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Figure 1: Evolution of stable temporal relations within sub-trajectories

This paper deals with a new approach towards self-
(be'havu')u'r oriented) spatio-temporal object-
active-vision process in'the widest sense. The focus is on the functional archi-
ticture and the siynamlcal principles suited for self-organization of knowledge
abput complex visual structures, and for a behaviour-oriented interprelalion of
objects in real-world scenes. In our mind, such a self-organization of intrinsic
dynamical knovyl_edge 18 a prerequisite for active, autonomous learning under
real-world conditions. In this context an approach is used in our model, whose
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of the massively parallel input (v.d. Malsburg 1992). Selective attention pro-
cesses (both active-vision and internal scanning not related to eye movement)
and dynamical processing at different organizational levels are widely accep-
ted mechanisms explaining the decomposition of a complex visual scene into
components and the subsequent reassembling the recalled internal representa-
tions towards an unitary decision (Crick et al., 1990). Therefore, an important
aspect of our approach is the data and/or hypotheses driven dissolution of the
highly parallel visual input into meaningful components, which can be reassem-
bled freely to new complex visual structures. Only in this case, the analyzing
system is able to handle the present input on the base of the knowledge al-
ready acquired at any time. In addition, only by such a continuous interaction
a self-organization is possible, the aim of which is to bring the actual percep-
tion into maximal consistency with the acquired knowledge. The goal of our
approach is to find useful ways of exploiting the wealth of dynamic behaviour
for such aspects like active, autonomous learning of internal representations,
which are assumed to be fundamentally for a behaviour-oriented understanding
of visual objects during active-vision. Of our particular interest are such con-
cepts like generation and active verification of dynamical hypotheses about the
input in a feedback coupled process of Sensory Controlled Internal Simulation.
In the context of the systems behaviour during active vision that means the
generation and testing of hypothesis about what components are to be expec-
ted when and where in the visual field - this is an internal anticipation of a
real spatio-temporal selective attention or active-vision process. Therefore our
model concept proposed later should be able to map the temporal and spatial
characteristics of the data driven serial processing within the intervals between
the eye movements shown strongly simplified in Figure 1 into characteristic
and dynamically stable internal representations coding stable striking feature
relations within the the objects. Without any internal knowledge our func-
tional architecture is not able to establish suitable hypotheses about objects
to anticipate an internal scan process. Self-organization of an object under-
standing means, that typical, reliably detectable striking visual components
and their object-specific relations detected in preceding active vision processes
more frequently, gradually can be coupled or linked in the temporal domain
as temporal adjacent. The evolution of stable temporal relations (temporal
neighborhood) within subtrajectories is an expression of stable object-specific
relations within input data stream and is to understand as a behaviour-oriented
internal understanding which components of a visual structure (object) belong
together. In our opinion, temporal neighborhood in selective attention processes
could be a good, possibly the only criterion for an unsupervised segmentation
and learning of objects arranged in highly structured visual scenes. Figure 1
(on the right) shows the final state of such a behaviour-oriented transforma-
tion. By knowledge-based reshuffling the input sequence the development of
such a sequence (limit cycle) of object-specific sub-trajectories is forced which
organizes best all relevant input components into a globally consistent decision.

2 Functional architecture

For dealing with autonomous learning and self-organization of such a behaviour-
oriented object-understanding under real world conditions we developed a neu-
robiologically inspired functional architecture. Our concept presented here is
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an improved but still very simple computational model of a modular processing
hierarchy compared to an earlier approach of us (Koerner et al., 1991). The
architecture to be developed in the NAMOS-project is to decompose a com-
plex visual input into a reverberating sequence of reliably detectable fragments
(components) ranked by its visual conspicuousness (complexity) and control-
led by the self-organized knowledge. The organizational levels of our model
schematized in Figure 2 define the following basic abilities and information
processing tasks: The Saliency System proposed in (Gross et al., 1992) has
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Figure 2: Sensory Controlled Internal Simulation

been influenced essentially by the neurophysiological concepts of primary vi-
sual processing (DeYoe et al., 1988). The parallel representations at different
feature maps yield a measure of the conspicuity of a location in the scene. This
is prerequisite for a data-driven decomposition of the visual input into striking
and reliably detectable components that can classified as known or unknown
by the following levels and can be reshuffled and reassembled freely.

Based on its inherent dynamics the Dynamical Interface carries out a
sequential search for the most striking components within the visual field by
shifting its internal attentional focus. The Dynamical Interface is modulated
both bottom-up by the sensory input from Saliency System and top-down by
spatio-temporal recall from Dynamical Memory in context of an unspecific hy-
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potheses verification. In this way the Interface and with that the sensory data
stream can be controlled by activated hypotheses about the input so that the
interesting components can be reshuffled in time according to the state of inter-
nal hypthesis activation (Gross et al. 1992, Heinke et al., 1993). The Specific
Recognition System operates on the internal attentional focus controlled
by the Dynamical Interface within the Saliency System. In cooperation with
the Dynamical Memory it determines in a specific hypothesis verification the
similarity of the actual internal focus feature set to the feature sets extrac-
ted and learned autonomously in previous cycles (see Pomierski et al., 1993).
The Dynamical Memory - (DM) is the highest organizational level of our
architecture. DM is activated and driven by the established spatio-temporal
sequence of striking input components and can act as a guide in attentional
control and input decomposition based on the knowledge already accumulated
within the system. Therefore DM is interacting reciprocally with the Dynamical
Interface in so-called ‘hypothesize-verification-cycles’. All activated hypothe-
ses interfere back to the Dynamical Interface and try to control the course of
data-driven search within this system. Via this feed-back DM can search for
that input components which would support one of the activated hypotheses.
In this sense, DM uses its internal self-organized knowledge for flexible activa-
tion and continuous verification of hypotheses about the input (see (Boehme
et al.,, 1994)). This forces the development of such a sequence of decisions
which organizes best all selected input components into a globally consistent
decision. If it is impossible to activate internal hypotheses by a data-driven
input sequence this input has to be accepted by the DM as a new sensory si-
tuation. On this background a model was developed and presented in (Boehme
et al,, 1992) as a first very simple attempt to extract the inherent structure of
a spatio-temporal data stream in active-vision or selective attention processes.
Based on this first model the DM tries to map each sensory input sequence
into a characteristically memory trace. So, the sequence of decisions on certain
striking input components is transferred into a spatio-temporal representation
within DM. For the case, that the input is partially unknown, DM can generate
sub-hypotheses on the base of the already accumulated knowledge. If no in-
terpretation of the input pattern sequence is possible, this input sequence will
be learned. In first simulations (see Heinke et al., 1993) our system was able
to change its behaviour in scanning unknown complex scenes, that is a result
of the transformation of detectable object-specific relations uncoupled with re-
spect to time at the beginning into more and more stable temporal relations by
autonomous learning. In next time we will couple all different organizational
levels of our model in a comprehensive simulation.
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