
ROBUST NEAR-FIELD BEAMFORMING FOR MILLIMETER WAVE COMMUNICATION
SYSTEM WITH APERTURE PERTURBATIONS

Gerald C. Nwalozie, Damir Rakhimov, and Martin Haardt

Communications Research Laboratory, Ilmenau University of Technology,
P. O. Box 100565, D-98684 Ilmenau, Germany

Email: {gerald-chetachi.nwalozie, damir.rakhimov, martin.haardt}@tu-ilmenau.de

ABSTRACT

In this paper, we develop a near-field beamforming algorithm
that is robust against aperture deformations. We derive ana-
lytical expressions on the bounds of the elements of the steer-
ing vector as a function of the known bounds of the coordinate
displacement. We apply these bounds during the optimization
procedure to design beamformers that are robust to aperture
perturbations. Simulation results show that the proposed ro-
bust near-field beamforming algorithm outperforms the avail-
able benchmark in the literature.

Index Terms— robust beamforming, aperture perturba-
tion, near-field beamforming, millimeter frequency range

1. INTRODUCTION

To meet the demands for higher spectral efficiency, em-
ploying a large number of antennas in conjunction with the
exploitation of higher frequencies has been recognized as a
promising solution for future wireless systems [1, 2]. Base
stations (BSs) that operate in mmWave frequencies will em-
ploy large antenna arrays, as a result of the propagation
conditions at these high frequencies [3]. Therefore, this will
cause the communicating devices to operate within the BS
antenna’s near-field or so-called Fresnel region [4]. As a
result, the far-field assumption used regularly in conventional
wireless systems does not hold. This fact underlies the mo-
tivation for the research on near-field beamforming that has
recently attracted a lot of attention from the research commu-
nity. Radiative near-field propagation takes place between the
Fraunhofer distance and the Fresnel distance of large-scale
antenna arrays operating at mmWave frequencies [5, 6]. The
near-field distance can be several dozens of meters for rel-
atively small antennas operating at mmWave and terahertz
(THz) frequencies [3, 7].

At the same time, due to the potentially large size of an-
tenna arrays operating at mmWave frequencies, there might
be different reasons for the emergence of perturbations in the
aperture geometry. For example, these errors might occur dur-
ing the installation of the antenna array. Because of the size
of the antenna array, it is difficult to ensure a perfect aperture

geometry during the installation of the antenna, which might
consist of multiple panels being stacked together. This leads
to inevitable aperture deformations that degrade the overall
performance of the communication system. For instance, the
change of curvature influences the antenna directivity and the
level of the sidelobes [8, 9].

Most of the conventional methods for robust beamform-
ing are designed for far-field scenarios. Moreover, most of
them are focused on the robustness against the steering vector
mismatch, which is caused by the estimation error of the an-
gle of arrival (AoA) or angle of departure (AoD) [10, 11, 12].
For example, the authors in [10] proposed a robust algorithm
based on the prior information about the bound on the steer-
ing vector mismatch to avoid self-nulling of the desired signal
even in the case of worst-case perturbations. On the other
hand, the authors in [13] considered the beamforming de-
sign robust to aperture deformations caused by thermal dis-
tortions. Unfortunately, this work has a limited application
for the problem we consider, since the system model is based
on the far-field assumption and considers the non-terrestrial
networks. There are also few references related to the de-
sign of robust beamforming for near-field users. The authors
in [14] proposed a near-field beamforming algorithm robust
to steering vector mismatches, which is a similar problem to
[10]. In [15], the authors proposed a near-field beamforming
algorithm with robustness against distance errors. However,
even though there are many excellent references on the topic
of robust beamforming design, the number of publications for
the implementation of robust beamforming methods for near-
field users with respect to aperture deformations stays rather
limited.

In this paper, we consider robust near-field beamform-
ing for mmWave networks under aperture perturbations of
the base station (BS) antenna array. We cast the problem as
a worst-case optimization problem that can be solved using
available off-the-shelf tools. To this end, for the considered
near-field model we derive a closed-form expression for the
bounds on the norms of the perturbations of the array steering
vector as a function of the bound on the coordinate displace-
ments.



2. SYSTEM MODEL

We consider a downlink multi-user MIMO system where the
BS is equipped with a uniform rectangular array (URA) x-y
plane consisting of Mx and My antennas along the X− and
Y− directions such that M = Mx · My is the total number
of BS antennas. We assume that the phase center of the BS
antenna array is at the origin of the coordinate system. The
inter-element spacing between the elements along the x-axis
and the y-axis is denoted as ∆x and ∆y, respectively.

The BS serves a single antenna user equipment (UE) in
the radiative near-field of the BS. The spherical coordinates
of the UE are given as (θrx, ϕrx, rrx), where θrx and ϕrx are
the azimuth and elevation angles in the direction of the phase
center of the transmitter, while rrx is the distance towards it.
The received signal at the UE can be written as

y(k) = wHx(k), (1)

where w ∈ CM×1 is denotes the vector of beamforming
weights, x(k) ∈ CM×1 is the input vector, and k denotes
the time index. The input vector can be described as

x(k) = as(k) + i(k) + n(k) (2)

where a = vec{A} ∈ CM×1 is the vectorization of the near-
field steering matrix A ∈ CMx×My comprising the response
between every element of the BS antenna array and the UE.
Furthermore, s(k) is the desired signal, i(k) is the interfer-
ence, and n(k) ∈ CM×1 is the noise assumed as zero-mean
circularly symmetric complex Gaussian.

The (mx,my) element of the near-field steering matrix A
where 0 ≤ mx ≤ Mx−1, 0 ≤ my ≤ My−1 can be described
as

A(mx,my) =
1

δmx,my

e−j 2π
λ δmx,my ∈ C, (3)

where δmx,my is the distance between the (mx,my) element
of the BS antenna array and the receive antenna given as

δmx,my =
√

(xrx −mx∆x)2 + (yrx −my∆y)2 + (zrx − 0)2 (4)

where (xrx, yrx, zrx) represent the cartesian coordinates of the
UE, which are respectively given as xrx = rrx cosϕrx sin θrx,
yrx = rrx sinϕrx sin θrx, and zrx = rrx cos θrx. Using a first
order approximation, (4) can be further simplified as

δmx,my = Lrx

√
1−

2mx∆xxrx + 2my∆yyrx −m2
x∆

2
x −m2

y∆
2
y

L2
rx

≈ Lrx −
2mx∆xxrx −m2

x∆
2
x

2Lrx
−

2my∆yyrx −m2
y∆

2
y

2Lrx
, (5)

where Lrx =
√
x2

rx + y2rx + z2rx and we used the approxima-
tion

√
1 + x ≈ 1 + x

2 for small x.

2.1. Aperture Perturbation Model

In this section, we introduce the BS antenna array aperture
perturbation model and describe its impact on the components

of the received signal given in (1). One of the possible causes
of aperture perturbation may be as a result of imperfect instal-
lation of the antenna array. We use a deterministic uncertainty
region model in which the error is bounded. We assume that
the imperfections due to aperture perturbation lead to a dis-
placement in the (x, y, z) coordinates of the elements of the
BS antenna array. We assume that different coordinates are
uncorrelated, while the perturbation of one coordinate can be
defined by the corresponding known bound.

Let us denote σ = [σx, σy, σz]
T ∈ R3 as a vector that con-

tains the known bounds of the perturbation for each axis. In
this paper, we assume that the displacements for the x and y
coordinates are much smaller in comparison to the displace-
ment for the z coordinate, i.e., σz ≫ σx ≈ σy. On the other
hand, the uncertainty region can be described as an ellipsoid
of known shape [12]. The uncertainty ellipse E for the vector
displacement p ∈ R3 is defined as Ep = {diag(σ) ·u |∥u∥ ≤
1, u ∈ R3}. We assume that we have information only about
the statistics of the perturbation but not the instantaneous real-
izations of them. The (mx,my) element of the steering matrix
of the input signal affected by the perturbations is given by

Ã(mx,my) =
1

δ̃mx,my

e−j 2π
λ δ̃mx,my ∈ C, (6)

where δ̃mx,my is defined as

δ̃mx,my =
√
a2 + b2 + c2, (7)

and a = (xrx−mx∆x+perr,x
mx,my

), b = (yrx−my∆y+perr,y
mx,my

),
and c = (zrx − 0 + perr,z

mx,my
) with perr,i

mx,my
being the random

displacement along the i axis, i ∈ {x, y, z}. Similarly, using a
first order approximation we can approximate δ̃mx,my as

δ̃mx,my = Lrx

√
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where ∆δmx,my = − ξerr
mx,my

2Lrx
and

ξ
err
mx,my

= 2(xrx−mx∆x)p
err,x
mx,my

+2(yrx−my∆y)p
err,y
mx,my
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err,z
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.

Next, we compute the first-order Taylor expansion for small
perturbations given as

ej(α+∆α) = ejα + j∆αejα +O(∆2) ≈ ejα +∆α, (9)

where ∆α = j∆αejα. Then by applying (9) to (6), we can
find the first-order Taylor approximation for the expression of
the perturbed matrix Ã as given in (10) on top of the next
page, where ∆A(mx,my) = −j 2π

λ ∆δmx,myA(mx,my). We
assume that the effect of aperture perturbations on the ampli-
tude is much smaller than on the phase.

Additionally, we represent the expression in vector format
after back substitution as given in (11) on top of the next page,
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where qmx,my and pmx,my , are respectively define as
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After that, we find the bound on the norm of the mismatch
of each element of the near-field steering matrix A caused by
aperture perturbation with a known norm of the bound of error
∥pmx,my∥2 ∈ Ep. The bound on the norm of the mismatch is
given as

∥∆A(mx,my)∥2 =
√

∆A∗(mx,my)∆A(mx,my)

=
√

A∗(mx,my)qH
mx,my

p∗
mx,my

pT
mx,my

qmx,myA(mx,my)

≤
1

δmx,my

∥σ∥2∥qmx,my∥2 = ϵmx,my , (12)

where we apply the Cauchy-Bunyakovsky-Schwarz inequality
for inner products, i.e., ∥bHd∥2 ≤ ∥b∥2 · ∥d∥2, ∀b, d ∈ Cm

and use the substitution p = diag(σ) · u, ∥u∥ ≤ 1.

3. PROBLEM FORMULATION

The signal-to-interference-plus-noise ratio (SINR) at the re-
ceiver is defined as [16]

SINR =
σ2

s |wHa|2
wHRi+nw

, (13)

where Ri+n = E{[i(k) + n(k)][i(k) + n(k)]H} ∈ CM×M

is the interference-plus-noise covariance matrix, σ2
s is the sig-

nal power, and E{·} denotes the statistical expectation. The
optimal weight vector can be found via a maximization of the
SINR in (13) which is equivalently formulated as follows:

min
w

wHRi+nw s. t. wHa = 1. (14)

Due to the unavailability of the true interference-plus-noise
covariance matrix in practice, the matrix is commonly re-
placed by the sample covariance matrix as

R̂ =
1

Ns

Ns∑
k=1

x(k)x(k)H. (15)

Therefore, it is possible to write problem (14) as

min
w

wHR̂w (16a)

s. t. wHa = 1. (16b)

However, the solution to problem (16a) lacks the neces-
sary robustness to handle a mismatch between the presumed
and actual steering vectors. In the following, we develop
a new robust near-field beamformer that takes into account
the prior information about the bound on the perturbation
of the (mx,my) element of the steering matrix A. We de-
note the actual steering vector comprising the effect of the
random perturbations of the surface on the BS antenna array
as ã. The relationship between the actual and the presumed
steering vector is given as [10]

ã = a+ δerr, (17)

where a = vec(A) and the vector δerr ∈ CM×1 models the
effect of the random perturbations on the steering vector due
to aperture perturbations. The norm of the error vector is
bounded by γ, i.e., ∥δerr∥ ≤ γ where γ is obtained from (12)
as γ =

√
Mmax(ϵm),∀m ∈ M which represents the worst-

case bound on the perturbations. Next, we denote A as the set
of all possible realizations of the steering vector impacted by
the random perturbations

A = {c|c = a+ e, ∥e∥ ≤ γ}. (18)

As in [10], we assume that δerr = e and as a result we impose
the following constraint |wHc| ≥ 1, ∀c ∈ A, which implies
that for all vectors that belong A that the absolute value of
the array response should not be smaller than one. Therefore,
the robust near-field beamforming that tries to maximize the
SINR for the worst-case perturbation in the case of steering
vector mismatch can be written as

min
w

wHR̂w, (19a)

s. t. |wHc| ≥ 1, ∀c ∈ A, (19b)

where (19) designs the beamforming weight by minimizing
the worst-case output power subject to the distortionless re-
sponse constraint which must be satisfied for the steering vec-
tor bounded by the worst-case norm δerr. The nonlinear con-
straint in (19b) can be equivalently written as

min
e∈D(γ)

|wH(a+ e)| ≥ 1, (20)

where the set D(γ) ≜ {e| ∥e∥ ≤ γ}. Following [10], we can
show that the vector that achieves the minimum can be found
by solving the problem

|wH(a+ e)| = |wHa| − γ∥w∥, (21)
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Fig. 1: Simulation results for Robust near-field beamforming with Aperture perturbations.

such that the solution with respect to the vector e can be writ-
ten as e = − w

∥w∥γe
jϕ, where ϕ = ∠(wHa). From [10], it is

required that |wHa| ≥ γ∥w∥, otherwise the white noise gain
of the robust beamformer may be insufficient, where the white
noise gain is the array gain when the noise term z is spatially
white. Therefore, the constraint in (19b) can be replaced by

|wHa| − γ∥w∥ ≥ 1. (22)

Then, the worst-case robust near-field beamforming prob-
lem can be formulated as the following optimization problem

min
w

wHR̂w (23a)

s. t. |wHa| − γ∥w∥ ≥ 1. (23b)

Since the cost function of (23a) is unchanged when w under-
goes an arbitrary phase rotation [10], then the problem can be
rewritten as

min
w

wHR̂w (24a)

s. t. wHa ≥ γ∥w∥+ 1, Im{wHa} = 0. (24b)

Since the optimization problem (24) is convex, it can easily be
reformulated as a second-order cone program (SOCP) similar
to [10, 14] which can be solved using interior point methods
with a complexity of O(M3.5) [17].

4. NUMERICAL RESULTS

In this section, we show simulation results to evaluate the per-
formance of the proposed and existing algorithms. We as-
sume that the BS uses a URA with Mx = 64 and My = 4
antennas which are uniformly spaced. For simplicity we as-
sume that ∆x = ∆y = ∆ = λ/2 at a carrier frequency of
28GHz. The azimuth and elevation angles of the desired UE
are given as {90◦, 45◦}. We assume that there are two in-
terferers whose azimuth and elevation angles are respectively
given as {50◦, 120◦} and {120◦, 90◦}. The interference-
to-noise ratio is 30 dB. The UEs are uniformly spaced in the
radiative near-field of the BS antenna.

The proposed algorithm is compared with the optimal so-

lution (optimal SINR) given as SINRopt = σ2
s ã

HRi+nã ac-
cording to [18], the sample matrix inversion (SMI) beam-
forming scheme, and the worst-case near-field beamforming
design with a mismatch in the steering vector due to AoA er-
rors according to [14]. In our simulations, the known bounds
on the norm of the perturbations for each of the axes are given
as (0.01λ, 0.01λ, 0.05λ), for the steering vector mismatch al-
gorithm we modified the known bound given in [14], to take
into account the number of sensors, ϵ = c

√
M, c = 0.01.

Fig. 1a shows the SINR performance over the SNR for
Ns = 1000 samples. The result is averaged over 1000 re-
alizations. From the figure, it is observed that the proposed
robust near-field beamforming has a better performance com-
pared to the existing benchmark [14] and the SMI scheme.

In Fig. 1b the output SINR as a function of the number of
snapshots are presented. The considered SNR is -10 dB, and
the result is averaged over 1000 realizations. Here the com-
parison of the convergence of the proposed robust near-field
beamforming algorithm and the existing schemes is demon-
strated. The proposed algorithm outperforms the existing so-
lutions.

5. CONCLUSIONS
In this paper, we have proposed a robust near-field beamform-
ing algorithm. The proposed algorithm demonstrated robust-
ness due to BS antenna array aperture perturbations. We an-
alytically derive the bounds on the perturbations of the steer-
ing vector as a function of the known norm of the coordinate
displacements. The simulation results confirm that the pro-
posed robust near-field algorithm outperforms the benchmark
schemes.
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