Berechenbarkeit und Komplexität 10. Vorlesung

Prof. Dr. Dietrich Kuske

FG Automaten und Logik, TU Ilmenau

Sommersemester 2023

Satz

Die Menge der allgemeingültigen (prädikatenlogischen) Σ -Formeln ist semi-entscheidbar.

Beweis: Sei φ Σ -Formel. Dann gilt

 φ allgemeingültig

 $\Leftrightarrow \varphi$ Theorem (nach Korrektheits- und Vollständigkeitssatz, siehe Logik und Logikprogrammierung Folie 11.11)

 \iff Es gibt hypothesenlose Deduktion mit Konklusion φ

Ein Semi-Entscheidungsalgorithmus kann also folgendermaßen vorgehen:

Teste für jede Zeichenkette w nacheinander, ob sie hypothesenlose Deduktion mit Konklusion φ ist. Wenn ja, so gib aus " φ ist allgemeingültig". Ansonsten gehe zur nächsten Zeichenkette über.

Der Satz von Church

Jetzt zeigen wir, daß dieses Ergebnis nicht verbessert werden kann: Die Menge der allgemeingültigen Σ -Formeln ist nicht entscheidbar.

Wegen

$$\varphi$$
 allgemeingültig $\iff \neg \varphi$ nicht erfüllbar

reicht es zu zeigen, daß die Menge der erfüllbaren Aussagen nicht entscheidbar ist.

Genauer zeigen wir dies sogar für "Horn-Formeln":

Definition

Eine Horn-Formel ist eine Konjunktion von Σ -Formeln der Form

$$\forall x_1 \ \forall x_2 \ \dots \ \forall x_n \left((\neg \bot \land \alpha_1 \land \alpha_2 \land \dots \land \alpha_m) \rightarrow \beta \right),$$

wobei $\alpha_1, \ldots, \alpha_m$ atomare Σ -Formeln und β atomar Σ -Formel oder \bot sind.

Unser Beweis reduziert die unentscheidbare Menge PCP auf die Menge der erfüllbaren Horn-Formeln.

Im folgenden sei also $I = ((u_1, v_1), (u_2, v_2), \dots, (u_k, v_k))$ ein Korrespondenzsystem und A das zugrundeliegende Alphabet.

Hieraus berechnen wir eine Horn-Formel φ_I , die genau dann erfüllbar ist, wenn I keine Lösung hat.

Wir betrachten die Signatur $\Sigma = (\operatorname{Fun}, \operatorname{Rel}, \operatorname{ar})$ mit

- Fun = $\{e\} \cup \{f_a \mid a \in A\}$ mit ar(e) = 0 und $ar(f_a) = 1$ für alle $a \in A$.
- Rel = $\{R\}$ mit ar(R) = 2.

Zur Abkürzung schreiben wir

$$f_{a_1 a_2 \dots a_n}(x)$$
 für $f_{a_1}(f_{a_2}(\dots(f_{a_n}(x))\dots))$

für alle $a_1, a_2, \ldots, a_n \in A$ und $n \ge 0$ (insbes. steht $f_{\varepsilon}(x)$ für x).

Wir betrachten die folgende Horn-Formel ψ_I :

$$R(e,e)$$

$$\wedge \bigwedge_{1 \le i \le k} \forall x, y \left(R(x,y) \to R(f_{u_i}(x), f_{v_i}(y)) \right)$$

$$\wedge \bigwedge_{a \in A} \forall x \left(e = f_a(x) \to \bot \right)$$

Beispiel

Betrachte die Σ -Struktur \mathcal{A} mit Universum $U_{\mathcal{A}} = A^*$:

- $e^{A} = \varepsilon$
- $f_a^{\mathcal{A}}(u) = au$
- $R^{\mathcal{A}} = \{(u_{i_1}u_{i_2}\cdots u_{i_n}, v_{i_1}v_{i_2}\cdots v_{i_n}) \mid n \geq 0, 1 \leq i_1, i_2, \ldots, i_n \leq k\}$

Für $u, v \in A^*$ gilt $f_u^{\mathcal{A}}(v) = uv$.

Dann gilt $\mathcal{A} \vDash \psi_I$.

Lemma

Angenommen, das Korrespondenzsystem I hat keine Lösung. Dann ist die Horn-Formel $\varphi_I = \psi_I \wedge \forall x \left(R(x,x) \rightarrow x = e \right)$ erfüllbar.

Beweis: Sei \mathcal{A} die obige Struktur mit $\mathcal{A} \models \psi_I$.

Um $A \models \forall x (R(x,x) \rightarrow x = e)$ zu zeigen, sei $w \in U_A$ beliebig mit $(w,w) \in R^A$.

Die Definition von $R^{\mathcal{A}}$ sichert die Existenz von $n \geq 0$ und $1 \leq i_1, i_2, \ldots, i_n \leq k$ mit

$$U_{i_1}U_{i_2}\ldots U_{i_n}=W=V_{i_1}V_{i_2}\ldots V_{i_n}$$
.

Da I keine Lösung hat, folgt n = 0 und damit $w = \varepsilon$.

Lemma

Sei \mathcal{B} Struktur mit $\mathcal{B} \models \psi_I$. Für alle $n \geq 0$, $1 \leq i_1, i_2, \ldots, i_n \leq k$ gilt dann

$$(f_{u_{i_1}u_{i_2}...u_{i_n}}^{\mathcal{B}}(e^{\mathcal{B}}), f_{v_{i_1}v_{i_2}...v_{i_n}}^{\mathcal{B}}(e^{\mathcal{B}})) \in R^{\mathcal{B}}.$$

Beweis: per Induktion über $n \ge 0$.

IA für n = 0 gelten

$$f_{u_{i_1}u_{i_2}...u_{i_n}}^{\mathcal{B}}(e^{\mathcal{B}}) = e^{\mathcal{B}} \text{ und } f_{v_{i_1}v_{i_2}...v_{i_n}}^{\mathcal{B}}(e^{\mathcal{B}}) = e^{\mathcal{B}}$$

und damit

$$(f_{u_{i_1}u_{i_2}...u_{i_n}}^{\mathcal{B}}(e^{\mathcal{B}}), f_{v_{i_1}v_{i_2}...v_{i_n}}^{\mathcal{B}}(e^{\mathcal{B}})) \in R^{\mathcal{B}}$$

wegen $\mathcal{B} \models \psi_I$.

IS Seien n > 0 und $1 \le i_1, i_2, ..., i_n \le k$.

Mit $u = u_{i_2}u_{i_3}\dots u_{i_n}$ und $v = v_{i_2}v_{i_3}\dots v_{i_n}$ gilt nach IV $(f_u^{\mathcal{B}}(e^{\mathcal{B}}), f_v^{\mathcal{B}}(e^{\mathcal{B}})) \in R^{\mathcal{B}}$.

Wegen $\mathcal{B} \models \psi_I$ folgt

$$R^{\mathcal{B}} \ni \left(f_{u_{i_1}}^{\mathcal{B}} \left(f_{u}^{\mathcal{B}} (e^{\mathcal{B}}) \right), f_{v_{i_1}} \left(f_{v}^{\mathcal{B}} (e^{\mathcal{B}}) \right) \right)$$

$$= \left(f_{u_{i_1} u_{i_2} \dots u_{i_n}}^{\mathcal{B}} (e^{\mathcal{B}}), f_{v_{i_1} v_{i_2} \dots v_{i_n}}^{\mathcal{B}} (e^{\mathcal{B}}) \right)$$

womit der induktive Beweis abgeschlossen ist

Lemma

Angenommen, (i_1, \ldots, i_n) ist eine Lösung von I. Dann ist die Σ -Formel φ_I unerfüllbar.

Beweis: Sei \mathcal{B} Σ -Struktur. Gilt $\mathcal{B} \neq \psi_I$, so folgt $\mathcal{B} \neq \varphi_I$. Gelte nun $\mathcal{B} \models \psi_I$. Dann folgt aus obigem Lemma

$$(f_{u_{i_1}u_{i_2}...u_{i_n}}^{\mathcal{B}}(e^{\mathcal{B}}), f_{v_{i_1}v_{i_2}...v_{i_n}}^{\mathcal{B}}(e^{\mathcal{B}})) \in R^{\mathcal{B}}.$$

Da (i_1, \ldots, i_n) Lösung von I ist, bedeutet dies

$$(f_{u_{i_1}u_{i_2}...u_{i_n}}^{\mathcal{B}}(e^{\mathcal{B}}), f_{u_{i_1}u_{i_2}...u_{i_n}}^{\mathcal{B}}(e^{\mathcal{B}})) \in R^{\mathcal{B}}.$$

Aus n > 0 und $\mathcal{B} \models \psi_I$ folgt

$$w := f_{u_{i_1}u_{i_2}...u_{i_n}}^{\mathcal{B}}(e^{\mathcal{B}}) \neq e^{\mathcal{B}}.$$

Also haben wir $w \in U_{\mathcal{B}}$ gefunden mit $w \neq e^{\mathcal{B}}$ und $(w, w) \in R^{\mathcal{B}}$. Damit ist auch in diesem Fall $\mathcal{B} \not\models \varphi_I$ gezeigt.

Satz

Die Menge der unerfüllbaren Horn-Formeln ist nicht entscheidbar.

Beweis: Die Abbildung $I \mapsto \varphi_I$ ist berechenbar.

Nach den Lemmata auf Folien 10.6 und 10.9 ist sie eine Reduktion von PCP auf die Menge der unerfüllbaren Horn-Formeln. Da PCP unentscheidbar ist, ist die Menge der unerfüllbaren Horn-Formeln unentscheidbar.

Folgerung (Church 1936)

Die Menge der allgemeingültigen Σ -Formeln ist nicht entscheidbar.

Beweis: Eine Σ -Formel φ ist genau dann unerfüllbar, wenn $\neg \varphi$ allgemeingültig ist. Also ist $\varphi \mapsto \neg \varphi$ eine Reduktion der unentscheidbaren Menge der unerfüllbaren Σ -Formeln auf die Menge der allgemeingültigen Σ -Formeln, die damit auch unentscheidbar ist.

Allgemeingültige Σ -Formeln gelten in allen Strukturen. Was passiert, wenn wir uns nur auf "interessante" Strukturen \mathcal{A} einschränken (z.B. auf eine konkrete), d.h. wenn wir die Theorie $\mathrm{Th}(\mathcal{A})$ von \mathcal{A} betrachten?

Theorie der natürlichen Zahlen

Definition

Sei \mathcal{A} eine Σ -Struktur. Dann ist $\operatorname{Th}(\mathcal{A})$ die Menge der Aussagen φ mit $\mathcal{A} \models \varphi$. Diese Menge heißt die (elementare) Theorie von \mathcal{A} .

Beispiel

Sei $\mathcal{N} = (\mathbb{N}, \leq, +, \cdot, 0, 1)$. Dann gelten

- $(\forall x \forall y : x + y = y + x) \in Th(\mathcal{N})$
- $(\forall x \exists y : x + y = 0) \notin Th(\mathcal{N})$

aber $(\forall x \exists y : x + y = 0) \in \text{Th}((\mathbb{Z}, +, 0)).$

Satz (Turing und Church 1936)

Die Menge $Th(\mathcal{N})$ aller Aussagen φ mit $\mathcal{N} \models \varphi$ ist nicht entscheidbar.

Beweis: Sei wieder $I = ((u_1, v_1), \dots, (u_k, v_k))$ ein Korrespondenzsystem über dem Alphabet $A = \{1, 2, \dots, |A|\}$. Sei b = |A| + 1. Für $w = a_{\ell} a_{\ell-1} \cdots a_0 \in A^*$ setzen wir

$$[w] = \sum_{0 \le i \le \ell} b^i a_i,$$

d.h., [w] ist die von w zur Basis b dargestellte Zahl. Es gelten

- $[\varepsilon] = 0$,
- $[uv] = [u] \cdot b^{|v|} + [v]$ und
- [.]: $A^* \to \mathbb{N}$ ist injektiv, aber nicht surjektiv (da $0 \notin A$).

I hat eine Lösung gdw.

es gibt
$$n, i_1, i_2, \dots, i_n \in \mathbb{N}$$
: $n > 0$ & $1 \le i_1, i_2, \dots, i_n \le k$ & $u_{i_1} u_{i_2} \cdots u_{i_n} = v_{i_1} v_{i_2} \cdots v_{i_n}$

gdw.

es gibt $n \in \mathbb{N}$ und $X_0, Y_0, \dots, X_n, Y_n \in A^*$:

$$n>0$$
 & $X_0=Y_0=\varepsilon$ & für alle $j\in\{0,1,\ldots,n-1\}$ gelten $X_{j+1}=X_ju_i$ & $Y_{j+1}=Y_jv_i$ für ein $i\in\{1,\ldots,k\}$ & $X_n=Y_n$

gdw.

es gibt
$$n \in \mathbb{N}$$
 und $x_0, y_0, \dots, x_n, y_n \in \mathbb{N}$:
$$n > 0$$
 & $x_0 = y_0 = 0$ & für alle $j \in \{0, 1, \dots, n-1\}$ gelten $x_{j+1} = x_j \cdot b^{|u_i|} + [u_i] \& y_{j+1} = y_j \cdot b^{|v_i|} + [v_i]$ für ein $i \in \{1, \dots, k\}$ & $x_n = y_n$

Diese Aussage spricht nur über natürliche Zahlen. ©

Sie ist aber keine Σ -Formel, da die Anzahl der x_i von der Variable n abhängt. \odot

Hier hilft das folgende Lemma:

Zahlentheoretisches Lemma

Für alle $n \in \mathbb{N}$, $x_0, x_1, \ldots, x_n \in \mathbb{N}$ existieren $c, d \in \mathbb{N}$, so daß für alle $0 \le j \le n$ gilt

$$x_j = c \mod (1 + d \cdot (j+1)).$$

Beweis: Setze $m = \max\{n, x_0, x_1, \dots, x_n\}$ und d = (m+1)!. Dann sind die Zahlen

$$1+d$$
, $1+d\cdot 2$, $1+d\cdot 3$, ..., $1+d\cdot (n+1)$

paarweise teilerfremd. Nach dem Chinesischen Restsatz existiert eine natürliche Zahl c mit

$$x_j \equiv c \pmod{1+d(j+1)}$$
 für alle $0 \le j \le n$.

Wegen $x_j \le m < d < 1 + d(j+1)$ folgt

$$x_j = c \mod (1 + d(j+1))$$
 für alle $0 \le j \le n$.

Bemerkung

Es gibt Σ -Formeln

- $\operatorname{mod}(z_1, z_2, z) \operatorname{mit} \mathcal{N} \vDash_{\alpha} \operatorname{mod} \iff \alpha(z_1) \operatorname{mod} \alpha(z_2) = \alpha(z).$ $z.B. \operatorname{mod} = \exists k ((z_1 = k \cdot z_2 + z) \land (z < z_2))$
- $\gamma(z_1, z_2, z_3, z)$ mit $\mathcal{N} \vDash_{\alpha} \gamma \iff \underbrace{\alpha(z_1)}_{\hat{=}c} \operatorname{mod} \left(1 + \underbrace{\alpha(z_2)}_{\hat{=}d} \cdot (\underbrace{\alpha(z_3)}_{\hat{=}j} + 1)\right) = \underbrace{\alpha(z)}_{\hat{=}x_j}.$ $z.B. \ \gamma = \dots$

Damit ist die Aussage von Folie 10.15 äquivalent zur Gültigkeit der folgenden Σ -Formel in der Struktur \mathcal{N} :

$$\exists n, c, d, e, f$$
:

$$\begin{pmatrix}
n>0 \\
\wedge \gamma(c,d,0,0) \wedge \gamma(e,f,0,0) \\
\wedge \forall j: 0 \leq j < n \Rightarrow
\end{pmatrix}$$

$$\exists x, x', y, y': \begin{bmatrix}
\gamma(c,d,j,x) \wedge \gamma(c,d,j+1,x') \\
\wedge \gamma(e,f,j,y) \wedge \gamma(e,f,j+1,y') \\
\wedge \bigvee_{1 \leq i \leq k} \begin{pmatrix}
x' = x \cdot b^{|u_i|} + [u_i] \\
\wedge y' = y \cdot b^{|v_i|} + [v_i]
\end{pmatrix}$$

$$\wedge \exists x: \gamma(c,d,n,x) \wedge \gamma(e,f,n,x)$$

Da diese Σ -Formel aus dem Korrespondenzsystem I berechnet werden kann, haben wir eine Reduktion von PCP auf die Theorie $\mathrm{Th}(\mathcal{N})$ von \mathcal{N} . Da PCP unentscheidbar ist, ist also auch diese Theorie unentscheidbar.

Bereits kleine Fragmente der Prädikatenlogik liefern unentscheidbare Probleme über $\mathcal{N} = (\mathbb{N}, \leq, +, \cdot, 0, 1)$. Ein besonders prominentes Beispiel ist Hilberts 10. Problem:

Satz (Matiyasevich 1970)

Das folgende Problem ist unentscheidbar:

EINGABE: Zwei multivariate Polynome $p(x_1, ..., x_n)$ und $q(x_1, ..., x_n)$ mit Koeffizienten aus \mathbb{N} .

FRAGE: Existieren $a_1, \ldots, a_n \in \mathbb{N}$ mit $p(a_1, \ldots, a_n) = q(a_1, \ldots, a_n)$?

Satz von Folie 10.13

Die Menge $\operatorname{Th}(\mathbb{N}, \leq, +, \cdot, 0, 1)$ ist nicht entscheidbar.

Satz

Entscheidbar sind hingegen:

- Th($\mathbb{R}, \leq, +, \cdot, 0, 1$) (Tarksi 1931).
- ② Th($\mathbb{N}, \leq, +, 0, 1$) (Presburger 1929).
- **3** Th($\mathbb{N}, \cdot, 0, 1$) (Skolem 1931).
- \bullet Th($\mathbb{R}, \mathbb{N}, \leq, +, 0, 1$) (Weispfenning 1999).

Beispiele

- Strukturen \mathcal{A} mit entscheidbarer Theorie $Th(\mathcal{A})$:
 - $(\mathbb{N},+)$, (\mathbb{N},\cdot)

•
$$(\mathbb{N}, +, V_k)$$
 mit $V_k : \mathbb{N} \to \mathbb{N} : n \mapsto \begin{cases} 0 & \text{falls } n = 0 \\ \max\{k^m \mid k^m \text{ teilt } n\} & \text{sonst} \end{cases}$

- $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$
- ② Strukturen A, deren Theorie Th(A) unentscheidbar ist:
 - $(\mathbb{N},+,\cdot)$, $(\mathbb{N},+,|)$, $(\mathbb{N},+,\{n^2\mid n\in\mathbb{N}\})$
 - $(\mathbb{N}, +, V_k, V_\ell)$, falls i = j = 0 aus $k^i = \ell^j$ folgt
 - (Σ^*, \cdot) für $|\Sigma| \ge 2$

Wir zeigen jetzt, daß jede semi-entscheidbare Theorie sogar entscheidbar ist:

Satz

Sei \mathcal{A} eine Struktur, so daß $\mathrm{Th}(\mathcal{A})$ semi-entscheidbar ist. Dann ist $\mathrm{Th}(\mathcal{A})$ entscheidbar.

Beweis:

Sei B das Komplement von Th(A), d.h.

$$\varphi \in B \iff \mathcal{A} \not\models \varphi$$

$$\iff \mathcal{A} \models \neg \varphi$$

$$\iff \neg \varphi \in \operatorname{Th}(\mathcal{A}).$$

Die Abbildung $\varphi \mapsto \neg \varphi$ ist also eine Reduktion von B auf die semi-entscheidbare Menge $\operatorname{Th}(\mathcal{A})$. Also ist B semi-entscheidbar. Da also $\operatorname{Th}(\mathcal{A})$ und das Komplement B semi-entscheidbar sind, ist $\operatorname{Th}(\mathcal{A})$ nach dem Satz auf Folie 8.13 entscheidbar.

Korollar

Die Menge $\mathrm{Th}(\mathcal{N})$ der Aussagen φ mit $\mathcal{N} \vDash \varphi$ ist nicht semi-entscheidbar.

Beweis:

Klar mit Sätzen auf Folien 10.13 und 10.22.

Korollar (1. Gödelscher Unvollständigkeitssatz)

Sei Γ eine semi-entscheidbare Menge von Sätzen mit $\mathcal{N} \vDash \gamma$ für alle $\gamma \in \Gamma$.

Dann existiert eine Aussage φ mit $\Gamma \not\vdash \varphi$ und $\Gamma \not\vdash \neg \varphi$ (d.h. " Γ ist nicht vollständig").

Beweis: Γ semi-entscheidbar

- $\Longrightarrow \{(D,\varphi) \mid D \text{ Deduktion mit Hypothesen in } \Gamma \text{ und Konklusion } \varphi\}$ semi-entscheidbar
- $\Longrightarrow \{\varphi \mid \Gamma \vdash \varphi\}$ semi-entscheidbar und (nach Korrektheitssatz) Teilmenge von $\mathrm{Th}(\mathcal{N})$
- $\Longrightarrow \{\varphi \mid \Gamma \vdash \varphi\} \not\subseteq \operatorname{Th}(\mathcal{N}) \text{ (denn } \operatorname{Th}(\mathcal{N}) \text{ ist nicht semi-entscheidbar)}$
- \implies es gibt Aussage φ mit $\mathcal{N} \vDash \varphi$ und $\Gamma \nvdash \varphi$

Angenommen, $\Gamma \vdash \neg \varphi$

 $\Longrightarrow \mathcal{N} \vDash \neg \varphi$ (nach Korrektheitsssatz), im Widerspruch zu $\mathcal{N} \vDash \varphi$

$$\Longrightarrow \underline{\Gamma \nvdash \neg \varphi}.$$

Zusammenfassung 10. Vorlesung

in dieser Vorlesung neu

- Menge der allgemeingültigen Aussagen der Prädikatenlogik ist unentscheidbar
- Menge der in $(\mathbb{N}, +, \cdot)$ gültigen Aussagen ist unentscheidbar (nicht einmal semi-entscheidbar)
- 1. Gödelscher Unvollständigkeitssatz

kommende Vorlesung

Unentscheidbarkeiten bei kontextfreien Sprachen

Automaten, Sprachen und Komplexität Folie 8.10 und Vorlesung 15 wiederholen!