Hybrid-Al Modeling for Biorealistic Neuromorphic Computing

Patrick Mader (Computer Science) & Benjamin Spetzler (Materials Science)

Motivation — Green Electronics Objectives
« Emerging neuromorphic systems as a solution for energy-efficient artificial This project aims to investigate a novel hybrid-Al method to tailor general-
intelligence (Al) hardware accelerators purpose neuromorphic hardware based on 2D MoS, memtransistors.
 Ideal neuromorphic system: high interconnection and adaptability like neurons in
the human brain to accelerate any matrix operation including biorealistic learning Main objectives:
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Memtransistors — Bioinspired Electronic Devices MoS, memtransistors
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: : efficient modeling framework Empirical : Design
a) Electrically tunable via gate electrodes o memtransistors data learling orediction
b) High interconnectivity by many contacts \ cycle /

3) Identify and realize system
configurations for general-

Benefits from novel 2D functional materials
Largely unexplored material and device

space 5! purpose Al accelerators >
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* Memristive mechanisms largely unexplored *"$8aL2.2% -
Preliminary Work
Hybrid-Al Modeling — Energy Efficient Computing . Data

. : : : Underlaying physics 104 _ [6]
Integrating physical computational models, Al, — Data.driven model l | Charge-transport model ™
and empirical data 2 -= Physics-informed model T « Based on finite volume discretization
* Much less data needed than cla[g]smal A sl / . N\ jo=  Nonlinear drift-diffusion equations of
* Materials and system discovery 1V NN/ 5 electrons, holes, vacancies, Poisson’s
- Potential tc‘)‘ highly _acczelgrate research and s | \ [/ N/ = | equation and various other effects
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High-throughput simulations Example metric: linearity
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WP1 - Charge transport model & switching mechanism (Spetzler) = « Screening parameter space |
linearity  linearity

Objectives: Extend and validate the charge transport model to identify as input for data-driven
the relevant memristive and electronic mechanisms surrogate model ]

* Here, at the example of one
metric (linearity of set/reset)
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« Extend finite volume (FV) charge transport model from preliminary
work 8] by new physical mechanisms (with Dr. Patricio Farrell)

 Validation with experimental data (Prof. Mark Hersam/MNES) using Data-driven surrogate model
the surrogate model from WP2 for automized optimization + Hybrid LSTM network to

predict current-voltage and
pulse characteristics
Objectives: Investigate data-driven surrogates of the charge transport ¢ Accurate and efficient for

WP2 — Data-driven surrogate mode (Mader/Spetzler)

model for multi-objective optimization tasks multi-objective optimization 0
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* High-throughput simulations to sample parameter space = e [E— U,eq [V] U,eq [V]
+ Train data-driven surrogate model to automize validation in WP1 e penies) BT o
Input . Prediction of pulse curves
WP3 — Hybrid-Al modeling framework (Mader) = ELediCtiondS p
Hidden \ - ys. mode
Objectives: Investigate physics-informed methods to set up an energy | < \ 2 ,«“\‘ A 4
and data efficient hybrid-Al modeling framework c ¥ = p\ ! 77 AN /.
oncatenated 1 \ 0 \ Ky 1\ R/
* Deep operator networks (DeepOnets) for individual equations Hidden LY/ 4 I\ /4 .‘:*-_:: N/
« Deep multiphysics and multiscale networks (DeepM&Mnets) [°] 0O 500 1000 1500 2000 2500 3000
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* Benchmark against classical model (WP1) and surrogate (WP2) Pulse number N
Active O
learning WP4 — Neuromorphic System Discovery (Mader/Spetzler
cycle ‘- Phic Systen A petzler) Prospects
Objective: Set up active learning cycle to discover and realize

discovery neuromorphic systems for complex biorealistic learning

» Establishes hybrid-Al

\\\‘ * Define suitable metrics for neuromorphic systems - parametrizing modeling at TU llmenau
Eoa . Continuous feedback and discrepancy modeling with experiments
* Discover and realize of individual devices and entire systems
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