Optimized Optical Reservoir Computing

Kathy Lüdge¹, Lina Jaurigue¹, Stefan Sinzinger²

¹ FG Theoretische Physik 2, Fak. Mathematik und Naturwissenschaften, TU Ilmenau ² FG Technische Optik, Fak. Maschinenbau, TU Ilmenau

Motivation and state of the art

- Reservoir Computing is a powerful concept for analogue neuromorphic computing
- \succ Due to its properties, this concept is suitable for energy efficient implementation of neural networks
- Advancements in manufacturing processes and design approaches enable the use of complex optical beamshaping components for controlling the coupling topology
- > Based on an existing optical setup for action recognition, various reservoir computing systems will be implemented and investigated regarding their

Time Delay Reservoir Computing

Expertise

Optical system design

system integration

Optical beam shaper

SLM

DZP

and

blazed

phase

Microoptics and optical

fabrication of optical beam shapers

 \bigcirc

x(mm)

Linse

-5

Spatio-temporal Reservoir Computing

performance, as well as energy and resource efficiency

Energy efficient algorithms

Expertise

- Reservoir Computing (RC)
- **Extreme Learning Machines**
- Timescale tuning and delay effects
- Bifurcation analysis and nonlinear dynamics

Optical technology

[JAU24]

- Delay time strongly influences the prediction error and provides additional memory 0 capacity
- Optimal values of the delay depend on the implementation and the chosen task Ο

x(mm)

Equal intensity

focal spots

-5

Scientific objectives

> Novel system concept and algorithmic

- How can the coupling topology of RC systems be influenced by the use of 3D beam shaping?
- What role does temporal and spatial multiplexing play in RC systems?

System design for optical Reservoir Computing

- Which components are best suited for 3D beam shaping in RC systems?
- What technological constraints have to be considered in design and manufacturing?
- What options does "intra-cavity" beam shaping offer for the dynamics and algorithmics of the RC system?
- Benchmarking and evaluation of the system
 - Which properties of RC systems can be particularly optimized by using optical elements?
 - Which elements of the value chain are the most crucial in regard to their energy and resource efficiency?

• Purely optical system concept for instantaneous motion recognition

References

[HUE23] T. Hülser, F. Köster, K. Lüdge, and L. Jaurigue, Deriving task specific performance from the information processing capacity of a reservoir computer, Nanophotonics 12, 937 (2023). [RAF20] M. Rafayelyan, J. Dong, Y. Tan, F. Krzakala, and S. Gigan, Large-Scale Optical Reservoir Computing for Spatiotemporal Chaotic Systems Prediction, Phys. Rev. X 10, (2020) [JAU24] L. Jaurigue and K. Lüdge, Reducing hyperparameter dependence by external timescale tailoring, Neuromorph. Comput. Eng. 4, 014001 (2024). [GHE19] S. G. Ghebjagh, D. Fischer, and S. Sinzinger, Multifocal multi-value phase zone plate for 3d focusing, Appl. Opt. 58, 8943 (2019). [BAR23] A. Bartelmei, Spatio-temporales Reservoir Computing am Beispiel von Bewegungserkennung (Technische Universität Ilmenau, Ilmenau, 2023), Masterarbeit.

Ilmenau School of Green Electronics

www.tu-ilmenau.de/optik www.tu-ilmenau.de/theophys2

