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Abstract
In this paper we present a distributed multieolumnar system using an intraeolumnar prineipal
eomponent analysis (PCA) for a topology preserving mapping ofreal-world grey leveldistributions
within a two-dimensionalintereolumnar Kohonen Feature Map. A two-stage prineipal eomponent
analysis within eaeh proeessing eolumn allows a similarity preserving deseription with only a few
highly effectivefitting parameters suited for a loeal translation invariant proeessing.

1. Introduction

Cognitive abilities required for analysis or interpretation of real-world scenes can not be explained
by pattern matching completely in parallel. Instead of this a controiled decomposition of a highly
parallel and complex visual scene into a sequence of lower dimensional components (meaningful
pieces ) is more probable. Hereby both preattentive or data-driven and attentive vision mechanisms
based on internal system knowledge are of decisive importance for controlling this decomposition
process [1]. The regions of a visual scene that are of high interest for an active vision system
because of their syntactical meaning (preattentive scene analysis) or because of data-driven activated
internal hypothesis about the scene or single components (attentive or knowledge-based vision) will
be referred to this paper as internal regions of attention. Central point of this paper is to propose a
neural network architecture for distributed parallel analysis of internal regions of attention selected
within a visual scene by the special attention mechanisms mentioned above. In the presented model
concept the distributed analysis is realized by an array of cortical processing columns having a
structural and functional similarity with the minicolumns localized at the primary visual cortex [7].
This columnar array analyzes parallel the regions of attention of the real-world input scene selected
by preattentive or attentive mechanisms which are not subject of this paper. Each processing
column is able to detect essential input features within the corresponding analyzing field inside the
region of attention on the basis of complex receptive fields. These receptive fields can be structured
unsupervised by an adaptive self-organizing process based on a neural motivated principal component
analysis (PCA). Oja [3] demonstrated that a particular version of the Hebb rule leads to a synaptic
weight vector that has a strong similarity with the principal component of the set of input vectors.
As extension according to Sanger [5] the self-organization of principal components corresponding to
the largest eigenvalues for input data sets selected randomly from various real-world scenes leads
to sets of principal component arrays or receptive fields nearly identical in quality (see Fig. 1).
These results lead us to the supposition, that the same sets of complex receptive fields for local
input analysis are available to each cortical column independent of its localization within the visual
cortex as weil as within our simple model architecture. The focus of this paper is to present a new
extended neural network approach that enables a local topology preserving principal component
analysis within each processing column that guarantees a locally translation invariant description
of the local field of analysis with the lowest rate of describing parameters. Based on all fitting
parameters in all processing columns a mapping into a two-dimensional intercolumnar organized
Kohonen Feature Map becomes possible .
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(1)

Figure 1: (left) Self-organized receptive neIds (principal component arrays) w(l), ... ,w(i), ...,wen)

structured in an unsupervised learning process by randomly selected input sampies out of the shown
real-world scene (right). This set of receptive neIds is implemented within each processing column
of the columnar array (for further explanation see text).

2. Principal Component Analysis for Self-Organization of Receptive Fields

In the training period numerous images were obtained by recording real-world scenes and discretizing
them to 512 pixel square images with 256 grey levels. No attempt was made to correct any optical
irregularities. Local training patterns of 16 x 16 pixels were obtained by choosing an area within the
image at random. Each training vector was normalized only to interva! <0, 1>. This was possible
because of the conformity of mean point vector w(O) and first eigenvector w(l) of real-world scene
data distributions (see Fig. 3). So it is justifiable to indicate real-world scenes as ones without mean
value. This is the prerequisite for adaptive unsupervised learning without a-priori knowledge about
the data distribution of real-world scenes. For our simulations we used a single-unit rule like that
proposed by Oja [3] in 1982.

wJl)(t + 1) = wY)(t) + I(t) y(t) [Xj(t) - y(t) wJl)(t)]

Here x = (Xl, ... ,Xj, ... ,xm)T denotes the real valued input normalized to the interval <0, 1>, y
is the output signal, wY) is the weight from input unit Xj to the single output unit y, and I is
the learning rate. This rule can be shown to produce a weight vector w(l) corresponding to that
eigenvector of the correlation matrix of all the inputs x which has a maximal eigenvalue. It extracts
the principal component of the input data. The weight vector also tends to unit length. This rule
was extended to i output units extracting the principal components in ascending sequence [5]. The
learning process consists of two steps for each neuron i. First all parts of the input vector x(i-l)
already representable by weight vector w(i) are subtracted.

x(i)(t) = x(i-l)(t) - Yi(t)w(i)(t), x(O) = x, i = 1,2, ...,n

Afterwards the adaptation of all components wY) of weight vector w(i) takes place.

(i) ( 1) - (i) ( ) .() .() (i) () . - 2 . _wj t+ -wj t +Itt y,t xj t,z-l, , ... ,n,)-1,2, ...,m

(2)

(3)

The number of output units was determined by experiments showing that in context of our desired
application 45 principal components are sufficient for extracting the essential information out of
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Figure 2: Principal depiction ofthe possible cor-
relation oftwo variables Xl and X2. The mean of
the da ta distribution is not equal to zero. Accor-
dingly, first it is necessary to extract the mean
before determining a more favorable system of
perpendicular coordinates.

Figure 3: Principal depiction of randomly se-
lected pairs of grey-valued pixels Xl and X2 si-
tuated side by side within the visual scene in
Fig. 1. The mean point vector w(O) of the data
distribution and the eigenvector corresponding
to the largest eigenvalue w(l) are identical here
(for more explanations see text).

!;

16 X 16 square sampIes taken from real-world scenes (17% of all possible eigenvectors). The net
was initialized by setting an the weights wY) to srnall random values so that'the square surn of
the cornponents of each weight vector w(i) was approximately unity. Training cohsisted of applying
randornly selected inputs and updating the weights. We used a total of 50.000 presEmtations. Because
of the output feed-back to the input neurons:

X(i) - x(i-l) - y.w(i) . 1 2
- I, Z = , , ...,n (4)

any weight modification of neuron i has consequences for neuron i+ 1. So it is n~cessary to give the
weight vector w(i) of neuron i the chance to stabilize before weight vector w(i+l) of neuron i+ 1 gets
able to learn effectively (see Fig. 4). That is the reason why convergence of weights is assisted by

gradually reducing the learning rate
LEARNING RATE in following way: "

LEARNING STEPS

Figure 4: Gradually reducing learning rate for neurons
i. The mathematical description of the time varying and
neuron dependent learning rate is presented in text.

~i a
'Yo(t) 7 t + 1 (5)

'Yi(t) = 'Yi-l(t) v; i = 1,2, ...,n (6)
::

Here'Y = bl, ...\'Yi, ... ,'Ynf is the
learning rate for "the neurons n =
(nI, ..., ni, ... , nnf, v the threshold
parameter, t thelearning step and
a the starting value. This leads to
a weight stabilization of an 45 neu-
rons after 50.000 learning steps (see
Fig. 1). This prlncipal component
analysis evoked by visual stimulation
of real world and resulting in forming
cornplex receptive~ fields is compara-
ble in the broadest sense with the
development of specialized receptive
fields in the kitten visual cortex [6].
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The ability of the self-organized receptive field set to extract nearly complete the information of any
real-world scene is shown in Fig. 5. To code the images, each scene was segmented in mx m parts of
n x n pixels without overlap. Each segment in the scene was analyzed by the complete receptive field
set learned on the basis of a completely different visual scene (Fig. 1, right). In this way for each
segment 45 fitting values for coding are determined. Fig. 5 shows the two scenes after reconstruetion
from the m x m X 45 fitting values.

Figure 5: Two views of a printer are shown after reconstruction from fitting parameters derived
from the set of receptive fields shown in Fig. 1. These principal components have been self-organized
on the basis of the real-world scene shown at the right hand side of Fig. 1. Both reconstruction test
scenes shown here have been first segmented and analyzed by the receptive fields of Fig. 1. and then
reconstructed from 45 fitting values for each segment. It is not possible to find essential differences
between the original and the reconstructed scenes, so it is justified to present only the reconstruction
results.

3. Intracolumnar Processing of Local Receptive Fields

In our model arehiteeture (see Fig. 6) eaeh proeessing column analyzes adefinite loeal domain of
the foeus region, the so ealled region of analysis, by complex reeeptive fields self-organized by the
proposed neurallearning meehanism. These regions of analysis enclose in our model 32 x 32 square
pixels for eaeh column. Beeause of this field dimension 16 x 16 proeessing eolumns analyze parallel a
region of attention of 152 x 152 pixels, as the overlapping between regions of analysis has been chosen
to 75%. Presupposing grey-level distributions of the real-world seenes as additive superposition of
periodie process parts, a convolution of the self-organized receptive fields (16 x 16 pixels) with the
regions of analysis (32 x 32 pixels) is in aeeordance with an analysis of the period determined by the
receptive field of first order w(l). The motivation for this convolution is the following: There were
no internal relations detectable between fitting veetors for analyzing regions shifted inside the scene
by only one pixel. The convolution presents a way to escape from this dilemma. By equalizing local
translations similar fitting vectors for similar grey-level distributions are generated at the same time.
Naturally, this is connected with a loss of precision, and in addition, this represents an irreversible
proeess of analysis. Each of the 16 x 16 eolumns determines the average of aetivation for all neurons
with the same reeeptive fields situated within its region of analysis.

1 N-l N-l

fi = N2 L L 11 w(i)Xkl 11, i = 1,2, ...,45
k=O 1=0

(7)
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Figure 6: The distributed multicolumnar sy-
stem for primary cortical analysis, consisting of
a subsystem for the two-phase principal com-
ponent analysis (see text) and a subsystem for
sequential selection of topological adjaeent co-
lumnar analyzing results. AB and EF are co-
lumnar activations (analyzing results) descri-
bing completely different grey-level distributi-
ons (for instance textures) in a complex real-
world scene. The aetivation CD is indicating
a border-region of overlapping visual structu-
res AB and EF. This cluster is localized wi-
thin the Kohonen Feature Map between neuron
populations sensitive for the features AB and
EF.
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In this way for each column an averaged 45-dimensional vector f of fitting values can be determined,
which describes the mean conformity of the complex reeeptive fields with their regions of analysis.
Here f = (ft, ... , fi, ... , f45)T denotes the averaged fitting veetor, w(l), ... , w(i), ... , w(45) denote the
two-dimensional arrays of principal eomponents (eomplex reeeptive fields), and x is the real-valued
input of the analyzing region. The 1024 grey values of one region of analysis are redueed to 45
real fitting values, this is a compression rate of 95%. The first eomponent of the fitting veetor ft
deseribing the steady eomponent was not used furt her for analyzing the features independent of
the mean grey-Ievel. A simple clustering of the 16 x 16 fitting veetors determined in this way for
different regions of attention was showing a eonformity with the human visual feeling. Several tests
with different regions of analysis showed a generally exponential deeay withiiJ. the fitting vectors.
This was a good prerequisite for an additional principal eomponent transformation of the (45 - 1)
fitting values to 2 (x and y) per proeessing eolumn deseribing the region of analysis sufficiently. A
simple cluster analysis of this two-eomponent fitting vectors showed a still sufficient deseription of
the analyzing regions. Based on these results eaeh eolumn is transmitting its fitting values x and
y into a two-dimensional intereolumnar Kohonen Feature Map [2]. All columnar aetivations within
a foeus of attention (as mentioned above we implemented 16 X 16 proeessing eolumns per foeus)
contribute to activation distributions within the two-dimensional feature map. This map eould be
understood as an alphabet of all possible loeal grey-Ievel distributions within real-world seenes. In

result of internal eompetition and seleetion
proeesses within the Kohonen Map only one
cluster ean be aetivated in a particular region
ofthe map for a eertain time whereas the others
are suppressed until this cluster is deactiva-
ted. Using a topographieal eorreet reciproeal
projeetion from the map to the multicolumnar
system that columns eontributing to the just
winning cluster are aetivated sequentially (see
Fig. 7). The neural implementation of the ana-
lyzing and the Kohonen-based selection subsy-
stems is the subjeet of our present work.

4. Results and Conclusions

By using such a two-stage principal component analysis (PCA) it is possible to describe local grey
level segments of real-world seenes by only two fitting parameters (x, y) sufficiently. It became
possible to realize a topology preserving mapping within an intercolumnar feature map. An analyzing
region overlap of 75% per column leads to very compaet cluster-formed aetivations within the feature
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Figure 7: (left) Real-world input scene. White frames show different regions of attention, that are
proeessed by the distributed multicolumnar system. (right) Temporal developing of segmentation
deeisions within the regions of attention, based on the two-phase principal eomponent analysis and
the sequential seleetion in the Kohonen Feature Map. Similar regions of the attentional foeus are
seleeted and activated eoherently time after time.

map evoked by grey level distributions equal in quality inside the region of attention. The columnar
architecture proposed in this paper has been tested at different real-world scenes. A typical result
is illustrated in Fig. 7. It is interesting to establish that text ure crossings independent of their
direction are assigned here to one common cluster of mixed textures. In our furt her work this model
architecture will be implemented for the analysis of coloured real-world scenes, organized in special
colour difference spaces like that proposed in [1].
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