Berechenbarkeit und Komplexität 9. Vorlesung

Prof. Dr. Dietrich Kuske

FG Automaten und Logik, TU Ilmenau

Sommersemester 2023

Universelle Turing-Maschine

Wir wollen jetzt zeigen, daß es eine Turing-Maschine gibt, die jede Turing-Maschine simulieren kann, wenn deren Kodierung gegeben ist.

Problem: Bandalphabete sind beliebig groß, die zu konstruierende universelle TM hat aber ein festes Bandalphabet.

Lösung: Kodiere Buchstaben des Bandalphabets als Wörter über $\{0,1,2\}$ mit $\square=2$. Ab jetzt nehmen wir an, daß wir immer dieses Bandalphabet haben.

Definition

Eine Turing-Maschine U heißt universelle Turing-Maschine, wenn sie die folgende partielle Funktion berechnet:

$$\{0,1\}^* \rightarrow \{0,1\}^*$$

$$\{\varphi_w(x) \text{ falls } y = w000x, w \in L_{TM}, x \in \{0,1\}^*$$

$$\text{undef. sonst}$$

Bemerkung

Ist U universelle TM, so gilt insbes. für alle $w \in L_{TM}$ und $x \in \{0,1\}^*$:

- U hält bei Eingabe w 000 x genau dann, wenn M_w bei Eingabe x hält.
- U akzeptiert $w 000 \times genau dann, wenn M_w das Wort \times akzeptiert.$

Satz

Es gibt eine universelle Turing-Maschine.

Beweis

zunächst eine Turing-Maschine mit drei Bändern (daraus kann dann eine TM mit einem Band konstruiert werden). Während der Berechnung haben die Bänder die folgende Bedeutung:

- 1. Band: Kode w der zu simulierenden Turing-Maschine M_w
- 2. Band: aktueller Zustand der zu simulierenden Turing-Maschine M_w
- 3. Band: augenblicklicher Bandinhalt der Turing-Maschine M_w

Initialisierung: Auf 1. Band steht w 000 x mit $w \in L_{TM}$. Kopiere x auf

- 3. Band und lösche 000 x auf erstem, schreibe 010 (d.h. Kode von z_0) auf
- 2. Band.

Simulation eines Schrittes von M_w : stehen auf 2. Band $01^{i+1}0$ (d.h. z_i) und auf 3. an Kopfposition j, so suche auf 1. Band $001^{i+1}01^{j+1}01^{i'+1}01^{j'+1}01^{y}0$ (d.h. Anweisung $(z_{i'}, a_{j'}, y) = \delta(z_i, a_j)$) und

- schreibe $01^{i'+1}0$ auf 2. Band
- ersetze j an Kopfposition auf 3. Band durch j'
- bewege 3. Kopf entsprechend y nach rechts, links oder aber nicht.

"Aufräumen" bei Erreichen einer akzeptierenden Haltekonfiguration auf 3. Band.

NOTIZ (nach 9.5)

Es gibt kleine universelle Turing-Maschinen:

_	Zustände	Bandsymbole
Minsky '62	7	4
Rogozhin	15	2
	9	3
	6	4
	5	5
	4	6
	3	9
	2	18

Satz

Das spezielle Halteproblem $K = \{ w \in L_{TM} \mid M_w \text{ angesetzt auf } w \text{ hält} \}$ ist semi-entscheidbar.

Beweis:

Berechne die "halbe" charakteristische Funktion χ'_K : $\{0,1\}^* \to \{1\}$ mit folgender TM M:

- Gehört die Eingabe nicht zu L_{TM} , so gehe in Endlosschleife.
- Bei Eingabe von $w \in L_{TM}$: schreibe #w hinter Eingabe (auf dem Band steht jetzt w#w) und starte eine universelle Turing-Maschine U.
- Nach Termination von U ersetze Bandhinhalt durch 1 und halte an.

Für $w \in L_{TM}$:

$$M$$
 hält (mit Ausgabe 1) \iff U hält bei Eingabe von $w\#w$ \iff M_w hält bei Eingabe von w \iff $w \in K$.

(Analog sind H_0 und H semi-entscheidbar, aber nicht entscheidbar.)

Satz

Es gibt eine Grammatik G, deren Wortproblem L(G) unentscheidbar ist.

Beweis:

Das spezielle Halteproblem K ist semi-entscheidbar.

Nach dem Satz auf Folie 8.16 ist K vom Typ 0, d.h. es gibt eine Grammatik G mit L(G) = K.

Da K nach dem Satz auf Folie 7.14 unentscheidbar ist, ist also auch das Wortproblem der Grammatik G unentscheidbar.

Folgerung

Es gibt eine Typ-0-Sprache, die nicht vom Typ 1 ist.

Beweis: Jede Typ-1-Sprache ist entscheidbar (Automaten und Formale Sprachen, Folie 2.24), es gibt aber eine unentscheidbare Typ-0-Sprache.

alle Sprachen

Typ-0-Sprachen rek. aufzählbare Sprachen

Typ-1-Sprachen kontext-sensitive Sprachen

Typ-2-Sprachen kontextfreie Sprachen

Typ-3-Sprachen rechtslineare Sprachen

NOTIZ (nach 9.8)

Vor dieser Folie sind "allg. Wortproblem unentscheidbar", "TOT nicht semientscheidbar" und "es gibt keine Zertifikate für Totalität" auskommentiert

Posts Korrespondenzproblem (PCP)

Definition

- Ein Korrespondenzsystem ist eine endliche Folge von Paaren $K = ((x_1, y_1), (x_2, y_2), \dots, (x_k, y_k))$ mit $x_i, y_i \in \Sigma^+$ für alle $1 \le i \le k$ (dabei ist Σ ein beliebiges Alphabet).
- Eine Lösung von K ist eine endliche Folge von Indizes $i_1, i_2, \ldots, i_n \in \{1, 2, \ldots, k\}$ mit $n \ge 1$ und $x_{i_1} x_{i_2} \cdots x_{i_n} = y_{i_1} y_{i_2} \cdots y_{i_n}$.
- **MPCP** ("modifiziertes PCP") ist die Menge der Korrespondenzsysteme, die eine Lösung mit $i_1 = 1$ besitzen.
- PCP ist die Menge der Korrespondenzsysteme, die eine Lösung besitzen.

Ziel: die Menge PCP ist unentscheidbar, dazu: $H_0 \leq MPCP \leq PCP$

Ist das folgende Korrespondenzsystem lösbar?

$$x_1 = 0$$
 $x_2 = 1$ $x_3 = 0101$
 $y_1 = 010$ $y_2 = 101$ $y_3 = 01$

Eine mögliche Lösung ist (3,3,1,2):

Eine weitere (kürzere) Lösung ist: (3,1)

Ist das folgende Korrespondenzsystem lösbar?

$$x_1 = 110$$
 $x_2 = 0$ $x_3 = 1$ $y_1 = 1$ $y_2 = 1111$ $y_3 = 01$

Wir suchen eine Lösung:

Damit folgt, daß es keine Lösung gibt.

Das folgende Korrespondenzsystem ist lösbar:

$$x_1 = 001$$
 $x_2 = 01$ $x_3 = 01$ $x_4 = 10$
 $y_1 = 0$ $y_2 = 011$ $y_3 = 101$ $y_4 = 001$

Eine kürzeste Lösung besteht aus 66 Indizes:

$$(2,4,3,4,4,2,1,2,4,3,4,3,4,4,3,4,4,2,1,4,4,2,1,3,4,1,1,3,4,4,4,2,1,2,1,1,1,3,4,3,4,1,1,3,4,4,2,1,4,1,1,3,4,1,1,3,4,1,1,3,1,2,1,4,1,1,3).$$

Das folgende Korrespondenzsystem ist lösbar:

$$x_1 = 0$$
 $x_2 = 0000$ $x_3 = 0001$ $x_4 = 101$ $y_1 = 00$ $y_2 = 0101$ $y_3 = 10$ $y_4 = 1$

Angeblich besteht eine kürzeste Lösung aus 781 Indizes.

An der Komplexität dieser Lösung kann man bereits die Schwierigkeit des Problems ablesen.

Lemma

$MPCP \leq PCP$

Beweis:

sei $K = ((x_1, y_1), \dots, (x_k, y_k))$ Korrespondenzsystem über Σ mit $\S \notin \Sigma$ für $w = a_1 a_2 \dots a_m \in \Sigma^*$:

$$\overrightarrow{w} = a_1 \$ a_2 \$ \cdots a_m \$$$
 $\overleftarrow{w} = \$ a_1 \$ a_2 \$ \cdots a_m$ $\overleftrightarrow{w} = \$ a_1 \$ a_2 \$ \cdots a_m \$$

setze $f(K) = ((\overrightarrow{x_1}, \overleftarrow{y_1}), (\overrightarrow{x_2}, \overleftarrow{y_2}), \cdots (\overrightarrow{x_k}, \overleftarrow{y_k}), (\overleftarrow{x_1}, \overleftarrow{y_1}), (\$,\$\$))$

da f berechenbar ist, ist noch $K \in MPCP \iff f(K) \in PCP$ zu zeigen:

"⇒" Sei $K \in MPCP$. Dann existiert Lösung $1, i_2, ..., i_n$ von K. Also ist $k + 1, i_2, i_3, ..., i_n, k + 2$ Lösung von f(K), d.h. $f(K) \in PCP$.

"←" Sei nun $f(K) \in PCP$. Dann existiert Lösung i_1, i_2, \ldots, i_n von f(K).

Eine Lösung $i'_1, i'_2, \ldots, i'_{n'}$ von K erhält man, indem man in der Folge i_1, i_2, \ldots, i_n

- alle Vorkommen von k + 1 durch 1 ersetzt und
- alle Vorkommen von k + 2 streicht.

Vergleich der ersten Buchstaben liefert $i_1 \in \{k+1, k+2\}$.

Angenommen, $i_1 = k + 2$. Der Vergleich der zweiten Buchstaben liefert $i_2 \in \{k + 1, k + 2\}$.

Der Vergleich der dritten Buchstaben sichert $i_2 = k + 2$.

Dann ist aber $x_{i_1} \cdots x_{i_n} = \n kürzer als $y_{i_1} \cdots y_{i_n} = \2n , im Widerspruch zu deren Gleichheit.

Also erhalten wir $i_1 = k + 1$, und damit $i'_1 = 1$, d.h. $K \in MPCP$.

Wir werden nun $H_0 \leq$ MPCP zeigen, d.h. aus (dem Kode) einer Turing-Maschine $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ werden wir ein Korrespondenzsystem K(M) berechnen mit

M hält bei leerer Eingabe $\iff K(M)$ hat eine Lösung mit $i_1 = 1$.

Wir können annehmen, daß die TM M nur anhält, wenn sie sich in Endzustand aus E und der Kopf sich am Anfang des beschrifteten Bandes befindet.

K(M) hat folgende Wortpaare:

- $(x_1, y_1) = (\#, \# \triangleright z_0 \square \triangleleft)$ ist erstes Wortpaar
- Kopierpaare (a, a) für $a \in \Gamma \cup \{ \triangleright, \triangleleft \}$
- Überführungspaare $(z, z' \in Z, a, b, c \in \Gamma)$

```
(za, z'c) für (z', c, N) = \delta(z, a)

(za, cz') für (z', c, R) = \delta(z, a)

(bza, z'bc) für (z', c, L) = \delta(z, a)

(\triangleright za, \triangleright z' \Box c) für (z', c, L) = \delta(z, a)

(z \triangleleft, z'c \triangleleft) für (z', c, N) = \delta(z, \Box)

(z \triangleleft, cz' \triangleleft) für (z', c, R) = \delta(z, \Box)

(bz \triangleleft, z'bc \triangleleft) für (z', c, L) = \delta(z, \Box)
```

- Löschpaare (azb, zb) und (zba, zb) für alle $z \in E$, $a, b \in \Gamma$ mit $\delta(z, b) = (z, b, N)$
- Abschlußpaare ($\triangleright za \triangleleft \#, \#$) für alle $z \in E$, $a \in \Gamma$ mit $\delta(z, a) = (z, a, N)$

Lemma

Die Abbildung K, die der Turing-Maschine M das Korrespondenzsystem K(M) zuordnet, ist eine Reduktion von H_0 auf MPCP, es gilt also $H_0 \leq MPCP$.

Beweis

Beobachtung (a)

Sind uzv und u'z'v' Konfigurationen von M mit $uzv \vdash u'z'v'$, so existieren $i_1, i_2, \ldots, i_n \in \{1, 2, \ldots, k\}$ mit $x_{i_1}x_{i_2}\cdots x_{i_n} = \triangleright uzv \triangleleft y_{i_1}y_{i_2}\cdots y_{i_n} = \triangleright u'z'v' \triangleleft$

Begründung: sei v = aw und sei $(z', c, y) = \delta(z, a)$, so daß u'z'v' aus uzaw durch Ausführung dieser Regel entsteht, z.B. y = N. Dann gilt u' = u und v' = cw.

Also: zunächst durch Kopierpaare, dann durch $(x_i, y_i) = (za, z'c)$ und dann durch Kopierpaare: $x_{i_1}x_{i_2}\cdots x_{i_n} = \triangleright uzaw \triangleleft y_{i_1}y_{i_2}\cdots y_{i_n} = \triangleright u'z'cw \triangleleft$

Beobachtung (b)

Sind
$$u, v \in \Gamma^*$$
, $z \in E$ und $a, b \in \Gamma$ mit $\delta(z, b) = (z, b, N)$, so existieren $i_1, \ldots, i_n \in \{1, 2, \ldots, k\}$ mit $x_{i_1} x_{i_2} \cdots x_{i_n} = \triangleright uazbv \triangleleft$ $\forall x_{i_1} x_{i_2} \cdots x_{i_n} = buzbv \triangleleft$

Begründung: wie oben durch Kopierpaare und Löschpaar (azb, zb), da $\delta(z,b) = (z,b,N)$

Beobachtung (c)

Sind
$$u, v \in \Gamma^*$$
, $z \in E$ und $a, b \in \Gamma$ mit $\delta(z, b) = (z, b, N)$, so existieren $i_1, \ldots, i_n \in \{1, 2, \ldots, k\}$ mit $x_{i_1} x_{i_2} \cdots x_{i_n} = \triangleright uzbav \triangleleft$ $\forall x_{i_1} y_{i_2} \cdots y_{i_n} = \forall x_{i_n} y_{i_n}$

Begründung analog

angenommen, die TM M hält bei leerer Eingabe. Dann existieren also Konfigurationen $k_i = u_i z_i v_i$ mit $z_0 \square = k_0 \vdash k_1 \vdash \cdots k_n$, so daß k_n akzeptierende Haltekonfiguration ist.

nach Beobachtungen (a,b,c) existieren $i_1, \ldots, i_m \in \{1, 2, \ldots, k\}$, so daß $x_{i_1} \cdots x_{i_m}$ bzw. $y_{i_1} \cdots y_{i_m}$ wie folgt aussehen:

also (mit Anfangspaar 1 und einer Schlußregel j):

$$x_1 x_{i_1} \cdots x_{i_m} x_j = \# \triangleright u_0 z_0 v_0 \triangleleft \triangleright u_1 z_1 v_1 \triangleleft \cdots \triangleright z_n ba \triangleleft \triangleright z_n b \triangleleft \#$$

$$y_1 y_{i_1} \cdots y_{i_m} y_j = \# \triangleright z_0 \square \triangleleft \triangleright u_1 z_1 v_1 \triangleleft \cdots \triangleright z_n ba \triangleleft \triangleright z_n b \triangleleft \#.$$

Wegen $u_0 = \varepsilon$ hat das Korrespondenzsystem K(M) also eine Lösung mit erstem Index 1, d.h. $K(M) \in MPCP$.

Damit gezeigt: M hält bei leerer Eingabe $\Longrightarrow K(M) \in \mathsf{MPCP}.$ umgekehrte Implikation wird ähnlich gezeigt (aber wir tun dies hier nicht). damit: Die Abbildung K, die jeder Turing-Maschine ein Korrespondenzsystem zuordnet, ist eine Reduktion von H_0 auf MPCP.

 $\Longrightarrow H_0 \leq MPCP$.

Satz (Emil Post, 1947)

PCP ist unentscheidbar.

(T. Neary 2015: 5 Paare reichen hierfür.)

Beweis $H_0 \leq MPCP \leq PCP$ nach Lemmata auf Folien 9.18 und 9.14

Nach dem Satz auf Folie 7.27 ist H_0 unentscheidbar, nach dem Lemma auf Folie 7.21 sind also MPCP und PCP unentscheidbar.

Emil Post (1897-1954)

NOTIZ (nach 9.22)

Emil Leon Post:

- geb. in Rußland (heute Polen), US-Emigration 1904, gest. New York
- Studium Astronomie City College New York, während Bachelor-Studium zwei mathematische Artikel (die erst später erschienen)
- Logik-Promotion Columbia State University, Erfindung der Wahrheitstafeln, der mehrwertigen Logik und der Beweissysteme (⇒ Menge der wahren Aussagen ist rekursiv aufzählbar)
- bekannt für Arbeiten zu polyadischen Gruppen, rekursiv aufzählbaren Mengen und Graden der Unentscheidbarkeit
- Posts Problem: Gibt es unentscheidbare Menge U mit $\neg (H \le U)$?
- lebenslang manisch-depressiv, starb an Herzinfarkt wohl aufgrund einer Elektroschock-Therapie

Satz

PCP ist semi-entscheidbar.

Beweis:

Probiere erst alle Indexfolgen der Länge 1 aus, dann alle Indexfolgen der Länge 2, ...

Falls irgendwann eine passende Indexfolge gefunden wird, so gib 1 aus.

Korollar

Das Komplement PCP von PCP ist nicht semi-entscheidbar.

Beweis:

PCP unentscheidbar und semi-entscheidbar

⇒ PCP nicht semi-entscheidbar nach Satz auf Folie 8.13

Zusammenfassung 9. Vorlesung

in dieser Vorlesung neu

- es gibt universelle Turingmaschinen
- spezielles Halteproblem ist semi-entscheidbar
- es gibt Typ-0-Sprache, die nicht Typ 1 ist
- PCP, Unentscheidbarkeit

kommende Vorlesung

- Menge der allgemeingültigen Aussagen der Prädikatenlogik ist unentscheidbar
- Menge der in $(\mathbb{N},+,\cdot)$ gültigen Aussagen ist unentscheidbar
- 1. Gödelscher Unvollständigkeitssatz

Syntax und Semantik der Prädikatenlogik wiederholen!