Berechenbarkeit und Komplexität 4. Vorlesung

Prof. Dr. Dietrich Kuske

FG Automaten und Logik, TU Ilmenau

Sommersemester 2024

While-Programme

Syntaktische Komponenten für While-Programme

wie für Loop-Programme, nur Schlüsselwort loop durch while ersetzt

Definition

Ein While-Programm ist von der Form

- $x_i := c$, $x_i := x_j + c$, $x_i := x_j c$ mit $c \in \{0, 1\}$ und $i, j \ge 1$ (Wertzuweisung)
- oder P_1 ; P_2 , wobei P_1 und P_2 While-Programme sind (sequentialle Komposition)
- oder while $x_i \neq 0$ do P end, wobei P ein While-Programm ist und $i \geq 1$.

Intuition: Programm P wird so oft ausgeführt, bis der Wert von x_i gleich 0 ist.

Wie bei Loop-Programmen definieren wir zunächst für jedes While-Programm P, in dem keine Variable x_i mit i > k vorkommt, induktiv eine partielle Abbildung $\llbracket P \rrbracket_k \colon \mathbb{N}^k \to \mathbb{N}^k$. Hierfür sei $\overline{n} = (n_1, \dots, n_k) \in \mathbb{N}^k$.

- $[x_i := c]_k(\overline{n})$ ist definiert und gleich $(n_1, \ldots, n_{i-1}, c, n_{i+1}, \ldots, n_k)$.
- $[x_i := x_j + c]_k(\overline{n})$ ist definiert und gleich $(n_1, \ldots, n_{i-1}, n_j + c, n_{i+1}, \ldots, n_k)$.
- $[x_i := x_j c]_k(\overline{n})$ ist definiert und gleich $(n_1, \dots, n_{i-1}, n_j c, n_{i+1}, \dots, n_k)$.
- $[P_1; P_2]_k(\overline{n})$ ist genau dann definiert, wenn $\overline{m} = [P_1]_k(\overline{n}) \in \mathbb{N}^k$ und $[P_2]_k(\overline{m})$ definiert sind.

In diesem Falle gilt $[P_1; P_2]_k(\overline{n}) = [P_2]_k([P_1]_k(\overline{n}))$.

Ansonsten ist $[P_1; P_2]_k(\overline{n})$ also undefiniert.

• Sei nun $P = \text{while } x_i \neq 0 \text{ do } A \text{ end } (i \leq k).$

Es gibt zwei Fälle:

- 1. Es gibt eine Zahl τ mit $\pi_i^k(\llbracket A \rrbracket_k^\tau(\overline{n})) = 0$. Dann ist $\llbracket P \rrbracket_k(\overline{n})$ definiert und es gilt $\llbracket P \rrbracket_k(\overline{n}) = \llbracket A \rrbracket_k^\tau(n)$ für die kleinste Zahl τ mit $\pi_i^k(\llbracket A \rrbracket_k^\tau(\overline{n})) = 0$.
- 2. Es gibt keine solche Zahl. Dann ist $[P]_k(\overline{n})$ undefiniert.

Eine partielle Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt while-berechenbar, falls es ein $\ell \geq k$ und ein While-Programm P, in dem höchstens die Variablen x_1, \ldots, x_ℓ vorkommen, gibt, so daß für alle $\overline{n} \in \mathbb{N}^k$ gilt:

- $f(\overline{n})$ definiert $\iff \llbracket P \rrbracket_{\ell}(\overline{n},0,\ldots,0)$ definiert
- Falls $f(\overline{n})$ definiert ist, gilt $f(\overline{n}) = \pi_1^{\ell}(\llbracket P \rrbracket_{\ell}(\overline{n}, 0, \dots, 0))$.

Beachte: Eine loop-Schleife

ohne die Variable y kann simuliert werden durch

$$y := x$$
; while $y \neq 0$ do $y := y \div 1$; P end

Lemma

Jede loop-berechenbare Funktion ist auch while-berechenbar.

Ein bißchen Hintergrund

Die While-Vermutung

Eine partielle Funktion $\mathbb{N}^k \to \mathbb{N}$ ist genau dann intuitiv berechenbar, wenn sie while-berechenbar ist.

Da jede loop-berechenbare Funktion auch while-berechenbar ist, haben wir schon "viele" while-berechenbare Funktionen. Außerdem kann man zeigen, daß die Ackermann-Funktion while-berechenbar ist.

Auf den Folien 2.2 und 2.7 haben wir gesehen, daß die Klasse der loop-berechenbaren Funktionen unter Substitution und Rekursion abgeschlossen ist, was wir jetzt auch für die Klasse der while-berechenbaren Funktionen zeigen wollen - aber was ist die Substitution von partiellen Funktionen?

Seien $f: \mathbb{N}^j \to \mathbb{N}$ und $g_i: \mathbb{N}^k \to \mathbb{N}$ für alle $1 \le i \le j$ (mit $j, k \ge 0$) partielle Funktionen. Sei $h: \mathbb{N}^k \to \mathbb{N}$ die partielle Funktion mit den Eigenschaften:

- $h(\overline{n})$ ist genau dann definiert ist, wenn $g_i(\overline{n})$ für alle $1 \le i \le j$ und $f(g_1(\overline{n}), g_2(\overline{n}), \dots, g_j(\overline{n}))$ definiert sind;
- in diesem Fall gilt $h(\overline{n}) = f(g_1(\overline{n}), g_2(\overline{n}), \dots, g_j(\overline{n}))$.

Wir schreiben $\operatorname{subst}(f; g_1, \dots, g_i)$ für die Funktion h.

Bemerkung: Sind f und g_1, \ldots, g_j total, so stimmt diese Definition mit der von Folie 2.2 überein.

Die Abbildung $(f, g_1, ..., g_j) \mapsto \operatorname{subst}(f; g_1, ..., g_j)$ wird als Substitution bezeichnet; sind f und g_i intuitiv berechenbar, so sicher auch $\operatorname{subst}(f; g_1, ..., g_j)$.

Analog zum Beweis des Lemmas auf Folie 2.2 kann gezeigt werden:

Lemma

Sind f und g_1, \ldots, g_j while-berechenbar, so auch $\operatorname{subst}(f; g_1, \ldots, g_j)$.

Seien $k \geq 1$ und $g: \mathbb{N}^{k-1} \to \mathbb{N}$, $h: \mathbb{N}^{k+1} \to \mathbb{N}$ und $f: \mathbb{N}^{k+1} \to \mathbb{N}$ partielle Funktionen, so daß das Folgende für alle $\overline{n} \in \mathbb{N}^k$ und $m \in \mathbb{N}$ gilt:

- $f(\overline{n},0)$ ist genau dann definiert, wenn $g(\overline{n})$ definiert ist; in diesem Fall gilt $f(\overline{n},0)=g(\overline{n})$
- $f(\overline{n}, m + 1)$ ist genau dann definiert, wenn $f(\overline{n}, m)$ und $h(\overline{n}, m, f(\overline{n}, m))$ definiert sind; in diesem Fall gilt $f(\overline{n}, m + 1) = h(\overline{n}, m, f(\overline{n}, m))$.

Dann entsteht f aus g und h mittels Rekursion. Hierfür schreiben wir f = rec(g, h).

Bemerkung: Sind g und h total, so stimmt diese Definition mit der von Folie 2.7 überein.

Analog zum Beweis des Lemmas auf Folie 2.7 kann gezeigt werden:

Lemma

Sind g und h while-berechenbar, so auch rec(g, h).

Idee einer weiteren Operation auf Klasse aller partiellen Funktionen: Ist $f: \mathbb{N}^{k+1} \to \mathbb{N}$ eine partielle Funktion, so soll $g(\overline{n})$ für $\overline{n} \in \mathbb{N}^k$ "die kleinste Nullstelle von $f(\overline{n}, .)$ " sein:

$$g(\overline{n}) = \begin{cases} \min\{m \mid f(\overline{n}, m) \text{ definiert und } f(\overline{n}, m) = 0\} & \text{falls Menge } \neq \emptyset \\ \text{undefiniert} & \text{sonst.} \end{cases}$$

Beispiel:

- f(0,0) = 0, $f(0,1) = 0 \Longrightarrow g(0) = 0$
- f(1,0) = 1, $f(1,1) = 0 \Longrightarrow g(1) = 1$
- f(2,0) undefiniert, f(2,1) = 0: um festzustellen, daß g(2) = 1 gilt, muß zunächst festgestellt werden, daß $f(2,0) \neq 0$ gilt.

Problem: Ist f intuitiv berechenbar, so muß dies nicht unbedingt für g gelten.

Daher verwenden wir nicht obige Definition, sondern die folgende:

Definition

Sei $f: \mathbb{N}^{k+1} \to \mathbb{N}$ eine partielle Funktion. Dann sei $g:= \operatorname{search}_f: \mathbb{N}^k \to \mathbb{N}$ die partielle Funktion mit

- $g(\overline{n})$ ist genau dann definiert, wenn es $\ell \in \mathbb{N}$ gibt, so daß $f(\overline{n}, 0)$, $f(\overline{n}, 1), \ldots, f(\overline{n}, \ell)$ definiert sind und $f(\overline{n}, \ell) = 0$;
- in diesem Fall ist $g(\overline{n})$ das kleinste $\ell \in \mathbb{N}$ mit $f(\overline{n}, \ell) = 0$.

Bemerkung

- Ist f intuitiv berechenbar, so auch search_f.
- In der Literatur wird die partielle Funktion search_f mit μf bezeichnet.

Beispiel

- Sei $f: \mathbb{N}^2 \to \mathbb{N}: (n, m) \mapsto n + m + 1$. Dann gilt f(n, m) > 0 für alle $n, m \in \mathbb{N}$, also ist $\operatorname{search}_f(n)$ undefiniert für alle $n \in \mathbb{N}$. Wir bezeichnen diese nirgendwo definierte Funktion $\operatorname{search}_f: \mathbb{N} \to \mathbb{N}$ mit Ω .
- Sei $f: \mathbb{N}^2 \to \mathbb{N}: (n, m) \mapsto n \div m \cdot m$. Für $n, m \in \mathbb{N}$ gilt dann $f(n, m) = 0 \iff n \le m^2$, also

$$\operatorname{search}_f(n) = \left\lceil \sqrt{n} \right\rceil.$$

Lemma

Ist $f: \mathbb{N}^{k+1} \to \mathbb{N}$ while-berechenbar, so auch $\operatorname{search}_f: \mathbb{N}^k \to \mathbb{N}$.

Beweis: Die Funktion search_f läßt sich durch das folgende (Pseudocode-) While-Programm berechnen:

$$m := 0$$
; $y := f(x_1, ..., x_{k-1}, m)$; while $y \ne 0$ do $m := m + 1$; $y := f(x_1, x_2, ..., x_{k-1}, m)$; end; $x_1 := m$

zwei mögliche Ursachen für die Nicht-Termination dieses While-Programms: Nicht-Termination der while-Schleife oder der Berechnung eines $f(x_1, \ldots, x_{k-1}, m)$.

Wir haben also Argumente der Form (K^+) und (A^+) (vgl. Folie 1.24) und damit gute Gründe, der While-Vermutung zu trauen.

Ein bißchen Geschichte (vgl. Folie 1.22)

Kurt Gödel, der ebenso wie Hilbert an der Frage interessiert war, was ein "Verfahren" sei, kannte keine While-Programme, sondern formulierte die folgende Vermutung:

Gödels Vermutung (ca. 1934)

Eine partielle Funktion $\mathbb{N}^k \to \mathbb{N}$ ist genau dann intuitiv berechenbar, wenn sie μ -rekursiv ist.

Wir werden zeigen, daß Gödels Vermutung äquivalent zur While-Vermutung ist (für deren Gültigkeit wir ja gute Gründe haben).

μ -rekursive Funktionen

Die While-Programme verallgemeinern die Loop-Programme, die ja für einfache imperative Programmiersprachen standen.

Jetzt werden wir die rek-Programme, die für einfache funktionale Programmiersprachen stehen, ebenfalls verallgemeinern und dann zeigen, daß sie äquivalent zu den While-Programmen sind.

- CONST₀ ist ein 0-stelliges μ rek-Programm
- S ist ein 1-stelliges μ rek-Programm
- PROJ_i^k ist ein k-stelliges μ rek-Programm (für alle $1 \le i \le k$)
- Sind F ein j- und G_1, \ldots, G_j k-stellige μ rek-Programme $(j, k \ge 0)$, so ist SUBST $(F; G_1, \ldots, G_j)$ ein k-stelliges μ rek-Programm.
- Sind G ein (k-1)- und H ein (k+1)-stelliges μ rek-Programm $(k \ge 1)$, so ist REC(G, H) ein k-stelliges μ rek-Programm.
- Ist F ein (k+1)-stelliges μ rek-Programm, so ist SEARCH(F) ein k-stelliges μ rek-Programm.
- Nichts ist μ rek-Programm, was sich nicht mittels obiger Regeln erzeugen läßt.

Wir werden jetzt jedem k-stelligen μ rek-Programm F eine partielle Funktion $[F]: \mathbb{N}^k \to \mathbb{N}$ zuordnen:

• Es gelte $[CONST_0]() = 0$. Also ist

$$[CONST_0] = const_0: \mathbb{N}^0 \to \mathbb{N}$$

die überall definierte konstante 0-Funktion $const_0$.

- Für $n \in \mathbb{N}$ sei [S](n) = n + 1. Also ist $[S]: \mathbb{N} \to \mathbb{N}$ die überall definierte Nachfolgerfunktion.
- Für $\overline{n} = (n_1, \dots, n_k) \in \mathbb{N}^k$ sei $[PROJ_i^k](\overline{n}) = n_i$. Also ist

$$\llbracket \operatorname{PROJ}_{i}^{k} \rrbracket = \pi_{i}^{k} : \mathbb{N}^{k} \to \mathbb{N}$$

die überall definierte Projektionsfunktion π_i^k der k-Tupel auf den i-ten Eintrag.

- Für $\overline{n} \in \mathbb{N}^k$
 - sei $[SUBST(F; G_1, ..., G_j)](\overline{n})$ genau dann definiert, wenn $[G_i](\overline{n})$ f.a. i und $[F]([G_1](\overline{n}), ..., [G_j](\overline{n}))$ definiert sind und
 - in diesem Fall gelte $\llbracket \text{SUBST}(F; G_1, \dots, G_j) \rrbracket (\overline{n}) = \llbracket F \rrbracket (\llbracket G_1 \rrbracket (\overline{n}), \dots, \llbracket G_j \rrbracket (\overline{n})).$

Also ist

$$\llbracket \mathtt{SUBST}(F; G_1, \ldots, G_j) \rrbracket = \mathtt{subst}(\llbracket F \rrbracket; \llbracket G_1 \rrbracket, \ldots, \llbracket G_j \rrbracket)$$

die Substitution der partiellen Funktionen $\llbracket G_1 \rrbracket, \ldots, \llbracket G_j \rrbracket$ in die partielle Funktion $\llbracket F \rrbracket$ (vgl. Folie 4.7).

- Für $\overline{n} \in \mathbb{N}^k$
 - ist $[SEARCH(F)](\overline{n})$ genau dann definiert, wenn es $\ell \in \mathbb{N}$ gibt, so daß $[F](\overline{n}, i)$ für alle $i \in \{0, 1, ..., \ell\}$ definiert ist und $[F](\overline{n}, \ell) = 0$ gilt;
 - in diesem Fall ist $[SEARCH(F)](\overline{n})$ das kleinste ℓ mit $[F](\overline{n},\ell) = 0$.

Also gilt

$$\llbracket \mathtt{SEARCH}(F) \rrbracket = \operatorname{search}_{\llbracket F \rrbracket}$$

(vgl. Folie 4.10).

- Für $\overline{n} \in \mathbb{N}^{k-1}$ und $m \in \mathbb{N}$
 - ist $[\![REC(G, H)]\!](\overline{n}, 0)$ genau dann definiert, wenn $[\![G]\!](\overline{n})$ definiert ist und
 - in diesem Fall gilt $[REC(G, H)](\overline{n}, 0) = [G](\overline{n})$
 - ist $[\![\operatorname{REC}(G,H)]\!](\overline{n},m+1)$ genau dann definiert, wenn $[\![\operatorname{REC}(G,H)]\!](\overline{n},m)$ und $[\![H]\!](\overline{n},m,[\![\operatorname{REC}(G,H)]\!](\overline{n},m))$ definiert sind und
 - in diesem Fall gilt $[\![REC(G, H)]\!] (\overline{n}, m + 1) = [\![H]\!] (\overline{n}, m, [\![REC(G, H)]\!] (\overline{n}, m)).$

Also ensteht

$$\llbracket \operatorname{REC}(G, H) \rrbracket = \operatorname{rec}(\llbracket G \rrbracket, \llbracket H \rrbracket)$$

aus den partiellen Funktionen $\llbracket G \rrbracket$ und $\llbracket H \rrbracket$ durch Rekursion (vgl. Folie 4.8).

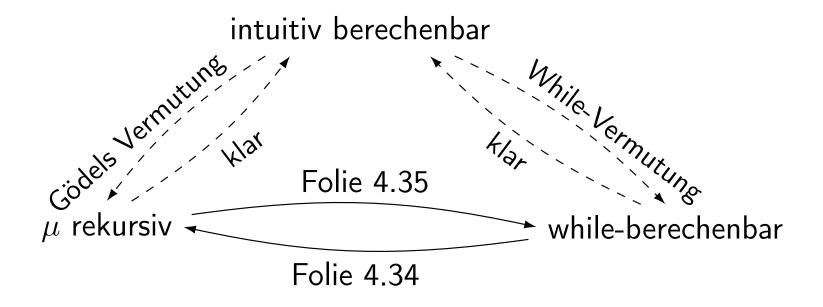
Eine partielle Funktion $f: \mathbb{N}^k \to \mathbb{N}$ ist μ rek-berechenbar oder μ -rekursiv, wenn es ein k-stelliges μ rek-Programm F gibt mit $[\![F]\!] = f$.

Satz

Eine partielle Funktion $f:\mathbb{N}^k\to\mathbb{N}$ ist genau dann while-berechenbar, wenn sie μ -rekursiv ist.

Beweis: Hierfür müssen die Beweise der Sätze auf den Folien 2.19 bzw. 2.27 um Programme der Form SEARCH(F) bzw. um die while-Schleife erweitert werden (siehe Zusatzmaterial dieser Vorlesung).

Zwischenbilanz



- (U⁺) zwei <u>äquivalente</u> Vorschläge, den Begriff "intuitiv berechenbar" zu formalisieren: while-berechenbar und μ -rekursiv
- (K^+) viele Funktionen sind while-berechenbar bzw. μ -rekursiv
- (A⁺) die beiden Klassen erfüllen viele Abschlußeigenschaften

Damit haben wir gute Gründe, der While-Vermutung (Folie 4.6) bzw. Gödels Vermutung (Folie 4.13) zuzustimmen, oder?

Goto-Programme

- Die While-Programme abstrahieren strukturierte ("höhere") Programmiersprachen, d.h. while-berechenbare Funktionen sind durch Programme einer "höheren" Programmiersprache berechenbar.
- μ -rekursive Funktionen sind durch Programme einer funktionalen Programmiersprache berechenbar.

Frage

Können Assembler- oder Maschinensprachen vielleicht mehr Funktionen berechnen?

Ein Goto-Programm ist eine endliche nichtleere Folge $P = A_1; A_2; ...; A_m$ von Anweisungen A_i der folgenden Form:

- $x_i := c$, $x_i := x_j + c$, $x_i := x_j c$ mit $c \in \{0, 1\}$ und $i, j \ge 1$ (Wertzuweisung)
- goto ℓ mit $1 \le \ell \le m + 1$ (unbedingter Sprung)
- if $x_i = 0$ then ℓ mit $i \ge 1$ und $1 \le \ell \le m + 1$ (bedingter Sprung)

Definition

Sei $P = A_1; A_2; ...; A_m$ ein Goto-Programm, in dem keine Variable x_i mit i > k vorkommt.

Eine Konfiguration von P ist ein (k + 1)-Tupel $(n_1, n_2, \ldots, n_k, p) \in \mathbb{N}^k \times \{1, \ldots, m + 1\}$, wobei n_i die Belegung der Variablen x_i und p den Wert des Programmzählers beschreibt.

Seien $P = A_1; A_2; ...; A_m$ ein Goto-Programm und $(\overline{n}, p), (\overline{n}', p')$ zwei Konfigurationen. Wir setzen $(\overline{n}, p) \vdash_P (\overline{n}', p')$, falls p < m + 1 und eine der folgenden Bedingungen gilt:

- $A_p = (x_i := c), \ \overline{n}' = (n_1, \dots, n_{i-1}, c, n_{i+1}, \dots, n_k) \ \text{und} \ p' = p+1$
- $A_p = (x_i := x_j + c), \ \overline{n}' = (n_1, \dots, n_{i-1}, n_j + c, n_{i+1}, \dots, n_k) \ \text{und} \ p' = p+1$
- $A_p = (x_i := x_j \div c), \ \overline{n}' = (n_1, \dots, n_{i-1}, n_j \div c, n_{i+1}, \dots, n_k) \ \text{und} \ p' = p+1$
- $A_p = (\text{goto } \ell), \ \overline{n}' = \overline{n} \text{ und } p' = \ell$
- $A_p = (\text{if } x_i = 0 \text{ then } \ell), n_i = 0, \overline{n}' = \overline{n}, p' = \ell$
- $A_p = (\text{if } x_i = 0 \text{ then } \ell), n_i \neq 0, \overline{n}' = \overline{n}, p' = p + 1$

Für jedes Goto-Programm $P = A_1; A_2; ...; A_m$, in dem keine Variable x_i mit i > k vorkommt, definieren wir zunächst eine partielle Funktion $[P]_k : \mathbb{N}^k \to \mathbb{N}^k$: Sei $\overline{n} \in \mathbb{N}^k$.

 $\llbracket P \rrbracket_k(\overline{n})$ ist definiert, falls es $\overline{n}' \in \mathbb{N}^k$ gibt mit $(\overline{n}, 1) \vdash_P^* (\overline{n}', m+1)$. In diesem Fall gilt $\llbracket P \rrbracket_k(\overline{n}) = \overline{n}'$.

Definition

Eine partielle Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt goto-berechenbar, falls es ein $\ell \geq k$ und ein Goto-Programm P, in dem keine Variable x_i mit $i > \ell$ vorkommt, gibt, so daß für alle $\overline{n} \in \mathbb{N}^k$ gilt:

- $f(\overline{n})$ definiert $\iff \llbracket P \rrbracket_{\ell}(\overline{n},0,\ldots,0)$ definiert
- Falls $f(\overline{n})$ definiert ist, gilt $f(\overline{n}) = \pi_1^{\ell}(\llbracket P \rrbracket_{\ell}(\overline{n}, 0, \dots, 0))$.

Lemma

Jede while-berechenbare Funktion ist goto-berechenbar.

Beweisidee:

Eine while-Schleife

while
$$x \neq 0$$
 do P end

kann simuliert werden durch das Goto-Programm-Stück

$$A_p = (if x = 0 then q + 1)$$

: Übersetzung des While-Programms P

$$A_q = \text{goto } p$$

: Übersetzung des restlichen While-Programms

Lemma

Jede goto-berechenbare Funktion ist while-berechenbar.

Beweis:

```
Sei P = (A_1; ... A_m) ein Goto-Programm.
```

Wir simulieren P durch das folgende While-Programm Q mit nur einer while-Schleife:

```
count := 1;
while count \neq m + 1 do
    if count = 1 then A'_1 end;
    if count = 2 then A'_2 end;
    :
    if count = m then A'_m end;
end
```

Hierbei ist das While-Programm A'_i in Abhängigkeit von A_i wie folgt definiert:

- $A'_i = (x_j := c; count := count + 1)$ falls $A_i = (x_j := c)$
- $A'_i = (x_j := x_\ell + c; count := count + 1)$ falls $A_i = (x_j := x_\ell + c)$
- $A'_i = (x_j := x_\ell \div c; count := count + 1)$ falls $A_i = (x_j := x_\ell \div c)$
- $A'_i = (count := k)$ falls $A_i = (goto k)$
- $A'_i = (\text{if } x_j = 0 \text{ then } count := \ell \text{ end};$ if $x_j \neq 0 \text{ then } count := count + 1 \text{ end})$ falls $A_i = (\text{if } x_i = 0 \text{ then } \ell)$

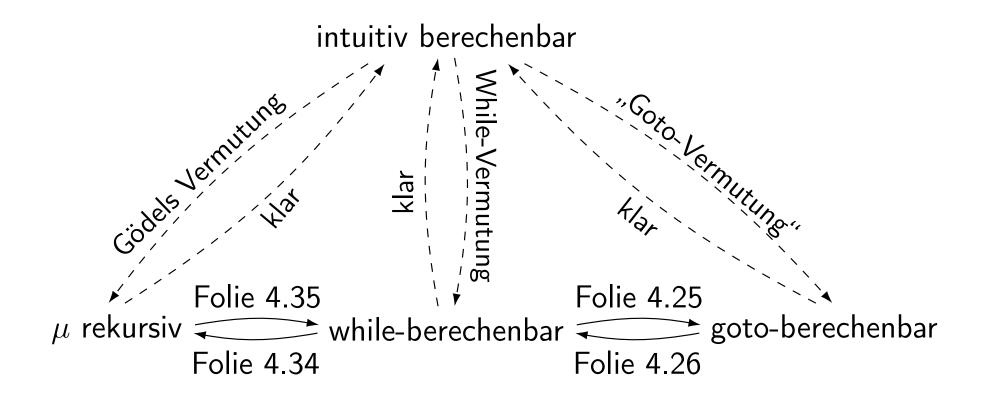
Ein kleiner Ausflug - Kleenesche Normalform

Die Simulation von Goto-Programmen durch While-Programme verwendet nur <u>eine</u> while-Schleife (falls man if ... then als elementares Konstrukt erlaubt).

Das bedeutet: Ein While-Programm kann durch Umwandlung in ein Goto-Programm und Zurückumwandlung in ein While-Programm in ein äquivalentes While-Programm mit nur einer While-Schleife umgewandelt werden (Kleenesche Normalform für While-Programme).

Die analoge Aussage für Loop-Programme gilt nicht (siehe Übung).

Zwischenbilanz



- (U⁺) drei <u>äquivalente</u> Vorschläge, den Begriff "intuitiv berechenbar" zu formalisieren: while-berechenbar, μ -rekursiv und goto-berechenbar
- (K⁺) viele Funktionen sind while-berechenbar, μ -rekursiv bzw. goto-berechenbar
- (A⁺) die drei Klassen erfüllen viele Abschlußeigenschaften

Damit haben wir gute Gründe, der While-Vermutung (Folie 4.6), Gödels Vermutung (Folie 4.13) bzw. der "Goto-Vermutung" zuzustimmen, oder?

In der kommenden Vorlesung werden wir noch ein völlig neues Argument für diese Vermutungen behandeln ...

Zusammenfassung 4. Vorlesung

in dieser Vorlesung neu

- while- und goto-berechenbare Funktionen, μ -rekursive Funktionen
- Äquivalenz von While-, Goto- und Gödels Vermutung

kommende Vorlesung

Modellierung der Tätigkeit des Rechnens durch Turing-Maschinen

Zusatzmaterial

Lemma

Jede while-berechenbare partielle Funktion ist μ -rekursiv.

Beweis:

Es genügt, den Beweis des Satzes auf Folie 2.27 um die while-Schleife zu erweitern.

Sei also $P = (while x_i \neq 0 \text{ do } Q \text{ end})$ ein While-Programm, in dem die Variablen x_i für j > k nicht vorkommen.

Wir müssen zeigen, daß $\langle\!\langle P \rangle\!\rangle_k : \mathbb{N} \to \mathbb{N} : n \mapsto \langle \llbracket P \rrbracket_k (d_1(n), \dots, d_k(n)) \rangle$ μ -rekursiv ist (vgl. Folie 2.26).

Nach Induktion ist dies für $\langle Q \rangle_k$ bereits der Fall.

Die Funktion $h: \mathbb{N}^2 \to \mathbb{N}: (n, m) \mapsto \langle Q \rangle_k^m(n)$ ist μ -rekursiv (vgl. Beweis des Lemmas auf Folie 2.27 (Fall 4))

Dann ist auch $k: \mathbb{N}^2 \to \mathbb{N}: (n, m) \mapsto d_i(h(n, m)) \mu$ -rekursiv

und es gilt $\langle\!\langle P \rangle\!\rangle_k(n) = h(n, \mu k(n))$, d.h. auch $\langle\!\langle P \rangle\!\rangle_k$ ist μ -rekursiv.

Lemma

Jede μ -rekursive Funktion ist while-berechenbar.

Beweis: Hierzu müssen wir den Beweis des Lemmas auf Folie 2.19 um den Fall SEARCH(F) erweitern.

Das haben wir aber bereits auf Folie 4.12 getan.