsequent
equations based on LPE, the modulo operation has been
omitted for brevity.

By defining θl ≜
2πl

N1O1
and θm ≜ 2πm

N2O2
, we can

represent two consistent DFT vectors of vl,m, defined
in (33), as vl = [1 ejθl ⋯ ej(N1−1)θl]

T
and um =

[1 ejθm ⋯ ej(N2−1)θm]
T

. Thus, our objective is to esti-
mate the unknown phases θl, θm and φn from the vector l1 in
(37). To detect w1 from the perturbed vector vl,m, we utilize
(41) to estimate each of the three phases from their relevant
samples as described above. Although we have phase-shifted
samples for each desired phase, (41) is successful in phase
estimation because the common phase rotation of samples is
canceled and does not affect the LPE result.

To illustrate the LPE technique for estimating the variable
θm, we consider that there are 2N1 copies of um in l1, and
applying LPE to these relevant samples yields:

θ̂m =∠
⎛

⎝

2N1

∑
j=1

N2−1
∑
k=1

l∗1 ((j − 1)N2 + k) l1 ((j − 1)N2 + k + 1)
⎞

⎠
.

(42)
To estimate the unknown phases θl and φn, we adopt the
same approach as for θm by considering the appropriate sub-
vectors that contain the corresponding DFT vector elements
with different rotations. There are 2N2 copies of each element
of vl with different phase shifts, and we can combine them
using LPE to estimate θl, which yields

θ̂l =∠

⎛
⎜
⎜
⎝

2N1−1
∑
j=1
j≠N1

N2

∑
k=1

l∗1 ((j − 1)N2 + k) l1 (jN2 + k)

⎞
⎟
⎟
⎠

. (43)

Considering the structure of w1, we observe that the phase
difference between the first N1N2 elements and the second
N1N2 elements is equal to φn. Therefore, we can estimate
the phase φn using LPE as follows:

φ̂n =∠(
N1N2

∑
k=1

l∗1 (k) l1 (N1N2 + k)) . (44)

For each phase variable, we have multiple copies of the cor-
responding DFT vector, which are combined in the last three
equations. Instead of utilizing all the available samples for
phase detection, we can reduce the computational complexity

by using a fewer number of observations. This results in a
lower cost and the following equations:

θ̂m =∠(
N2−1
∑
k=1

l∗1 (k) l1 (k + 1)) , (45)

θ̂l =∠(
N2

∑
k=1

l∗1 (k) l1 (N2 + k)) ,

φ̂n =∠(
N1

∑
k=1

l∗1 (k) l1 (N1N2 + k)) .

Having estimated the phases, the DFT coefficients can be
obtained through hard decision as follows:

m̂ = round(
O2N2

2π
θ̂m) , l̂ = round(

O1N1

2π
θ̂l) , (46)

n̂ = round(
2

π
φ̂n) .

To map the estimated DFT coefficients l̂, m̂ and n̂ to the
corresponding PMI indices i1,1, i1,2 and i2, we need to follow
a mapping rule that depends on the number of transmit layers
and the codebook mode. The mapping rules for different ranks
of NL ∈ {1,2,3,4} and antenna configurations are presented
in Table II.

After applying the aforementioned procedure for each per-
mitted value of i1,3, along with the estimated parameters
î1,1, î1,2, and î2, the respective codebook precoder P̂i1,3

can be found. The selection of the best i1,3 to achieve the
optimal BICM rate involves assessing the BICM rate for each
permissible i1,3. However, as the BICM rate cannot be directly
evaluated with a closed-form formulation, alternative cost
functions are proposed to reduce computational complexity.
Given that BICM mutual information characterizes achievable
rates based on specific coding and modulation, we consider
MIMO capacity—representing the upper limit of mutual in-
formation—as a significant precoding design criterion. This
criterion has been extensively utilized in the context of spatial
multiplexing and MIMO systems for precoder selection [17],
[27], [35]- [36]. When the transmitter precodes the information
with P before transmission, the mutual information assuming
an uncorrelated complex Gaussian source, given H and a fixed
P , is

I(P ) = log2 det(INL
+

1

σ2
PHHHHP ) . (47)

One criterion inspired by capacity is to maximize the mutual
information by finding i1,3 ∈ {1, ..., I1,3} that maximizes the
determinant of the effective channel matrix, given by

î1,3 = arg max
0⩽i1,3⩽I1,3

det (P̂H
i1,3H

HHP̂i1,3) . (48)

Alternatively, for certain system configurations, another appro-
priate selection metric could be the maximization of transmit
power. In this case, the index i1,3 that maximizes the transmit
power can be chosen based on:

î1,3 = arg max
0⩽i1,3⩽I1,3

∥P̂H
i1,3H

HHP̂i1,3∥F
. (49)

Based on the steps outlined above, the proposed method
is able to determine the best PMI indices without the need
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Table II: Mapping from l̂, m̂ and n̂ to i1,1, i1,2 and i2 for different ranks

Config. i1,1 i1,2 i2

NL = 1
Mode = 1 l̂mod (N1O1) m̂mod (N2O2) n̂mod4

NL = 1
Mode = 2,N2 > 1 ⌊ l̂

2
⌋mod (N1O1

2
) ⌊ m̂

2
⌋mod (N2O2

2
) 4 (l̂mod2) + 8 (m̂mod2) + n̂

NL = 1 or 2
Mode = 2,N2 = 1

⌊ l̂
2
⌋ (l̂ = 0 or 1) ,

⌊ l̂
2
⌋ − 1 (l̂ = N1O1 or N1O1 + 1) ,
⌊ l̂
2
⌋ or ⌊ l̂

2
⌋ − 1 (Oth.)

m̂ = 0 4 ((l̂ − 2i1,1) mod4) + n̂

NL = 2
Mode = 1 l̂mod (N1O1) m̂mod (N2O2) n̂mod2

NL = 2
Mode = 2,N2 > 1 ⌊ l̂

2
⌋mod (N1O1

2
) ⌊ m̂

2
⌋mod (N2O2

2
) n̂mod2

NL = 3 or 4
MT < 16

l̂mod (N1O1) m̂mod (N2O2) n̂mod2

NL = 3 or 4
MT ≥ 16

l̂mod (N1O1
2
) m̂mod (N2O2) n̂mod2

to search over all candidate precoders in the codebook and
calculate the metric for each one. This eliminates the search
phase completely or to a large extent, by directly deriving the
PMI indices or reducing the number of search parameters to
one index. To summarize, Algorithm 2 describes the steps of
the proposed procedure for finding the best PMI indices.

Algorithm 2 SV-aided One-dimensional Search

1. Input: The right singular vectors of H denoted by L =
[l1, l2, ..., lMT

]

2. Map l1 to [
vl,m

φnvl,m
] and estimate θ̂l, θ̂m and φ̂n

using (45)
3. Obtain m̂, l̂ and n̂ using (46)
4. Using Table II to map l̂, m̂ and n̂ to î1,1, î1,2 and î2,
respectively
5. for i1,3 = 0 to I1,3 do

● Find the precoder Pi1,3 corresponding to î1,1, î1,2
and i1,3 in the codebook

● Compute the cost function Ci1,3 , using the BICM
rate or the criteria in (48) or (49)

end for
6. î1,3 = arg max

0⩽i1,3⩽I1,3
Ci1,3

7. Output: Popt = P(̂i1,1 ,̂i1,2 ,̂i2 ,̂i1,3)

For ν ∈ {3,4} and MT ≥ 16, the rank-ν codebook precoder
has a structure where all columns are constructed using
the same sub-vector ṽl,m. This suggests combining the Nc

columns of the rank NL SV-based precoder for a given i1,3 and
estimating the other three PMI indices using a similar approach
to Algorithm 2. We can compute three unknown phases θl, θm,
and φn using the equations below, instead of (42)- (44):

θ̂m =∠(
Nc

∑
i=1

N2−1
∑
k=1

l∗i (k) li (k + 1)) , (50)

θ̂l =∠(
Nc

∑
i=1

N2

∑
k=1

l∗i (k) li (N2 + k)) ,

φ̂n =∠(
Nc

∑
i=1

N1

∑
k=1

l∗i (k) li (N1N2 + k)) .

All dominant Nc right singular vectors contribute in the
phase estimation process, which leads to a larger number of
samples used for phase calculation with the LPE method.
The remaining steps, including mapping estimated DFT coeffi-
cients and selecting i1,3 by computing a selection criterion, are
identical to Algorithm 2. The steps are detailed in Algorithm 3.

Algorithm 3 Combined-SV aided One-dimensional Search

1. Input: The right singular vectors of H denoted by L =
[l1, l2, ..., lMT

]

2. Exploiting [l1, l2, ..., lNc] to estimate θ̂l, θ̂m and φ̂n

using (50)
3. Obtain m̂, l̂ and n̂ using (46)
4. Using Table II to map l̂, m̂ and n̂ to î1,1, î1,2 and î2,
respectively
5. for i1,3 = 0 to I1,3 do

● Find the precoder Pi1,3 corresponding to î1,1, î1,2,
î2 and i1,3 in the codebook

● Compute the cost function Ci1,3 , using the BICM
rate or the criteria in (48) or (49)

end for
6. î1,3 = arg max

0⩽i1,3⩽I1,3
Ci1,3

7. Output: Popt = P(̂i1,1 ,̂i1,2 ,̂i2 ,̂i1,3)

Algorithm 2 estimates the first column of the codebook
precoder using the dominant eigenvector, but this may not
always lead to optimal choices for the corresponding in-
dices in NLoS channel models. To address this, we propose
two modified algorithms. The first considers Nc dominant
eigenvectors and estimates the parameters for each column
through Algorithm 2. The optimal eigenvector and i1,3 are then
determined by computing the cost function for the codebook
precoder corresponding to the estimated î1,1, î1,2, and î2 for
each specified eigenvector and different values of i1,3.

In the second modification, i2 is considered as an additional
search parameter to further enhance the performance. Given
the limited number of allowed values for i2, determining the
optimal value involves computing the cost function across
combinations of its different values with the other variables,
including i1,3 and the first Nc eigenvectors. The detailed
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steps of these two algorithms are outlined in a comprehensive
manner in Algorithm 4. The nature of the search step is
contingent on whether both i2 and i1,3 are explored or if the
search is solely focused on i1,3. This distinction leads to either
a two-dimensional or three-dimensional search, respectively.
In the two-dimensional case, the inner loop involving the
variable i2 within the nested loops with variables i1,3 and i2
is omitted.

Algorithm 4 SV-aided Two/Three-dimensional Search

1. Input: The right singular vectors of H denoted by L =
[l1, l2, ..., lMT

]

2. for nc = 1 to Nc do
● Map the first N1N2 elements of lnc to vl,m and

estimate θ̂l, and θ̂m as in (45)
● Obtain m̂ and l̂ using (46)
● Using Table II to map l̂ and m̂ to î1,1 and î1,2,

respectively
● for i1,3 = 0 to I1,3 do

● for i2 = 0 to I2 do
– Find the codebook precoder P corresponding

to {̂i1,1, î1,2, i2, i1,3}
– Compute the cost function of Cnc,i2,i1,3

● end for
● end for

end for
3. n̂c, î2, î1,3 = arg max

0⩽i2⩽I2,
0⩽i1,3⩽I1,3
0⩽nc⩽Nc

C(nc,i2,i1,3)

4. Output: Popt = P(̂i1,1 ,̂i1,2 ,̂i2 ,̂i1,3)

C. Computational Complexity Analysis

In this section, we analyze the computational complexity of
the proposed low-dimensional search algorithms and compare
them to the widely used exhaustive search in the codebook,
based on the MMSE capacity as the baseline, since there
is no closed-form solution for the BICM rate evaluation.
In the four proposed SV-based algorithms, we first need to
compute the SVD of the channel matrix or the EVD of the
Gram matrix, which is proportional to O(M3

T ). Calculating
the DFT coefficients l, m, and n according to (42)-(44)
requires 2N1 (N2 − 1), 2 (N1 − 1)N2, and N1N2 complex
multiplications and 2N1 (N2 − 1) − 1, 2 (N1 − 1)N2 − 1, and
N1N2 − 1 complex additions, respectively. By exploiting the
alternative formulations in (45), the number of operations is
reduced to N2 − 1, N2, and N1 complex multiplications and
N2−2, N2−1, and N1−1 complex additions, respectively. To
find the best value of the fixed parameters or the best column
among the first Nc eigenvectors, we need to calculate the cost
function of det (PHHHHP ). Since matrix multiplication is
associative, we can first compute HHH once, which requires
MTM

2
R multiplications. For each candidate precoder, we then

need to multiply the left and right sides by PH and P ,
respectively, each of which needs NLM

2
T multiplications. If

we perform the matrix products from the left to the right side,

we will have a total of 2MTMRNL +MTN
2
L multiplications.

In this way, we have to perform three matrix products for all
precoder candidates. The complexity of computing the deter-
minant of the resulting matrix is proportional to O (N3

L). The
computational complexity of the main steps of Algorithms 2-4
and the number of times each step is performed for different
algorithms are represented in Tables III and IV, respectively.
One significant advantage of our proposed algorithms is the
significant reduction in the number of search parameters,
leading to much lower complexity.

Table III: Computation complexity of the main steps of SV-
based solution

Step (Mult., Add.) or Com. Order

EVD of HHH O (M3
T )

Deriving l̂ and m̂ (2N2 − 1,2N2 − 3)
Deriving n̂ (2N1 − 1,2N1 − 3)

PHHHHP ( 2MTMRNL+
MTN2

L
,

2MTMRNL−
NL (MR +MT +NL)

)

det (PHHHHP ) O (N3
L)

Table IV: Repetition times of the SV-based solution’s main
steps for different algorithms

Step Alg. 1 Alg. 2 Alg. 3 Alg. 4

EVD of HHH 1 1 1 1
Estimating l̂ and m̂ 1 Nc Nc Nc

Estimating n̂ 1 Nc Nc -
PHHHHP I1,3 I1,3 NcI1,3 NcI2I1,3

det (PHHHHP ) I1,3 I1,3 NcI1,3 NcI2I1,3

To compare the computational complexity of different meth-
ods, we use the exhaustive search approach based on the
MMSE capacity over different precoders in the codebook as
the baseline method. This involves computing the matrix-by-
matrix products for the term PHHHHP + σ2INL

using
2MTMRNL +MTN

2
L multiplications and a matrix inversion

proportional to O (N3
L). These operations must be executed

for all the existing precoder candidates in the codebook, which
for each particular number of layers depends on the number
of transmit antennas and their configuration, to find the best
precoder that maximizes the MMSE capacity.

One significant advantage of our proposed algorithms is
the significant reduction in the number of search parameters,
leading to much lower complexity. For example, in a 12 × 4
MIMO system, the complexity is reduced by up to 100 times
compared to the baseline exhaustive search solution.

V. SIMULATION RESULTS

A. Non-Codebook Based Precoding

In this section, we provide numerical examples to compare
the performances of the proposed linear precoding algorithms
in terms of the achievable BICM rate and BLER through two
channel examples. The SNR is defined as SNR= γ

σ2 .

Example 1
We investigate the performance of our proposed precoding

algorithms for a 2 × 2 static MIMO system with channel
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Figure 1: Achievable rate and BLER performance of a 2 × 2
MIMO-BICM system with 64QAM

matrix H = [
2 1
1 1

] , where the input signal is drawn from

64QAM and γ = 2. To evaluate the performance, we compare
our proposed algorithms with the precoding algorithm with
finite-alphabet inputs in [9] and the capacity-achieving SVD
precoder with water-filling power allocation. Fig. 1 shows
that, the proposed algorithms outperform the existing finite-
alphabet precoding algorithm across the entire range of SNRs.
Moreover, at high SNR values, our algorithms surpass the
SVD precoder with water-filling power allocation. The dashed
line curve represents the upper bound of the achievable BICM
rate, which corresponds to the MIMO capacity with Gaussian
inputs. The low complexity precoding has performance loss
of about 2-dB in low SNR compared with the optimal MGA
precoding, but this loss can be fully compensated by rank
adaptation algorithms which select the number of transmit data
streams NL according to the channel condition. In the medium
to high SNR regimes, our proposed low-complexity precoding
approaches the optimal performance of MGA precoding with
significantly reduced complexity.

From the Fig. 1, it is evident that our MGA algorithm
achieves 9 bps/Hz at SNR = 18 dB. In comparison, the finite-
alphabet precoder and SVD with water-filling precoder achieve
the same BICM mutual information at SNR = 20.3 dB and
SNR = 21 dB, respectively. We have evaluated the BLER per-
formance for MGA precoder at 18 dB, finite-alphabet precoder
at 20.3 dB, and SVD with water-filling precoder at 21 dB
using an LDPC encoder with coderate = 0.75 and code length
L = 12000 bits. The receiver utilizes the normalized min-
sum decoding algorithm for LDPC codes with 20 iterations.

Our proposed MGA and low-complexity precoding methods
demonstrate comparable performance and surpass both the
SVD precoder with water-filling power allocation and the
finite-alphabet precoding method, which aims to maximize the
mutual information of coded modulation. Focusing on the SNR
corresponding to BLER = 0.1, the figure illustrates that the
MGA precoder exhibits approximately 1.7 dB and 4.2 dB
gain compared to the finite-alphabet precoder and SVD with
waterfilling precoder, respectively. Hence, maximizing BICM
mutual information proves to be an excellent criterion for
minimizing the block error rate.

Example 2
We now investigate a 4×4 complex-valued channel matrix,

represented as follows:

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.3 + 0.8i 1.3 − 1.4i −1.2 − 1.5i 0.8 + 0.3i
0.1 + 1.3i 1.4 + 1.9i −0.3 − 0.8i 0.9 + 0.7i
−0.9 − 0.2i −0.8 + 0.7i −0.8 + 0.8i 0.1 + 0.9i
−0.2 + 0.2i 0.4 − 0.6i −1.7 − 0.8i 0.0 + 0.4i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where the input signal is drawn from 16QAM and we assume
γ = 4. In Fig. 2, we compare our proposed algorithms with
the capacity-achieving SVD with waterfilling power allocation
and finite-alphabet precoding. The figure demonstrates that
our proposed MGA and low-complexity precoder algorithms
achieve 10 bps/Hz at SNR = 9dB and SNR = 10 dB,
respectively. In comparison, the finite-alphabet precoder and
the SVD with waterfilling precoder attain the same BICM
mutual information at SNR = 12.4 dB and SNR = 11 dB,
respectively. The corresponding precoders are denoted by
PMGA,9dB, PLCP,10dB, PFA,12.4dB and PSVDWF,11dB. at this
point, the dimensions of PMGA,9dB and PSVDWF,11dB are
4×3, indicating transmitting 3 data streams and a correspond-
ing code rate of 0.83. Also, the dimensions of PLCP,10dB and
PFA,12.4dB are 4×4, with a corresponding code rate of 0.625.

We proceed to evaluate the block error rate performance
with a spectral efficiency of 10 bps/Hz under four system
settings:
● PMGA,9dB, 16QAM, 3 data streams and 0.83 code rate;
● PLCP,10dB, 16QAM, 4 data streams, and 0.625 code rate;
● PFA,12.4dB, 16QAM, 4 data streams and 0.625 code rate;
● PSVDWF,11dB, 16QAM, 3 data streams, and 0.83 code

rate.
We focus on the SNR corresponding to BLER = 0.1. The
figure illustrates that the MGA algorithm has approximately
1.4 dB, 2.7 dB, and 3.5 dB gains compared to the low-
complexity precoder, the SVD with waterfilling precoder, and
the finite-alphabet precoder, respectively. This validates the
efficacy of maximizing the BICM mutual information for
minimizing the block error rate. The running time of the
proposed MGA and the low-complexity precoding algorithms
is subject to various factors, including modulation order, the
number of data streams, iterations, and the number of samples
used for computing BICM mutual information and its gradient.
For instance, in a scenario with 16QAM modulation, 4 data
streams, 1000 samples, and 8 iterations for MGA, the average
running time is approximately 9.73 seconds. On the other
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Figure 2: Achievable rate and BLER performance of a 4 × 4
MIMO-BICM system with 16QAM

hand, the low-complexity precoding algorithm, leveraging the
simplicity of computing the SVD of the channel, exhibits a
remarkably shorter running time of only 0.00083 seconds.
This substantial difference underscores the efficiency and low
computational cost of the low-complexity precoding algorithm,
making it particularly attractive for scenarios with large MIMO
systems.

B. Codebook Based Precoding

In this subsection, we present simulation results that assess
the performance of our proposed PMI selection algorithms
for BICM-MIMO systems, which use the type-I single-panel
codebook. We compare our results with the exhaustive search
methods used for selecting the optimal PMI that maximizes
one of the two criteria of the achievable BICM rate or the
MMSE capacity. We assume that the input signal vector
elements are drawn from an M -QAM constellation, and we
define the SNR as SNR = γ

σ2 , where γ = 1. The simulation
scenarios consider a UE with MR = 4 receive antennas, and
we also use the channel capacity-related cost function, BICM
rate, and transmit power as selection criteria in the search stage
of the proposed algorithms.

We consider two scenarios to characterize the channel
model. The first channel model is a highly correlated Kro-
necker Rayleigh fading channel model with two-dimensional
cross-polarized antennas at the gNB and the UE, following
the specifications in [23]. The gNB deploys cross-polarized
antenna elements with +/−45 degrees polarization slant angles,

while the UE deploys cross-polarized antenna elements with
+90/0 degrees polarization slant angles.

The second channel model is the frequency-selective (multi-
path) channel, where we use the CDL model for NLOS
propagation described in 3GPP TR 38.901 [24]. To miti-
gate inter-symbol interference (ISI) and solve imperfections,
we employ the orthogonal frequency division multiplexing
(OFDM) technique with N sub-carriers. For this scenario, we
use the QuaDRiGa5 simulator to generate a geometry-based
stochastic channel model with simulation parameters listed in
Table V.

Table V: Simulation OFDM framework parameters

Parameter Value

Carrier frequency 3.5 GHz
OFDM subcarrier bandwidth 30 kHz

Delay spread (DS) 0.35µs
BS height 25 m
UE height 1.5 m

QuaDRiGa propagation scenario 3GPP 3D UMa NLOS
Number of multipaths 20

Antenna model 3GPP-3D
Antenna spacing Half wavelength

In a MIMO-OFDM system, the sub-carriers are divided into
groups of size K, and a precoder is designed for each group
of adjacent sub-carriers. To this end, the Gram matrix of each

group is calculated as H̃ ≜
K

∑
k=1

HH
k Hk, which serves as the

input matrix for the proposed algorithms. The eigenvectors
obtained from the EVD of the Gram matrix are used as inputs
for the SV-based algorithms. We consider a transmission over
512 sub-carriers, and the same precoder is applied for all K =
16 sub-carriers of each resource block.

In the figure presented as Fig. 3, we demonstrate the
achievable rate of Algorithms 2 and 3 in an 8×4 BICM-MIMO
system with (N1,N2) = (2,2), for highly correlated channels.
We observe that the performance gap for different numbers of
layers compared to the BICM rate exhaustive search baseline
method is less than 5%. Additionally, we find that the proposed
SV-based methods outperform the MMSE capacity exhaustive
search baseline for NL = 3,4 in the high SNR regime. In
Fig. 4, we investigate a BICM-MIMO system an antenna
configuration of (N1,N2) = (4,3). For each SNR value, we
perform a comprehensive parameter tuning analysis to identify
the optimal values for three key parameters: RI (determines
the number of layers from NL ∈ {1,2,3,4}), modulation
order (selected from QPSK, 16-QAM, and 64-QAM), and the
PMI index (in type-I single panel codebook). The simulation
results show that the proposed PMI selection algorithms can
achieve a comparable performance to that of the exhaustive
search method based on the BICM rate. Moreover, in the high-
SNR range, the proposed algorithms outperform the MMSE
capacity-based exhaustive search method. From the perspec-
tive of computational complexity, as detailed in Section IV-
C, the exhaustive search for determining the best PMI, when
NL = 2, entails evaluating 512 and 1536 precoder candidates
for 8 and 24 transmit antennas, respectively. Similarly, for
NL = 3 (or 4), the exhaustive search involves 384 and 768
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Figure 3: Achievable rate of the proposed SV-based algorithms
for an 8 × 4 MIMO-BICM system with 16-QAM and highly
correlated channels.
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Figure 4: Achievable rate comparison of different algorithms
for a 24 × 4 highly correlated MIMO-BICM system, with
varying modulation orders and number of layers.

precoder candidates for 8 and 24 transmit antennas, respec-
tively. In contrast, our algorithm exhibits a search complexity
equivalent to I1,3, which is set at4. Another advantage is that
the proposed algorithms are applicable for each given RI and
can be utilized for RI selection and link adaptation purposes.
Additionally, by employing cost functions such as capacity,
power instead of the BICM rate, the proposed algorithms do
not depend on the SNR value, further reducing the compu-
tation complexity. In Fig. 5, we compare the performance
of SV-based algorithms with the exhaustive search methods
for multi-path fading channels in an 8 × 4 MIMO-OFDM
system. To account for the high attenuation and weak signal
of the NLoS channels, we examine more than one dominant
eigenvector and select i2 by evaluating its permitted values
for the given selection cost function. Specifically, we apply
Algorithm 4 with Nc = 1 for transmitting 3 layers in Fig. 5.
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Figure 5: Achievable rate of the proposed SV-based algorithms
for an 8 × 4 MIMO-BICM system with 16-QAM and NL = 3
and NL = 4 in multi-path NLoS channels.

As shown, Algorithm 4 achieves a performance close to that of
the baseline methods by considering Nc = 3 (i.e., 3 dominant
eigenvectors) for NL = 4.

VI. CONCLUSION

This paper proposes several precoding algorithms for
MIMO-BICM systems. Firstly, we propose two linear pre-
coding algorithms for MIMO-BICM systems with a power
constraint. The first algorithm, MGA precoding, is designed
to maximize the achievable rate of the system. However, due to
its high complexity, a low complexity non-iterative precoding
algorithm is developed by studying the structure of the optimal
precoder. Simulation results show that both proposed algo-
rithms outperform the existing methods in terms of achievable
rate, while the non-iterative algorithm significantly reduces the
computational complexity.

Then, we focus on the MIMO-BICM system model based
on 5G NR networks and introduce a precoding matrix selection
technique to select the optimal PMI from the Type-I codebook
in order to achieve the maximum BICM rate. Our proposed
solution is based on the SVD of the channel matrix, and we
put forward four different algorithms. In three of the designed
algorithms, namely Algorithms 2 and 4, we derive the indices
i1,1 and i1,2 from one of the dominant eigenvectors with
low complexity. The difference among these algorithms is the
number of dominant eigenvectors considered and whether the
index i2 is derived from the eigenvector or found by searching
among its permitted values. On the other hand, our proposed
SV-based Algorithm 3 utilizes a combination of Nc dominant
eigenvectors to derive the indices i1,1, i1,2, and i2. We have
evaluated our proposed methods for single-carrier correlated
channels, and as discussed in Section VI, they can be extended
to facilitate OFDM multi-carrier transmission over non-line-
of-sight (NLoS) channels with multi-path fading, which repre-
sents a worst-case scenario. Simulation results show that our
proposed SV-based techniques can outperform the exhaustive
search method based on the MMSE capacity and can reach
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the performance of the BICM rate exhaustive search method in
Rayleigh correlated channels. The complexity of our proposed
methods is also lower than the exhaustive search baseline,
which makes them more practical in real-world systems.
Specifically, for an 8× 4 and 12× 4 MIMO systems, the com-
plexity of our proposed methods is about 120 and 190 times
less than the baseline, respectively. Moreover, in multi-path
fading NLoS channels, our proposed SV-based techniques can
achieve the BICM rate requirements with a lower complexity
than the exhaustive search baseline. Therefore, our proposed
algorithms can achieve a high performance while reducing a
computational complexity in MIMO-BICM systems, rendering
them suitable for practical implementations.

APPENDIX A
DERIVATION OF LEMMA 1

The differential of L̃ik is given by

dL̃iq =
1

σ2
(dzH

0 z0 + z
H
0 dz0 − dz

H
1 z1 − z

H
1 dz1) (51)

where z0 = y −HPs0iq , z1 = y −HPs1iq , and

dz0 = dy −HdPs0iq =HdP (s − s0iq)

dz1 = dy −HdPs1iq =HdP (s − s1iq)
(52)

Inserting (52) into (51), we obtain

dL̃ik =
1

σ2

⎡
⎢
⎢
⎢
⎢
⎣

dPH ∂L̃ik

∂P ∗
+ (

∂L̃ik

∂P ∗
)

H

dP

⎤
⎥
⎥
⎥
⎥
⎦

(53)

where

∂L̃iq

∂P ∗
=

1

σ2
HH[(y −HPs0iq)(s − s

0
iq)

H

− (y −HPs1iq)(s − s
1
iq)

H]

(54)

This completes the proof.
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