
On Hashing by (Random) Equations

Martin Dietzfelbinger

Technische Universität Ilmenau

ESA 2023, Amsterdam, September 4, 2023

Thanks to collaborators (over the time)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 1

Thanks to collaborators (over the time)

• Stefan Walzer

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 1

Thanks to collaborators (over the time)

• Stefan Walzer

• Rasmus Pagh

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 1

Thanks to collaborators (over the time)

• Stefan Walzer

• Rasmus Pagh

• Peter Dillinger

• Andreas Goerdt

• Lorenz Hübschle-Schneider

• Michael Mitzenmacher

• Michael Rink

• Peter Sanders

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 1

1. Retrieval

Given: U , set of all possible keys.

S ⊆ U , set of size n, and mapping f : S → G, for a set G.

Want: Data structure Rf for computing f .

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 2

1. Retrieval

Given: U , set of all possible keys.

S ⊆ U , set of size n, and mapping f : S → G, for a set G.

Want: Data structure Rf for computing f .

Construction algorithm build gets f and builds R = Rf .

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 2

1. Retrieval

Given: U , set of all possible keys.

S ⊆ U , set of size n, and mapping f : S → G, for a set G.

Want: Data structure Rf for computing f .

Construction algorithm build gets f and builds R = Rf .

Evaluation algorithm query gets x ∈ U , returns query(x,R) ∈ G such that

query(x,R) = f(x) for all x ∈ S.

Nothing is required for x /∈ S.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 2

1. Retrieval

Example: G = {m, f, u}, S is a set of first names, f maps names to their gender.

f(Albert) = m, f(Bertha) = f, f(Carol) = u, (u = undecided.)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 3

1. Retrieval

Example: G = {m, f, u}, S is a set of first names, f maps names to their gender.

f(Albert) = m, f(Bertha) = f, f(Carol) = u, (u = undecided.)

Goals:

• Fast build (ideal: time “linear in” n)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 3

1. Retrieval

Example: G = {m, f, u}, S is a set of first names, f maps names to their gender.

f(Albert) = m, f(Bertha) = f, f(Carol) = u, (u = undecided.)

Goals:

• Fast build (ideal: time “linear in” n)

• Fast query (ideal: “constant” time and very few random accesses
into storage area that holds R)

• Compactness/Conciseness: “small” space for R.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 3

1. Retrieval

Example: G = {m, f, u}, S is a set of first names, f maps names to their gender.

f(Albert) = m, f(Bertha) = f, f(Carol) = u, (u = undecided.)

Goals:

• Fast build (ideal: time “linear in” n)

• Fast query (ideal: “constant” time and very few random accesses
into storage area that holds R)

• Compactness/Conciseness: “small” space for R.

Listing n values alone (does not solve the problem but) takes space n log2 3.
Can’t be beaten (information theory).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 3

1. Retrieval

Simplistic: Static dictionary for f .

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 4

1. Retrieval

Simplistic: Static dictionary for f .

Operations: build(f), query(x) gives f(x) for x ∈ S and ⊥ otherwise.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 4

1. Retrieval

Simplistic: Static dictionary for f .

Operations: build(f), query(x) gives f(x) for x ∈ S and ⊥ otherwise.

Overkill, and waste of space: essentially n(log |U|+ log |G|) bits.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 4

1. Retrieval

Simplistic: Static dictionary for f .

Operations: build(f), query(x) gives f(x) for x ∈ S and ⊥ otherwise.

Overkill, and waste of space: essentially n(log |U|+ log |G|) bits.

Information theory lower space bound for retrieval:

minG,n := n log |G|.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 4

1. Retrieval

Simplistic: Static dictionary for f .

Operations: build(f), query(x) gives f(x) for x ∈ S and ⊥ otherwise.

Overkill, and waste of space: essentially n(log |U|+ log |G|) bits.

Information theory lower space bound for retrieval:

minG,n := n log |G|.

Desired space bounds: (1 + ε)minG,n for “small” overhead ε.

“concise”: ε = o(1),

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 4

1. Retrieval

Simplistic: Static dictionary for f .

Operations: build(f), query(x) gives f(x) for x ∈ S and ⊥ otherwise.

Overkill, and waste of space: essentially n(log |U|+ log |G|) bits.

Information theory lower space bound for retrieval:

minG,n := n log |G|.

Desired space bounds: (1 + ε)minG,n for “small” overhead ε.

“concise”: ε = o(1), “compact” in [Nav16]: any reasonable notion of minG,n+“little”.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 4

1. Retrieval

Simplistic: Static dictionary for f .

Operations: build(f), query(x) gives f(x) for x ∈ S and ⊥ otherwise.

Overkill, and waste of space: essentially n(log |U|+ log |G|) bits.

Information theory lower space bound for retrieval:

minG,n := n log |G|.

Desired space bounds: (1 + ε)minG,n for “small” overhead ε.

“concise”: ε = o(1), “compact” in [Nav16]: any reasonable notion of minG,n+“little”.

Details of the o(. . .) term are interesting!

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 4

Overview

1. Retrieval

2. Warmup: Equations, Peeling

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 5

Overview

1. Retrieval

2. Warmup: Equations, Peeling

3. Orientability

4. Solvability

5. Peeling up to the orientability threshold

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 5

Overview

1. Retrieval

2. Warmup: Equations, Peeling

3. Orientability

4. Solvability

5. Peeling up to the orientability threshold

6. Helpful: Sharding/Splitting

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 5

Overview

1. Retrieval

2. Warmup: Equations, Peeling

3. Orientability

4. Solvability

5. Peeling up to the orientability threshold

6. Helpful: Sharding/Splitting

7. Two blocks

8. One block: Sorted solving

9. One block: Ribbon

10. Bumping, batch bumping, overloading

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 5

Disclaimers and caveats

• Not (always) “best” implementations, using all types of handles and tricks, but
focus on an interesting technology, giving raise to nice mathematical arguments.

• Focus on retrieval.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 6

Disclaimers and caveats

• Not (always) “best” implementations, using all types of handles and tricks, but
focus on an interesting technology, giving raise to nice mathematical arguments.

• Focus on retrieval.

• Focus on the static problem.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 6

Disclaimers and caveats

• Not (always) “best” implementations, using all types of handles and tricks, but
focus on an interesting technology, giving raise to nice mathematical arguments.

• Focus on retrieval.

• Focus on the static problem.

• Related problems: Perfect hashing, simulation of fully random hash functions,
(static) filters,. . . : Omitted here.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 6

Disclaimers and caveats

• Not (always) “best” implementations, using all types of handles and tricks, but
focus on an interesting technology, giving raise to nice mathematical arguments.

• Focus on retrieval.

• Focus on the static problem.

• Related problems: Perfect hashing, simulation of fully random hash functions,
(static) filters,. . . : Omitted here.

• (This is serious!) Recently: A lot of developments in direction of dynamic
retrieval data structures and of course filters, which I won’t touch.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 6

Disclaimers and caveats

• Not (always) “best” implementations, using all types of handles and tricks, but
focus on an interesting technology, giving raise to nice mathematical arguments.

• Focus on retrieval.

• Focus on the static problem.

• Related problems: Perfect hashing, simulation of fully random hash functions,
(static) filters,. . . : Omitted here.

• (This is serious!) Recently: A lot of developments in direction of dynamic
retrieval data structures and of course filters, which I won’t touch.

(Slides on homepage.)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 6

2. Warmup: Equations, Peeling

(*)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 7

2. Warmup: Equations, Peeling
To store f “implicitly”, G needs to have structure: Let (G,⊕) be an abelian group.

Example: Identify G = {m, f, u} with {0, 1, 2}, let ⊕ be addition modulo 3.

Choose m ≥ n. Assume a mapping

H : U ∋ x 7→ Ax ⊆ [m]

is given. Alternative: ax = ([j ∈ Ax])j∈[m] ∈ {0, 1}m, the characteristic vector of Ax.

(Regard H : x 7→ Ax resp. h : x 7→ ax as a hash function.)

Seek a vector Z[0..m− 1] over G with

f(x) =
⊕
j∈Ax

Z[j], for x ∈ S. (*)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 7

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 7

2. Warmup: Equations, Peeling

f(x) =
⊕
j∈Ax

Z[j], for x ∈ S. (*)

Then Z[0..m− 1] can be used as data structure Rf [SH94].

Example: m = 4, AAlbert = {1, 2}, ABertha = {0, 2}, ACarol = {1, 3}.
Z = [1, 0, 0, 2] = [f,m,m, u] does the job.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 8

2. Warmup: Equations, Peeling

f(x) =
⊕
j∈Ax

Z[j], for x ∈ S. (*)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 9

2. Warmup: Equations, Peeling

f(x) =
⊕
j∈Ax

Z[j], for x ∈ S. (*)

Questions:

• What is the cost/space for H resp. h?

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 9

2. Warmup: Equations, Peeling

f(x) =
⊕
j∈Ax

Z[j], for x ∈ S. (*)

Questions:

• What is the cost/space for H resp. h?

• When (for which m = (1 + ε)n) can we hope that solutions Z exist?

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 9

2. Warmup: Equations, Peeling

f(x) =
⊕
j∈Ax

Z[j], for x ∈ S. (*)

Questions:

• What is the cost/space for H resp. h?

• When (for which m = (1 + ε)n) can we hope that solutions Z exist?

• What is the cost of finding solution Z?

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 9

2. Warmup: Equations, Peeling

f(x) =
⊕
j∈Ax

Z[j], for x ∈ S. (*)

Questions:

• What is the cost/space for H resp. h?

• When (for which m = (1 + ε)n) can we hope that solutions Z exist?

• What is the cost of finding solution Z?

• What is the query time?

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 9

2. Warmup: Equations, Peeling

f(x) =
⊕
j∈Ax

Z[j], for x ∈ S. (*)

Questions:

• What is the cost/space for H resp. h?

• When (for which m = (1 + ε)n) can we hope that solutions Z exist?

• What is the cost of finding solution Z?

• What is the query time?

Last question first:

Group operations in constant time → O(|Ax|) = O(∥ax∥) query time.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 9

2. Warmup: Equations, Peeling
About H and h we assume they are given for free, including all randomness possibly involved, and

can be evaluated in time O(|Ax|) (unless stated otherwise).

Pretty steep assumption; can be justified here in a sense (“Split-and-Share” [DR09]).

f(x) =
⊕
j∈Ax

Z[j], for x ∈ S. (*)

A solution Z always exists (for arbitrary G) if and only if (Ax)x∈S is peelable, i.e.
if one can arrange S as x1, . . . , xn such that

Axi
−

⋃
ℓ>i

Axℓ
̸= ∅, for all i.

Equivalent: The n×m-matrix AS,h := (ax)x∈S can be brought into row echelon
form by exchanging rows and exchanging columns. We also say: AS,h is peelable.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 10

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 10

2. Warmup: Equations, Peeling

Good for fast query times: |Ax| is a small constant k, at least “on average”.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 11

2. Warmup: Equations, Peeling

Good for fast query times: |Ax| is a small constant k, at least “on average”.

Great about peelability: If solution exists, it can be found in linear time:
Find peeling order (by standard data structures), use back-substitution.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 11

2. Warmup: Equations, Peeling

Good for fast query times: |Ax| is a small constant k, at least “on average”.

Great about peelability: If solution exists, it can be found in linear time:
Find peeling order (by standard data structures), use back-substitution.

Small, constant k = |Ax| [MWHC96] (rougher version re-discovered in [CKRT04]):
For random sets Ax of size k there is a threshold c0k such that
(Ax)x∈S is peelable w.h.p. (roughly) for m > c0kn.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 11

2. Warmup: Equations, Peeling

Good for fast query times: |Ax| is a small constant k, at least “on average”.

Great about peelability: If solution exists, it can be found in linear time:
Find peeling order (by standard data structures), use back-substitution.

Small, constant k = |Ax| [MWHC96] (rougher version re-discovered in [CKRT04]):
For random sets Ax of size k there is a threshold c0k such that
(Ax)x∈S is peelable w.h.p. (roughly) for m > c0kn.

k 2 3 4 5 6
c0k 2 1.222 1.295 1.425 1.570

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 11

2. Warmup: Equations, Peeling

Good for fast query times: |Ax| is a small constant k, at least “on average”.

Great about peelability: If solution exists, it can be found in linear time:
Find peeling order (by standard data structures), use back-substitution.

Small, constant k = |Ax| [MWHC96] (rougher version re-discovered in [CKRT04]):
For random sets Ax of size k there is a threshold c0k such that
(Ax)x∈S is peelable w.h.p. (roughly) for m > c0kn.

k 2 3 4 5 6
c0k 2 1.222 1.295 1.425 1.570

One can show: c0k ↗∞ for k ≥ 3.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 11

2. Warmup: Equations, Peeling

Good for fast query times: |Ax| is a small constant k, at least “on average”.

Great about peelability: If solution exists, it can be found in linear time:
Find peeling order (by standard data structures), use back-substitution.

Small, constant k = |Ax| [MWHC96] (rougher version re-discovered in [CKRT04]):
For random sets Ax of size k there is a threshold c0k such that
(Ax)x∈S is peelable w.h.p. (roughly) for m > c0kn.

k 2 3 4 5 6
c0k 2 1.222 1.295 1.425 1.570

One can show: c0k ↗∞ for k ≥ 3.

So Rf constructed in this way will take space no less than 1.222 log |G|.
Too bad!

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 11

2. Warmup: Equations, Peeling

Good for fast query times: |Ax| is a small constant k, at least “on average”.

Great about peelability: If solution exists, it can be found in linear time:
Find peeling order (by standard data structures), use back-substitution.

Small, constant k = |Ax| [MWHC96] (rougher version re-discovered in [CKRT04]):
For random sets Ax of size k there is a threshold c0k such that
(Ax)x∈S is peelable w.h.p. (roughly) for m > c0kn.

k 2 3 4 5 6
c0k 2 1.222 1.295 1.425 1.570

One can show: c0k ↗∞ for k ≥ 3.

So Rf constructed in this way will take space no less than 1.222 log |G|.
Too bad! (Not end of story, see below . . .)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 11

3. Orientability

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 12

3. Orientability

With each x ∈ S associate a (uniformly) random set Ax ⊆ [m] of size k.

(Ax)x∈S is called orientable if there is a one-to-one mapping τ : S → [t] such that
τ(x) ∈ Ax for x ∈ S.

Notes. (1) (Ax)x∈S is an order-k random hypergraph with node set [m], and this
orientability notion is standard.
(2) Orientability gets (k-ary) cuckoo hashing going [FPSS05] (not our focus).

[FP10, FM12, DGM+10] established orientability thresholds ck, k ≥ 2, so that (roughly)
for m ≥ ckn a random set (Ax)x∈S is orientable w.h.p., but not for smaller m.

k 2 3 4 5 6
ck 2 1.089 1.024 1.0076 1.0026

One can show: ck− 1 ∼ e−k.
Much more pleasant than c0k!

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 12

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 12

4. Solvability

Switch to G = {0, 1}r with ⊕ = bitwise XOR on r bits. Our field: Z2 = {0, 1}.
(Recall your linear algebra!)

As before: AS = (ax)x∈S, an n×m-matrix. Order of rows: irrelevant.

For retrieval: build needs to solve the linear system

AS · z = f,

where f = (f(x))x∈S ∈ ({0, 1}r)n is given and z ∈ ({0, 1}r)m is unknown.

(Actually, these are r linear systems over Z2, treated simultaneously. May focus on r = 1.)

Clear: AS has linearly independent rows (i.e. row rank n) ⇒ solution always exists.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 13

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 13

4. Solvability

Classic scenario: Ax, x ∈ S, is a fully random k-subset of [m].

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 14

4. Solvability

Classic scenario: Ax, x ∈ S, is a fully random k-subset of [m].

Surprisingly, it turned out (claims in [DM02, DGM+10], full proof in [PS16]) that
solvability of resulting matrices AS has the same thresholds as orientability.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 14

4. Solvability

Classic scenario: Ax, x ∈ S, is a fully random k-subset of [m].

Surprisingly, it turned out (claims in [DM02, DGM+10], full proof in [PS16]) that
solvability of resulting matrices AS has the same thresholds as orientability.

So we have solvability for m ≥ ckn (roughly), where ck − 1 ∼ e−k.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 14

4. Solvability

Classic scenario: Ax, x ∈ S, is a fully random k-subset of [m].

Surprisingly, it turned out (claims in [DM02, DGM+10], full proof in [PS16]) that
solvability of resulting matrices AS has the same thresholds as orientability.

So we have solvability for m ≥ ckn (roughly), where ck − 1 ∼ e−k.

Means query gets by with time O(k) and k random accesses into array Z[0..m−1].

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 14

4. Solvability

Classic scenario: Ax, x ∈ S, is a fully random k-subset of [m].

Surprisingly, it turned out (claims in [DM02, DGM+10], full proof in [PS16]) that
solvability of resulting matrices AS has the same thresholds as orientability.

So we have solvability for m ≥ ckn (roughly), where ck − 1 ∼ e−k.

Means query gets by with time O(k) and k random accesses into array Z[0..m−1].
For solving: Gaussian elimination (O(n3)).
Wiedemann’s algorithm [Wie86] avoids the proliferation of 1’s: with k many 1’s per
row in the original system it has running time O(n2k).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 14

4. Solvability

Classic scenario: Ax, x ∈ S, is a fully random k-subset of [m].

Surprisingly, it turned out (claims in [DM02, DGM+10], full proof in [PS16]) that
solvability of resulting matrices AS has the same thresholds as orientability.

So we have solvability for m ≥ ckn (roughly), where ck − 1 ∼ e−k.

Means query gets by with time O(k) and k random accesses into array Z[0..m−1].
For solving: Gaussian elimination (O(n3)).
Wiedemann’s algorithm [Wie86] avoids the proliferation of 1’s: with k many 1’s per
row in the original system it has running time O(n2k).

Detailed study of improvements for Gaussian elimination in sparse systems, by
word parallelism and clever reduction techniques, extensive experimental evaluation:
[GOV16, GOV20].

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 14

5. Peeling up to the orientability threshold

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 15

5. Peeling up to the orientability threshold

Want to save peeling with ≈ k many 1s per row to higher densities.

Linear construction time + O(k) query time!

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 15

5. Peeling up to the orientability threshold

Want to save peeling with ≈ k many 1s per row to higher densities.

Linear construction time + O(k) query time!

[LMSS01] (context: erasure correcting codes) use m = (1+ 1
k)n, a special distribution

on the set sizes |Ax| with expectation O(k) = O(logD) and maximum D.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 15

5. Peeling up to the orientability threshold

Want to save peeling with ≈ k many 1s per row to higher densities.

Linear construction time + O(k) query time!

[LMSS01] (context: erasure correcting codes) use m = (1+ 1
k)n, a special distribution

on the set sizes |Ax| with expectation O(k) = O(logD) and maximum D.

Expected time for build is O(n2k) [Wie86], expected query time is O(k),
worst case query time is O(D) (not so good).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 15

5. Peeling up to the orientability threshold

Different approach: “Spatial coupling”, described in [DW19b], fully analyzed in
[Wal21], using machinery developed in the context of coding theory [KRU15].

Ax is chosen at random in two stages:

• A “window” W of width εm with random position in [m] is chosen.

• Ax is a random k-size subset of the window.

Theorem [Wal21]

Given c > ck (the orientability threshold), one can choose ε > 0 such that for n
large enough the system (Ax)x∈S with m = cn allows peeling w.h.p.

What mechanism is behind this? Roughly, the peeling process runs “from the outside in”.

Close to the borders the average degree of a point is smaller than the overall average, and there is

always a high probability to have nodes of degree 1.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 16

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 16

6. Helpful: Sharding/Splitting

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 17

6. Helpful: Sharding/Splitting

Old idea, used often in theoretical constructions.

Most useful in practical tuning of implementations (e.g. [BPZ13, GOV16, GOV20])
and in justifying “full randomness assumption” [DR09].

Given S with |S| = n, use hash function hsplit : U → [0..n/C] to split S into pieces
(“shards”) Su = S ∩ h−1

split(u), for u ∈ [n/C].

Treat the Su separately. Expected shard size: C.

Version 1: Use bound n′ on |Su| that is kept with high probability by all shards.
(Extra space overhead due to random fluctuation (underflow!). May have special
treatment for overflowing shards.)

Version 2: Calculate nu = |Su|, for each u, allocate space correspondingly.
(Extra space overhead for storing offsets.)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 17

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 17

6. Helpful: Sharding/Splitting

Options:

• Give special treatment to shards that are too large or to overflowing keys (e.g.
[Por09, ANS10, PBC+23]).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 18

6. Helpful: Sharding/Splitting

Options:

• Give special treatment to shards that are too large or to overflowing keys (e.g.
[Por09, ANS10, PBC+23]).

• In case construction for Su fails, start over with new seed for randomness.
(Adds small overhead for storing seed.)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 18

6. Helpful: Sharding/Splitting

Options:

• Give special treatment to shards that are too large or to overflowing keys (e.g.
[Por09, ANS10, PBC+23]).

• In case construction for Su fails, start over with new seed for randomness.
(Adds small overhead for storing seed.)

If Gaussian elimination takes time O(n3), then shard size nθ ≤ C ≤ n leads to
overall solution time O(n2C).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 18

6. Helpful: Sharding/Splitting

Options:

• Give special treatment to shards that are too large or to overflowing keys (e.g.
[Por09, ANS10, PBC+23]).

• In case construction for Su fails, start over with new seed for randomness.
(Adds small overhead for storing seed.)

If Gaussian elimination takes time O(n3), then shard size nθ ≤ C ≤ n leads to
overall solution time O(n2C).

With Wiedemann’s algorithm [Wie86] (running time O(n2k)) and sharding we get
construction time O(knC).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 18

6. Helpful: Sharding/Splitting

Options:

• Give special treatment to shards that are too large or to overflowing keys (e.g.
[Por09, ANS10, PBC+23]).

• In case construction for Su fails, start over with new seed for randomness.
(Adds small overhead for storing seed.)

If Gaussian elimination takes time O(n3), then shard size nθ ≤ C ≤ n leads to
overall solution time O(n2C).

With Wiedemann’s algorithm [Wie86] (running time O(n2k)) and sharding we get
construction time O(knC).

Watch out: “High probability” in C might not be so large after all.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 18

7. Two blocks

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 19

7. Two blocks

ax consists of two w-bit blocks of random bits, aligned to grid of width w.

Theorem ([DW19a], simplified.)
Let w = 4 log n. Then m = n+O(log n) is sufficient to guarantee that AS has full
row rank with probability 1− n−δ for some δ > 0.

query is fast: Just access two blocks of width w in Z. Time on RAM: O(wr/ log n).

For build use Gauss elimination (O(n3) (amenable to speed-up tricks like the Four
Russians algorithm, word parallelism, etc.) or Wiedemann’s algorithm with a running
time of O(n2 log n).

Sharding gives a tradeoff between construction time and space overhead.

“Sweet line”: Construction time O(nC) and additive space overhead Θ(n logn
C), for

shard size nθ ≤ C ≤ n.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 19

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 19

8. One block: Sorted solving

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 20

8. One block: Sorted solving
Row ax is described by the binary string

0s(x)c(x)0m−s(x)−w,

where s(x) ∈ [0..m− w] is random and c(x) ∈ {0, 1}w is random.

Theorem [DW19c]

With w = O((log n)/ε) sufficiently large the one-block construction leads to a
retrieval data structure with space overhead ε, construction time O(n/ε2), and query
time O(r/ε), with a query costing one random memory access. The construction
succeeds with high probability.

Query time is easy: Look up w = O((logn)/ε) bit vectors of length r and XOR them. At first

glance this gives time O((logn)r/ε). Improvement: Store Z[0..m − 1] locally column-wise, use

bitwise XOR on words of length logn.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 20

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 20

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 20

8. One block: Sorted solving
build: Gaussian elimination “from left to right”.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 21

8. One block: Sorted solving
build: Gaussian elimination “from left to right”.

Walk through columns j = 0, . . . ,m− 1.
Always have set T ⊆ S of “active” keys, initially T = ∅.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 21

8. One block: Sorted solving
build: Gaussian elimination “from left to right”.

Walk through columns j = 0, . . . ,m− 1.
Always have set T ⊆ S of “active” keys, initially T = ∅.
Each active key x has a “current row” (a′x, f

′
x) in which all entries outside the block

[j..j + w − 1] are 0.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 21

8. One block: Sorted solving
build: Gaussian elimination “from left to right”.

Walk through columns j = 0, . . . ,m− 1.
Always have set T ⊆ S of “active” keys, initially T = ∅.
Each active key x has a “current row” (a′x, f

′
x) in which all entries outside the block

[j..j + w − 1] are 0.

Round j: All x with s(x) = j are added to T , with (a′x, f
′
x) = (ax, f(x)) (extended row).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 21

8. One block: Sorted solving
build: Gaussian elimination “from left to right”.

Walk through columns j = 0, . . . ,m− 1.
Always have set T ⊆ S of “active” keys, initially T = ∅.
Each active key x has a “current row” (a′x, f

′
x) in which all entries outside the block

[j..j + w − 1] are 0.

Round j: All x with s(x) = j are added to T , with (a′x, f
′
x) = (ax, f(x)) (extended row).

If there is an active x so that a′x has a 1 in position j, then choose the first
(according to s(x) and some order in S) such x, set p(x) ← j (we pivot on row x
and column j), and declare x to be finished.

For all other active y for which a′y has a 1 in position j, add (i.e., XOR) (a′x, f
′
x)

onto (a′y, f
′
y).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 21

8. One block: Sorted solving
build: Gaussian elimination “from left to right”.

Walk through columns j = 0, . . . ,m− 1.
Always have set T ⊆ S of “active” keys, initially T = ∅.
Each active key x has a “current row” (a′x, f

′
x) in which all entries outside the block

[j..j + w − 1] are 0.

Round j: All x with s(x) = j are added to T , with (a′x, f
′
x) = (ax, f(x)) (extended row).

If there is an active x so that a′x has a 1 in position j, then choose the first
(according to s(x) and some order in S) such x, set p(x) ← j (we pivot on row x
and column j), and declare x to be finished.

For all other active y for which a′y has a 1 in position j, add (i.e., XOR) (a′x, f
′
x)

onto (a′y, f
′
y).

Finally: Back substitution with (f ′
x)x∈S to find Z[0..m− 1].

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 21

8. One block: Sorted solving

We want to argue that w.h.p. we have

• |T | = O((log n)/ε) always, and

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 22

8. One block: Sorted solving

We want to argue that w.h.p. we have

• |T | = O((log n)/ε) always, and

• procedure ends with T = ∅ for some j ∈ [m− w..m− 1]

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 22

8. One block: Sorted solving

Hj := |T | at the end of round j.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 23

8. One block: Sorted solving

Hj := |T | at the end of round j.

Increase(round j): Bj = |{x ∈ S | s(x) = j}|, approx. Poisson(1/(1 + ε))-distrib.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 23

8. One block: Sorted solving

Hj := |T | at the end of round j.

Increase(round j): Bj = |{x ∈ S | s(x) = j}|, approx. Poisson(1/(1 + ε))-distrib.

Decrease(round j):
Pr(not all (a′x)j, x ∈ T , are 0) = Pr(Geom(12) ≤ Hj−1 +Bj) = 1− 2Hj−1+Bj.

(The relevant bits in position j in T are random – as long as keys don’t stay in T too long.)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 23

8. One block: Sorted solving

Hj := |T | at the end of round j.

Increase(round j): Bj = |{x ∈ S | s(x) = j}|, approx. Poisson(1/(1 + ε))-distrib.

Decrease(round j):
Pr(not all (a′x)j, x ∈ T , are 0) = Pr(Geom(12) ≤ Hj−1 +Bj) = 1− 2Hj−1+Bj.

(The relevant bits in position j in T are random – as long as keys don’t stay in T too long.)

As soon as |T | > log(1/ε) + 2, we have an overall negative drift.

The rest is queuing theory
((M/M/1)-queue with arrival rate 1 − ε, service rate ≈ 1 − ε/2.)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 23

8. One block: Sorted solving

Hj := |T | at the end of round j.

Increase(round j): Bj = |{x ∈ S | s(x) = j}|, approx. Poisson(1/(1 + ε))-distrib.

Decrease(round j):
Pr(not all (a′x)j, x ∈ T , are 0) = Pr(Geom(12) ≤ Hj−1 +Bj) = 1− 2Hj−1+Bj.

(The relevant bits in position j in T are random – as long as keys don’t stay in T too long.)

As soon as |T | > log(1/ε) + 2, we have an overall negative drift.

The rest is queuing theory
((M/M/1)-queue with arrival rate 1 − ε, service rate ≈ 1 − ε/2.)

Cumulative queue length is O(n/ε), maximum queue length is O((log n)/ε) w.h.p.

Cumulative queue length = total number of vector additions.

Each vector addition costs O(1/ε) word operations.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 23

9. One block: Ribbon
[DHSW22] Sorted solving requires sorting by s(x) first, so we start from an an
approximate band matrix (“ribbon”). Curious: This is irrelevant.

Assume key-value pairs (x, f(x)), x ∈ S arrive in some order:

(x1, f(x1)), . . . , (xn, f(xn)).

Build an m×m echelon matrix M “on the fly” with a right hand side F [0..m− 1],
incrementally.

After round j, matrixM ·z = F [0..m−1] is equivalent to the system (axi
·z) = f(xi),

i = 1, . . . , j.

Since M is in echelon form, can find solution Z for M ·Z = F by back substitution.

Random Incremental BinaryBandingOn the Fly.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 24

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 24

9. One block: Ribbon

Initialization: M is the zero matrix, F [0..m − 1] is the zero vector (entries from
{0, 1}r). We have rounds j = 1, . . . , n.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 25

9. One block: Ribbon

Initialization: M is the zero matrix, F [0..m − 1] is the zero vector (entries from
{0, 1}r). We have rounds j = 1, . . . , n.

Round j: Pair (xj, f(xj)) arrives.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 25

9. One block: Ribbon

Initialization: M is the zero matrix, F [0..m − 1] is the zero vector (entries from
{0, 1}r). We have rounds j = 1, . . . , n.

Round j: Pair (xj, f(xj)) arrives.

a′ := axj
, f ′ := f(xj), done := false. // New equation: a′ · z = f ′.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 25

9. One block: Ribbon

Initialization: M is the zero matrix, F [0..m − 1] is the zero vector (entries from
{0, 1}r). We have rounds j = 1, . . . , n.

Round j: Pair (xj, f(xj)) arrives.

a′ := axj
, f ′ := f(xj), done := false. // New equation: a′ · z = f ′.

while not done and there is s such that (a′)s = 1:

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 25

9. One block: Ribbon

Initialization: M is the zero matrix, F [0..m − 1] is the zero vector (entries from
{0, 1}r). We have rounds j = 1, . . . , n.

Round j: Pair (xj, f(xj)) arrives.

a′ := axj
, f ′ := f(xj), done := false. // New equation: a′ · z = f ′.

while not done and there is s such that (a′)s = 1:
pick smallest such s
if row s of M is b ̸= 0, then (a′, f ′) := (a′ ⊕ b, f ′ ⊕ F [s])
// row transformation, moves first 1 in a′ to the right

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 25

9. One block: Ribbon

Initialization: M is the zero matrix, F [0..m − 1] is the zero vector (entries from
{0, 1}r). We have rounds j = 1, . . . , n.

Round j: Pair (xj, f(xj)) arrives.

a′ := axj
, f ′ := f(xj), done := false. // New equation: a′ · z = f ′.

while not done and there is s such that (a′)s = 1:
pick smallest such s
if row s of M is b ̸= 0, then (a′, f ′) := (a′ ⊕ b, f ′ ⊕ F [s])
// row transformation, moves first 1 in a′ to the right
else // row s of M is zero

enter (a′, F) as row s in the system (M,F); done := true

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 25

9. One block: Ribbon

Initialization: M is the zero matrix, F [0..m − 1] is the zero vector (entries from
{0, 1}r). We have rounds j = 1, . . . , n.

Round j: Pair (xj, f(xj)) arrives.

a′ := axj
, f ′ := f(xj), done := false. // New equation: a′ · z = f ′.

while not done and there is s such that (a′)s = 1:
pick smallest such s
if row s of M is b ̸= 0, then (a′, f ′) := (a′ ⊕ b, f ′ ⊕ F [s])
// row transformation, moves first 1 in a′ to the right
else // row s of M is zero

enter (a′, F) as row s in the system (M,F); done := true
if not done then return “dependence at j”.

After finishing all rounds: return (M,F).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 25

9. One block: Ribbon
What? This is all?

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 26

9. One block: Ribbon
What? This is all? – Observations:

• Only row transformations ⇒ M · z = F is equivalent to (axi
· z) = f(xi),

i = 1, . . . , n.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 26

9. One block: Ribbon
What? This is all? – Observations:

• Only row transformations ⇒ M · z = F is equivalent to (axi
· z) = f(xi),

i = 1, . . . , n.

• Get “dependence at j” ⇔ j is minimal with x1, . . . , xj is linearly dependent.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 26

9. One block: Ribbon
What? This is all? – Observations:

• Only row transformations ⇒ M · z = F is equivalent to (axi
· z) = f(xi),

i = 1, . . . , n.

• Get “dependence at j” ⇔ j is minimal with x1, . . . , xj is linearly dependent.

• The overall cost is the same as for sorted solving (not too hard to see).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 26

9. One block: Ribbon
What? This is all? – Observations:

• Only row transformations ⇒ M · z = F is equivalent to (axi
· z) = f(xi),

i = 1, . . . , n.

• Get “dependence at j” ⇔ j is minimal with x1, . . . , xj is linearly dependent.

• The overall cost is the same as for sorted solving (not too hard to see).

• The solutions are the same, if we set the nonpivot entries Z[s] to zero.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 26

9. One block: Ribbon
What? This is all? – Observations:

• Only row transformations ⇒ M · z = F is equivalent to (axi
· z) = f(xi),

i = 1, . . . , n.

• Get “dependence at j” ⇔ j is minimal with x1, . . . , xj is linearly dependent.

• The overall cost is the same as for sorted solving (not too hard to see).

• The solutions are the same, if we set the nonpivot entries Z[s] to zero.

• (Unfortunately:) This is not really an online or incremental algorithm for retrieval,
because of back-substitution at the end.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 26

9. One block: Ribbon
What? This is all? – Observations:

• Only row transformations ⇒ M · z = F is equivalent to (axi
· z) = f(xi),

i = 1, . . . , n.

• Get “dependence at j” ⇔ j is minimal with x1, . . . , xj is linearly dependent.

• The overall cost is the same as for sorted solving (not too hard to see).

• The solutions are the same, if we set the nonpivot entries Z[s] to zero.

• (Unfortunately:) This is not really an online or incremental algorithm for retrieval,
because of back-substitution at the end.

• Backtracking: It is easy to undo insertion of the last entry (xj, f(xj)) into
(M,F): just zero out the last row that was added. (Can be iterated.)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 26

10. Bumping, batch bumping, overloading

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 27

10. Bumping, batch bumping, overloading
[DHSW21, DHSW22]

Following an algorithm engineering trail leads to a new theoretical result.

Old technique: “Bumping” keys: Kick out keys that do not fit, treat elsewhere
(called “backyard” in [ANS10]). Price to pay: Extra access into memory.

Start with a version of sharding : Keys are split into buckets using s(x), the starting
position in ax.

Subdivide the range [m− w] of into segments of length B.

Bucket Su: set of keys whose starting positions s(x) fall into segment u.

Buckets are treated in increasing order of segments, left to right.

Unconventional: No gaps between segments. So for x in Su vector ax may have
nonzero bits in segment u+ 1. Keys from bucket Su will mainly placed in positions
from segment u in M , but there may be a some overspill into segment u+ 1.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 27

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 27

10. Bumping, batch bumping, overloading
Some keys may be “bumped”, i.e., taken out of the system M · z = F of equations.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 28

10. Bumping, batch bumping, overloading
Some keys may be “bumped”, i.e., taken out of the system M · z = F of equations.

First idea: Bump keys whose ax ruins linear independence.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 28

10. Bumping, batch bumping, overloading
Some keys may be “bumped”, i.e., taken out of the system M · z = F of equations.

First idea: Bump keys whose ax ruins linear independence.

Good: The truly minimum number of keys. Bad: Must store them in a dictionary
manner, at cost of

≈ β log |U| bits, for β = n− dim(span{ax | x ∈ S}), the deficiency,

causing significant overhead.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 28

10. Bumping, batch bumping, overloading
Some keys may be “bumped”, i.e., taken out of the system M · z = F of equations.

First idea: Bump keys whose ax ruins linear independence.

Good: The truly minimum number of keys. Bad: Must store them in a dictionary
manner, at cost of

≈ β log |U| bits, for β = n− dim(span{ax | x ∈ S}), the deficiency,

causing significant overhead.

Next idea: Bump whole bucket as soon as there is a linear dependency in it.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 28

10. Bumping, batch bumping, overloading
Some keys may be “bumped”, i.e., taken out of the system M · z = F of equations.

First idea: Bump keys whose ax ruins linear independence.

Good: The truly minimum number of keys. Bad: Must store them in a dictionary
manner, at cost of

≈ β log |U| bits, for β = n− dim(span{ax | x ∈ S}), the deficiency,

causing significant overhead.

Next idea: Bump whole bucket as soon as there is a linear dependency in it.

Gives small overhead (1 Bit/bucket) but bumps many keys.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 28

10. Bumping, batch bumping, overloading
Some keys may be “bumped”, i.e., taken out of the system M · z = F of equations.

First idea: Bump keys whose ax ruins linear independence.

Good: The truly minimum number of keys. Bad: Must store them in a dictionary
manner, at cost of

≈ β log |U| bits, for β = n− dim(span{ax | x ∈ S}), the deficiency,

causing significant overhead.

Next idea: Bump whole bucket as soon as there is a linear dependency in it.

Gives small overhead (1 Bit/bucket) but bumps many keys.

Compromise: Only three options: Bump nothing, bump all keys with smallish s(x)
in segment u, or bump the whole bucket. – Overhead: log2 3 bits/bucket.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 28

10. Bumping, batch bumping, overloading

Some parameters:

w is the block length in ax, a parameter we will play around with.

B = w2

logw, almost squarish in w, is the segment length.

Su = {x ∈ S | s(x) is in segment u}, for u = 0, . . . , (m− w)/B − 1.

Hu = {x ∈ S | s(x) is among the smallest 3w/8 values in segment u}, (“head”)
Tu = Su −Hu (keys with larger s-values, “tail”)

Options for bucket u: Bump nothing, bump keys in Hu, bump all of Su.

All bumped keys are treated in a “secondary” data structure, which could be of the same type again

(recursion for a constant number of levels), or use some other tricks of the trade. We do not worry

about them.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 29

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 29

10. Bumping, batch bumping, overloading
algorithm BumpedRibbonRetrieval (BuRR)

Build square matrix M and right hand side (f ′
x), treating one Su after the other.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 30

10. Bumping, batch bumping, overloading
algorithm BumpedRibbonRetrieval (BuRR)

Build square matrix M and right hand side (f ′
x), treating one Su after the other.

For keys x in Su:

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 30

10. Bumping, batch bumping, overloading
algorithm BumpedRibbonRetrieval (BuRR)

Build square matrix M and right hand side (f ′
x), treating one Su after the other.

For keys x in Su:

In M consider rows and columns in segment u.
Some of them may already be occupied by keys from segment u − 1 (“overspill”),
we expect a smallish fraction of w many.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 30

10. Bumping, batch bumping, overloading
algorithm BumpedRibbonRetrieval (BuRR)

Build square matrix M and right hand side (f ′
x), treating one Su after the other.

For keys x in Su:

In M consider rows and columns in segment u.
Some of them may already be occupied by keys from segment u − 1 (“overspill”),
we expect a smallish fraction of w many.

(1) Try to insert all keys from Tu. // No conflict with overspill!

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 30

10. Bumping, batch bumping, overloading
algorithm BumpedRibbonRetrieval (BuRR)

Build square matrix M and right hand side (f ′
x), treating one Su after the other.

For keys x in Su:

In M consider rows and columns in segment u.
Some of them may already be occupied by keys from segment u − 1 (“overspill”),
we expect a smallish fraction of w many.

(1) Try to insert all keys from Tu. // No conflict with overspill!

if this fails: bump all of Su. // Helpful: Can easily undo last changes to M

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 30

10. Bumping, batch bumping, overloading
algorithm BumpedRibbonRetrieval (BuRR)

Build square matrix M and right hand side (f ′
x), treating one Su after the other.

For keys x in Su:

In M consider rows and columns in segment u.
Some of them may already be occupied by keys from segment u − 1 (“overspill”),
we expect a smallish fraction of w many.

(1) Try to insert all keys from Tu. // No conflict with overspill!

if this fails: bump all of Su. // Helpful: Can easily undo last changes to M

(2) Try to insert all keys from Hu.
if this fails: bump all of Hu.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 30

10. Bumping, batch bumping, overloading
algorithm BumpedRibbonRetrieval (BuRR)

Build square matrix M and right hand side (f ′
x), treating one Su after the other.

For keys x in Su:

In M consider rows and columns in segment u.
Some of them may already be occupied by keys from segment u − 1 (“overspill”),
we expect a smallish fraction of w many.

(1) Try to insert all keys from Tu. // No conflict with overspill!

if this fails: bump all of Su. // Helpful: Can easily undo last changes to M

(2) Try to insert all keys from Hu.
if this fails: bump all of Hu.

If both (1) and (2) are successful, nothing is bumped from Su.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 30

10. Bumping, batch bumping, overloading
algorithm BumpedRibbonRetrieval (BuRR)

Build square matrix M and right hand side (f ′
x), treating one Su after the other.

For keys x in Su:

In M consider rows and columns in segment u.
Some of them may already be occupied by keys from segment u − 1 (“overspill”),
we expect a smallish fraction of w many.

(1) Try to insert all keys from Tu. // No conflict with overspill!

if this fails: bump all of Su. // Helpful: Can easily undo last changes to M

(2) Try to insert all keys from Hu.
if this fails: bump all of Hu.

If both (1) and (2) are successful, nothing is bumped from Su.

Finally: Back substitution for all keys that are not bumped.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 30

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 30

10. Bumping, batch bumping, overloading

Bumping information for each bucket Su is part of the data structure, giving overhead
of

m

B
· log2 3 bits.

query(x):

s(x) combined with bumping information of its bucket tells us if x is bumped or not.

Accordingly, get answer from Z or from the backyard data structure.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 31

10. Bumping, batch bumping, overloading

Parameters to play around with: w and ε = m
n − 1.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 32

10. Bumping, batch bumping, overloading

Parameters to play around with: w and ε = m
n − 1.

Last engineering twist: Overloading.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 32

10. Bumping, batch bumping, overloading

Parameters to play around with: w and ε = m
n − 1.

Last engineering twist: Overloading.

Background: Experiments showed that for m = n(1 + ε) no exceptional behavior
appeared for smaller and smaller ε, even ε = 0 was o.k.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 32

10. Bumping, batch bumping, overloading

Parameters to play around with: w and ε = m
n − 1.

Last engineering twist: Overloading.

Background: Experiments showed that for m = n(1 + ε) no exceptional behavior
appeared for smaller and smaller ε, even ε = 0 was o.k.

Explanation: Bumping defuses situations where single buckets overflow.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 32

10. Bumping, batch bumping, overloading

Parameters to play around with: w and ε = m
n − 1.

Last engineering twist: Overloading.

Background: Experiments showed that for m = n(1 + ε) no exceptional behavior
appeared for smaller and smaller ε, even ε = 0 was o.k.

Explanation: Bumping defuses situations where single buckets overflow.

Even “negative ε” worked: m is chosen a little smaller than n.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 32

10. Bumping, batch bumping, overloading

Parameters to play around with: w and ε = m
n − 1.

Last engineering twist: Overloading.

Background: Experiments showed that for m = n(1 + ε) no exceptional behavior
appeared for smaller and smaller ε, even ε = 0 was o.k.

Explanation: Bumping defuses situations where single buckets overflow.

Even “negative ε” worked: m is chosen a little smaller than n.

Some keys are bumped anyway. If these are Θ(n/w) many, say, we could just as well
throw in (1 + 1/w)m keys, this does not change the “pressure into the backyard”
much.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 32

10. Bumping, batch bumping, overloading

Parameters to play around with: w and ε = m
n − 1.

Last engineering twist: Overloading.

Background: Experiments showed that for m = n(1 + ε) no exceptional behavior
appeared for smaller and smaller ε, even ε = 0 was o.k.

Explanation: Bumping defuses situations where single buckets overflow.

Even “negative ε” worked: m is chosen a little smaller than n.

Some keys are bumped anyway. If these are Θ(n/w) many, say, we could just as well
throw in (1 + 1/w)m keys, this does not change the “pressure into the backyard”
much.

Effect: In M , rows/col’s in buckets tend to be used completely, no gaps!

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 32

10. Bumping, batch bumping, overloading

Theorem [DHSW21, DHSW22]

An r-bit retrieval structure with ribbon width w = O(log n) and r = O(w)
has expected construction time O(nw), space overhead O(logw

rw2),
and query time O(1 + rw

logn).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 33

10. Bumping, batch bumping, overloading

Theorem [DHSW21, DHSW22]

An r-bit retrieval structure with ribbon width w = O(log n) and r = O(w)
has expected construction time O(nw), space overhead O(logw

rw2),
and query time O(1 + rw

logn).

w can be o(log n)! E.g., w = 64 is an interesting choice.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 33

10. Bumping, batch bumping, overloading

Theorem [DHSW21, DHSW22]

An r-bit retrieval structure with ribbon width w = O(log n) and r = O(w)
has expected construction time O(nw), space overhead O(logw

rw2),
and query time O(1 + rw

logn).

w can be o(log n)! E.g., w = 64 is an interesting choice.

Very promising experimental results [DHSW22].

All details in [DDHSSW2?], forthcoming.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 33

10. Bumping, batch bumping, overloading

Theorem [DHSW21, DHSW22]

An r-bit retrieval structure with ribbon width w = O(log n) and r = O(w)
has expected construction time O(nw), space overhead O(logw

rw2),
and query time O(1 + rw

logn).

w can be o(log n)! E.g., w = 64 is an interesting choice.

Very promising experimental results [DHSW22].

All details in [DDHSSW2?], forthcoming.

Also illuminating and accessible, for the topic of this talk, and more:
[Wal23] by S. Walzer (Bull. EATCS).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 33

Omitted

Retrieval can be used to build . . .

• . . . small perfect hashing data structures [BPZ13].

• . . . small (static) filters (observed in [DP08]).

• . . . data structures for simulating fully random hash functions [DR09].

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 34

Conclusion

Retrieval by equations:

One simple concept – many variants – multiple methods and insights, including
constructions interesting for practical use.

• Give more precise bounds/thresholds for sorted solving.

• Explore other uses for overloading (whenever there is a backyard structure . . .).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 35

Conclusion

Retrieval by equations:

One simple concept – many variants – multiple methods and insights, including
constructions interesting for practical use.

Problems:

• Are equations ever useful in a dynamic setting?

• Give more precise bounds/thresholds for sorted solving.

• Explore other uses for overloading (whenever there is a backyard structure . . .).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 35

Thank you.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 36

A. Orientability + Retrieval → Perfect Hashing
[CKRT04, BPZ13]

Choose r > ckn and Bx for x ∈ S; can assume orientability of (Bx)x∈S.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 37

A. Orientability + Retrieval → Perfect Hashing
[CKRT04, BPZ13]

Choose r > ckn and Bx for x ∈ S; can assume orientability of (Bx)x∈S.

Find τ : S
1−1→ [t] such that τ(x) ∈ Bx for x ∈ S.

(This is a matching problem. Algorithms that work in linear time w.h.p. are known
[KA19].)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 37

A. Orientability + Retrieval → Perfect Hashing
[CKRT04, BPZ13]

Choose r > ckn and Bx for x ∈ S; can assume orientability of (Bx)x∈S.

Find τ : S
1−1→ [t] such that τ(x) ∈ Bx for x ∈ S.

(This is a matching problem. Algorithms that work in linear time w.h.p. are known
[KA19].)

With Bx = {h0(x), . . . , hk−1(x)} we then have τ(x) = hσ(x)(x) for some σ : S → [k].

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 37

A. Orientability + Retrieval → Perfect Hashing
[CKRT04, BPZ13]

Choose r > ckn and Bx for x ∈ S; can assume orientability of (Bx)x∈S.

Find τ : S
1−1→ [t] such that τ(x) ∈ Bx for x ∈ S.

(This is a matching problem. Algorithms that work in linear time w.h.p. are known
[KA19].)

With Bx = {h0(x), . . . , hk−1(x)} we then have τ(x) = hσ(x)(x) for some σ : S → [k].

Then

h : U → [t] defined by h(x) = hσ(x)(x)

is one-to-one on S.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 37

A. Orientability + Retrieval → Perfect Hashing
[CKRT04, BPZ13]

Choose r > ckn and Bx for x ∈ S; can assume orientability of (Bx)x∈S.

Find τ : S
1−1→ [t] such that τ(x) ∈ Bx for x ∈ S.

(This is a matching problem. Algorithms that work in linear time w.h.p. are known
[KA19].)

With Bx = {h0(x), . . . , hk−1(x)} we then have τ(x) = hσ(x)(x) for some σ : S → [k].

Then

h : U → [t] defined by h(x) = hσ(x)(x)

is one-to-one on S.

h can be evaluated in time O(k) by using a retrieval data structure Rσ for σ.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 37

A. Orientability + Retrieval → Perfect Hashing

Worked out in full detail, with experimentation, in [BPZ13].

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 38

A. Orientability + Retrieval → Perfect Hashing

Worked out in full detail, with experimentation, in [BPZ13].

In the retrieval structure, use |Ax| = 3, can use larger k for the Bx.

Range of h is [1.025n], space for Rσ is 1.23(log2 3)n ≈ 1.95n [Bits].

Beware: Perfect hashing is another topic with many extra tricks, and new
developments!

(Not our focus.)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 38

B. Solvability with n = m

A question aside: When can we have m = n?

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 39

B. Solvability with n = m

A question aside: When can we have m = n?

Fact [Folklore]

If the entries of an n×n matrix M are chosen randomly from {0, 1}, the probability
that M is regular is > 0.288 (but not much larger for large n).

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 39

B. Solvability with n = m

A question aside: When can we have m = n?

Fact [Folklore]

If the entries of an n×n matrix M are chosen randomly from {0, 1}, the probability
that M is regular is > 0.288 (but not much larger for large n).

Fact [Coo00]

If the rows of an n× n matrix M are chosen randomly from the set of all vectors of
weight C log n, for C large enough, the probability that M is regular is > 0.25.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 39

B. Solvability with n = m

A question aside: When can we have m = n?

Fact [Folklore]

If the entries of an n×n matrix M are chosen randomly from {0, 1}, the probability
that M is regular is > 0.288 (but not much larger for large n).

Fact [Coo00]

If the rows of an n× n matrix M are chosen randomly from the set of all vectors of
weight C log n, for C large enough, the probability that M is regular is > 0.25.

For vectors of weight o(log n) the respective probability goes to 0 for n→∞.

Not good for retrieval, since suddenly query needs logarithmic time.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 39

B. Solvability with n = m

A question aside: When can we have m = n?

Fact [Folklore]

If the entries of an n×n matrix M are chosen randomly from {0, 1}, the probability
that M is regular is > 0.288 (but not much larger for large n).

Fact [Coo00]

If the rows of an n× n matrix M are chosen randomly from the set of all vectors of
weight C log n, for C large enough, the probability that M is regular is > 0.25.

For vectors of weight o(log n) the respective probability goes to 0 for n→∞.

Not good for retrieval, since suddenly query needs logarithmic time.

([Por09] used these facts in combination with (among others) a table lookup technique
to obtain very good retrieval structures.)

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 39

C. More applications: Static filters, Full randomness

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 40

C. More applications: Static filters, Full randomness

A simple application of retrieval: Static filters with multiplicative overhead m
n − 1.

(Observed in [DP08].)

Let h : U → {0, 1}r be a random hash function.

buildF(S): Build retrieval structure Rh↾S for (h(x))x∈S.

F-query(x): Evaluate v := h(x), return [v = R-query(x)].
Easy to see: False positive probability is 2−r, space is mr.

Lower space bound for this false positive probability is (essentially) nr.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 40

C. More applications: Static filters, Full randomness

Given: S. We wish to have a data structure for a function g : U → {0, 1}r that on
S behaves fully randomly.

Using the random mapping x 7→ ax as before, we initialize Z[0..m− 1] with random
entries from {0, 1}r.
On input x, we return queryZ(x).

(If AS has full row rank, this is fully random on S.
Construction can be carried out without knowing S.)

Space overhead: m
n − 1 with m from retrieval structure.

Hey! We use randomness in ax, for x ∈ S, to simulate fully random values on S?

Be assured: We can get by without any randomness “from outside”,
by sharding techniques. Increases overhead. Details: [DR09].

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 41

References

[ANS10] Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing: Constant

worst-case operations with a succinct representation. In 51th Annual IEEE Symposium

on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas,

Nevada, USA, pages 787–796. IEEE Computer Society, 2010.

[BPZ13] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. Practical perfect hashing in nearly

optimal space. Inf. Syst., 38(1):108–131, 2013.

[CKRT04] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. The bloomier filter:

an efficient data structure for static support lookup tables. In J. Ian Munro, editor,

Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages 30–39. SIAM,

2004.

[Coo00] Colin Cooper. On the rank of random matrices. Random Struct. Algorithms, 16(2):209–

232, 2000.

[DGM+10] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Montanari,

Rasmus Pagh, and Michael Rink. Tight thresholds for cuckoo hashing via XORSAT. In

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 42

Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and

Paul G. Spirakis, editors, Automata, Languages and Programming, 37th International

Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part I,

volume 6198 of Lecture Notes in Computer Science, pages 213–225. Springer, 2010.

[DHSW21] Peter C. Dillinger, Lorenz Hübschle-Schneider, Peter Sanders, and Stefan Walzer. Fast

succinct retrieval and approximate membership using ribbon. CoRR, abs/2109.01892,

2021.

[DHSW22] Peter C. Dillinger, Lorenz Hübschle-Schneider, Peter Sanders, and Stefan Walzer. Fast

succinct retrieval and approximate membership using ribbon. In Christian Schulz and

Bora Uçar, editors, 20th International Symposium on Experimental Algorithms, SEA

2022, July 25-27, 2022, Heidelberg, Germany, volume 233 of LIPIcs, pages 4:1–4:20.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[DM02] Olivier Dubois and Jacques Mandler. The 3-xorsat threshold. In 43rd Symposium on

Foundations of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver, BC,

Canada, Proceedings, pages 769–778. IEEE Computer Society, 2002.

[DP08] Martin Dietzfelbinger and Rasmus Pagh. Succinct data structures for retrieval and

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 43

approximate membership (extended abstract). In Luca Aceto, Ivan Damg̊ard, Leslie Ann

Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors,

Automata, Languages and Programming, 35th International Colloquium, ICALP 2008,

Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata,

Complexity, and Games, volume 5125 of Lecture Notes in Computer Science, pages

385–396. Springer, 2008.

[DR09] Martin Dietzfelbinger and Michael Rink. Applications of a splitting trick.

In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, and Sotiris

E. Nikoletseas andDBLP:conf/icalp/DietzfelbingerR09 Wolfgang Thomas, editors,

Automata, Languages and Programming, 36th International Colloquium, ICALP 2009,

Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume 5555 of Lecture Notes in

Computer Science, pages 354–365. Springer, 2009.

[DW19a] Martin Dietzfelbinger and Stefan Walzer. Constant-time retrieval with o(log m) extra

bits. In Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium

on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin,

Germany, volume 126 of LIPIcs, pages 24:1–24:16. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2019.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 44

[DW19b] Martin Dietzfelbinger and Stefan Walzer. Dense peelable random uniform hypergraphs.

In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th

Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019,

Munich/Garching, Germany, volume 144 of LIPIcs, pages 38:1–38:16. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2019.

[DW19c] Martin Dietzfelbinger and Stefan Walzer. Efficient gauss elimination for near-quadratic

matrices with one short random block per row, with applications. In Michael A. Bender,

Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium on

Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144

of LIPIcs, pages 39:1–39:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[FM12] Alan M. Frieze and Páll Melsted. Maximum matchings in random bipartite graphs and

the space utilization of cuckoo hash tables. Random Struct. Algorithms, 41(3):334–364,

2012.

[FP10] Nikolaos Fountoulakis and Konstantinos Panagiotou. Orientability of random

hypergraphs and the power of multiple choices. In Samson Abramsky, Cyril Gavoille,

Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, Automata,

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 45

Languages and Programming, 37th International Colloquium, ICALP 2010, Bordeaux,

France, July 6-10, 2010, Proceedings, Part I, volume 6198 of Lecture Notes in Computer

Science, pages 348–359. Springer, 2010.

[FPSS05] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space efficient

hash tables with worst case constant access time. Theory Comput. Syst., 38(2):229–248,

2005.

[GOV16] Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. Fast scalable construction

of (minimal perfect hash) functions. In Andrew V. Goldberg and Alexander S. Kulikov,

editors, Experimental Algorithms - 15th International Symposium, SEA 2016, St.

Petersburg, Russia, June 5-8, 2016, Proceedings, volume 9685 of Lecture Notes in

Computer Science, pages 339–352. Springer, 2016.

[GOV20] Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. Fast scalable construction

of ([compressed] static | minimal perfect hash) functions. Inf. Comput., 273:104517,

2020.

[KA19] Megha Khosla and Avishek Anand. A faster algorithm for cuckoo insertion and bipartite

matching in large graphs. Algorithmica, 81(9):3707–3724, 2019.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 46

[KRU15] Shrinivas Kudekar, Thomas J. Richardson, and Rüdiger L. Urbanke. Wave-like solutions

of general 1-d spatially coupled systems. IEEE Trans. Inf. Theory, 61(8):4117–4157,

2015.

[LMSS01] Michael Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and Daniel A.

Spielman. Improved low-density parity-check codes using irregular graphs. IEEE Trans.

Inf. Theory, 47(2):585–598, 2001.

[MWHC96] Bohdan S. Majewski, Nicholas C. Wormald, George Havas, and Zbigniew J. Czech. A

family of perfect hashing methods. Comput. J., 39(6):547–554, 1996.

[Nav16] Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cambridge

University Press, 2016.

[PBC+23] Prashant Pandey, Michael A. Bender, Alex Conway, Martin Farach-Colton, William

Kuszmaul, Guido Tagliavini, and Rob Johnson. Iceberght: High performance hash tables

through stability and low associativity. Proc. ACM Manag. Data, 1(1):47:1–47:26, 2023.

[Por09] Ely Porat. An optimal bloom filter replacement based on matrix solving. In Anna E.

Frid, Andrey Morozov, Andrey Rybalchenko, and Klaus W. Wagner, editors, Computer

Science - Theory and Applications, Fourth International Computer Science Symposium

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 47

in Russia, CSR 2009, Novosibirsk, Russia, August 18–23, 2009. Proceedings, volume

5675 of Lecture Notes in Computer Science, pages 263–273. Springer, 2009.

[PS16] Boris G. Pittel and Gregory B. Sorkin. The satisfiability threshold for k-xorsat. Comb.

Probab. Comput., 25(2):236–268, 2016.

[SH94] Steven S. Seiden and Daniel S. Hirschberg. Finding succinct ordered minimal perfect

hash functions. Inf. Process. Lett., 51(6):283–288, 1994.

[Wal21] Stefan Walzer. Peeling close to the orientability threshold - spatial coupling in hashing-

based data structures. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM

Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10–13,

2021, pages 2194–2211. SIAM, 2021.

[Wal23] Stefan Walzer. What if we tried less power? - lessons from studying the power of choices

in hashing-based data structures. CoRR, abs/2307.00644, 2023.

[Wie86] Douglas H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans.

Inf. Theory, 32(1):54–62, 1986.

Martin Dietzfelbinger Amsterdam, Sept. 4, 2023 48

