

Berechenbarkeit und Komplexität - Übung 1

Besprechung am 14.04. bzw. 17.04.

Hinweis: Für dieses Übungsblatt werden noch keine Bonuspunkte verteilt und es müssen auch keine Lösungen abgegeben werden.

Aufgabe 1

Geben Sie zu den folgenden Funktionen je ein LOOP-Programm an:

- (a) $f: \mathbb{N} \longrightarrow \mathbb{N}: n \mapsto n^2$ und
- (b) $f: \mathbb{N} \longrightarrow \mathbb{N}: n \mapsto n^n$ (wobei f(0) = 1 ist).

Hinweis: Sie dürfen die in der Vorlesung vorgestellten Programme (z.B. für die Multiplikation) verwenden.

Zusatz: Geben Sie zu jeder der beiden Funktionen auch ein REK-Programm an.

Aufgabe 2

Geben Sie zu der Fakultäts-Funktion fak : $\mathbb{N} \longrightarrow \mathbb{N}$ mit fak $(n) = n \cdot (n-1) \cdots 2 \cdot 1$

- (a) ein LOOP-Programm und
- (b) ein REK-Programm an.

Aufgabe 3

Sei fib : $\mathbb{N} \longrightarrow \mathbb{N}$ die Fibonacci-Funktion, d.h. es gilt

$$fib(0) = 0$$
, $fib(1) = 1$ und $fib(n+2) = fib(n+1) + fib(n)$ für alle $n \in \mathbb{N}$.

Bearbeiten Sie die folgenden Teilaufgaben:

- (a) Geben Sie ein LOOP-Programm für fib an.
- (b) Geben Sie für die Hilfsfunktion $f: \mathbb{N} \longrightarrow \mathbb{N}$ mit

$$f(n) = \langle fib(n), fib(n+1) \rangle$$

ein REK-Programm an.

Hinweis: Überlegen Sie sich, wie Sie f(n + 1) aus f(n) (ohne Verwendung der Funktion fib) berechnen können.

Bemerkung: Für ein Paar $(m,n) \in \mathbb{N}^2$ bezeichnet $\langle m,n \rangle$ die Kodierung von (m,n) als natürliche Zahl. Mithilfe der Funktionen $d_1 : \mathbb{N} \longrightarrow \mathbb{N}$ bzw. $d_2 : \mathbb{N} \longrightarrow \mathbb{N}$ können die Komponenten aus der Kodierung zurückgewonnen werden, d.h. $d_1(\langle m,n \rangle) = m$ und $d_2(\langle m,n \rangle) = n$ (vgl. Folie 2.21).

(c) Leiten Sie unter Verwendung von (b) ein REK-Programm für fib her.

Aufgabe 4

Zeigen Sie, dass die Funktion

$$c: \mathbb{N}^2 \longrightarrow \mathbb{N}: (m,n) \mapsto m + \binom{m+n+1}{2}$$

bijektiv ist (vgl. Folie 2.41).

Hinweis. Es gilt $\binom{n+1}{2} = 1 + 2 + 3 + \cdots + n$.