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ABSTRACT

We present a hypothesis and a neurobiologically motivated neural architecture for self�
organization of a behaviour�oriented� implicit �object�understanding� in the context of an
attention based scene analysis� The paper emphasizes the functional architecture for self�
organization of an �object�understanding� on the basis of internal anticipation� reshu�ing
and evaluation of the scanning process� Finally� by means of chromatic real�world scenes
we demonstrate the e�ect of an emerging �object�understanding� on the scanning process �
evident as drastical modi	cation of the spatio�temporal scanning behaviour�

�� Selective visual attention and
�Object�understanding�

Selective attention is a widely accepted mechanism
explaining the decomposition of a fovealized com�
plex visual scene into a sequence of reliably detec�
table input components� Numerous publications on
visual attention� for instance 
��
� 
�
 or 
�
� em�
phasize the purpose of visual attention to focus the
limited neural resources for recognition on speci	c
regions within this scene� Also� in our behaviour�
oriented approach to visual perception presented
here� this data�driven and knowledge controlled dis�
solution of the highly parallel visual input into mea�
ningful components� which can be reassembled in a
�exible way to complex perceptual structures� is of
fundamental importance� Especially the knowledge
controlled decomposition is a prerequisite for hand�
ling unknown scenes or objects� Therefore� of our
particular interest are cortical learning and control
principles� that facilitate a selective manipulation
of the scanning dynamics in the course of scene
analysis�
Most of the known approaches are oriented on mo�
deling the preattentive search or the biologically
motivated top�down control� but especially the pro�
blem of unsupervised on�line learning � as a prere�
quisite for a �exible control � is usually not conside�
red� Therefore� we present a neural architecture ab�
le to generate and verify hypotheses on the further
progress of the internal scanning process �Sensory
Controlled Internal Simulation� and to learn acti�
vely considering the conformity between the inter�
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Fig� �� Evolution of stable temporal relations
in attentional vision as expression of extracta�
ble stable intra�object relations� to be interpreted
as an emerging behaviour�oriented understanding
which components of the visual scene belong to�
gether� Based on this acquired implicit object�
understanding� the proposed neural architecture is
able to manipulate the data�driven scanning beha�
viour more and more to make it more e�ectively
and to accelerate the internal decision processes�

nally anticipated and the real data�driven scanning
process� In this context� anticipation means the
generation and testing of hypotheses about which
meaningful components �what� are to be expected
when and where in the visual 	eld � this is an in�
ternal simulation of a real scanning process� In our
understanding� this internal scanning of a fovealized
visual scene is expression of a behaviour similar to
the external eye�movements during saccadic scene
analysis�

In our concept� self�organization of an �object�
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understanding� means� that typical� reliably detec�
table striking visual components and their object�
speci	c spatial relations detected during preceding
scannings more frequently� gradually can be lear�
ned and coupled in the temporal domain �see Fi�
gure ��� This way� an active reshu�ing in time of
the scanning process is achieved� This is necessa�
ry to bring those input components into temporal
proximity� which make some sense together but are
not yet proper coded in the spatio�temporal data
stream� We postulate� that the evolution of tem�
poral proximity in scanning behaviour is to inter�
pret as a simple behaviour�oriented �understanding�
which components of a visual entity �object� belong
together� In our opinion� temporal proximity in at�
tentional processing could be a well�suited� possibly
the only criterion for an autonomous segmentation
and learning of unknown objects arranged in highly
structured visual scenes� In this sense� our propo�
sed model is to demonstrate the on�line evolution
of a characteristic scanning behaviour selecting the
relevant input components belonging to the same
object successively in time � without the need of a
preceding explicit training of all relevant objects in
a special learning mode�

�� Functional Architecture of the At�
tentional Model

Based on the known facts from neurophysiology�
neuroanatomy and psychophysics �for more details
see Figures � and ��� we developed a neurobio�
logically inspired model able to generate internal
attentional focus movements as signi	cant systems
behaviour� This model is to decompose a fovealized
retinal image into a sequence of reliably detectable
components ranked by its visual conspicuousness
and controlled by the already acquired knowledge�
To establish a consistent internal representation�
the attentional search has to be guided by the al�
ready acquired knowledge from the beginning� Ad�
ditionally� the data�driven search dynamics should
be reproducable as good as possible under varying
conditions �illumination� scene composition� etc���
Therefore� we introduced several robust adaptation
mechanisms in the �early�vision� colour processing
levels of our model �see 
��
��

Our neural architecture is composed of several in�
teracting subsystems which de	ne basic abilities
and information processing tasks a� to yield a mea�
sure of the conspicuity of locations within a com�
plex structured scene� b� to select the most salient
regions of the scene in a topographic organized Sa�
liency Map� c� to shift the focus of attention from
the current to the next striking location and d� to
anticipate the scanning dynamics and to control the
preattentive �ow of information taking into account
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Fig� �� Major visual processing pathways of the pri�
mate brain that have been considered in our model�
Information from the retino�geniculo�striate pa�
thway enters the visual cortex through area V� and
then proceeds through a hierarchy of visual areas
that can be subdivided into two major functional
pathways� The so�called �what��pathway leads
through V� and Inferotemporal Cortex �IT	 and
is mainly concerned with object�feature identi
ca�
tion� regardless of position or size� The �where��
pathway leads into the Posterior Parietal areas
�PP	� and seems to be concerned with the locations
and spatial relationships among objects� regardless
of their identity� As proposed in Olshausen ���
�
we consider the PP as a �saliency map� represen�
ting the locations of potential attentional targets
in the scene� The Pulvinar may play an import�
ant role in providing the control signals required
for dynamical routing and modulating the infor�
mation �ow from V� to IT� Referring back to ��
�
the Prefrontal Association Cortex �PFAC	 is con�
sidered as highest organizational level for learning�
planning and dynamical control of the temporal
explorative behaviour in our concept ��when��
system��

the already acquired knowledge about stable intra�
object relations�

Figure � shows a simpli	ed scheme of the model
architecture and the main processing levels� Loci
of spatio�temporal feature discontinuities �striking
regions within the fovealized scene� are detected in
parallel by a data�driven feature analysis� Based on
a dynamic routing of these located retinal informa�
tion� an attentional identi�cation process analyzes
the selected details of the scene� This routing pro�
cess from retina to cortex is called internal scan�
ning and is consistent with the �searchlight meta�
phor� proposed by Treisman 
��
 and Anderson

�
� For the routing� we implemented a simpli	ed
version of the Olshausen�Anderson model 
��
�
As Olshausens�s approach� our model belongs to
the so�called �input�gating� class of neural models
of attention� The key action of this attention me�
chanism is to route selectively �interesting� regions
of the visual scene onto higher �cortical� processing
levels�

The identi	cation of the actual focus of attention
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Fig� 	� Translation the relevant neurobiological
facts from Fig� � into a principal functional ar�
chitecture� that underlies our model in Fig� ��

��what�� and its spatial relations to the previous
focus ��where�� are stored in two separate memory
sections of our Feature Transition Memory ��where�
what� � separation�� The following Episodic Ob�
ject Memory integrates the attentional shifts ex�
tracted and predicted successfully by the Feature
Transition Memory and tries to establish and to
verify internal object hypotheses by claiming shifts
to scene locations speci	c for that objects �top�
down control�� The attentional and the data�driven
processing pathways feed their target demands into
the Attentional Control Map representing the who�
le scene in parallel� This map decides �when and
where� to shift the focus of attention� A detailed
discussion of the lower subsystems �see Fig� �� is
given in 
�
�
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Fig� �� Simpli
ed functional architecture of our at�
tentional model�

���� Saliency System �SS�

The reliable detection of striking regions within

Fig� 
� Computation of a Saliency Map of a typical
input scene �top left� as prerequisite both for the pre�
attentive and the attentive scanning process� For that
purpose� di�erences in local and global conspicuous
features are detected in distinct analyzing pathways�
Up to now pyramidal organized feature maps for local
contrasts in the intensity �bottom left� and for global
contrasts in a new� neurobiologically inspired colour
space �bottom right� �see �		
� have been implemented
in our Saliency System� By weighted superposition of
these activity maps an encoding of saliency or high
syntactic complexity �see text� in the Saliency Map
�top right� is realized� This superposition is a critical
point since no detailed experimental data are available
about this� Only estimated parameters providing plau�
sible simulation results can be proposed� The marked
scan�path �top left� shows the course of a data�driven
preattentive search and the sequence of selected most
striking input locations�

the input is a prerequisite for the evolution of an
�object�understanding� during explorative scanning
the scene� Therefore� we developed a Saliency Sy�
stem 
�
� that has been in�uenced essentially by
the neurophysiological concepts of primary visual
processing in a variety of maps for di�erent ele�
mentary features� such as texture� contrast� colour
or motion� 
�
� In our model� we utilize a very
simple measure of saliency based on �luminance�
texture�colour� pop�out �see Fig� ��� The goal of
the Saliency System is the reliable detection of dif�
ferences in local conspicuous features of the input in
separate analyzing pathways and their encoding in
an activity landscape within a Saliency Map� The
state of each of these maps therefore signals how
conspicuous a given location in the visual scene is�
By weighted superposition of the neural activity in
the di�erent feature maps� an encoding of high syn�
tactic complexity �many di�erent feature detectors
activated at the same place and the same time� into
a blurred activity distribution in the Saliency Map
is realized�



���� Attention Control Map �ACM�

The objective of this control map is to guide the
focus of attention to salient or meaningful regions
of the visual input� Therefore� the ACM carries out
a sequential search for the most striking locations
within the visual 	eld which have been encoded as
peaks within the activity landscape of the ACM�
When the input to the map has various activity
peaks because of several salient locations in the
visual scene� the network is to select not simply
the maximum one but successively the peaks with
the highest competition energy in the landscape�
This way� the Attention Control Map generates a
sequence of decisions controlling control the foci of
attention to route their contents to the Attentional
Focus Identi�er and the Feature Transition Memo�
ry� The ACM is modulated both bottom�up by the
Saliency System and top�down by spatio�temporal
expectations from the Feature Transition Memory�
This way� the map and the routed sensory data are
controlled by activated hypotheses �What items �
where in the visual �eld ��� so that the interesting
components can be reshu�ed in time according to
the state of internal hypothesis activation� The
higher subsystems communicating with ACM �see
Fig� �� register their activity maps only after an
appropriate position transformation into ACM and
vice versa� For that purpose� the absolute position
coding within the Attention Control Map is trans�
formed into a relative position coding of distance
and direction between subsequently following foci
of attention �more see 
�
��

���� Attentional Focus Identi�er �AFI�

Fig� �� Processing properties of the Attentional Focus
Identi�er demonstrated in context of a segmentation
problem of a typical chromatic scene from the gallery
�left�� Local input regions having similar local feature
sets �colors� texture� show very similar local classi��
cation results �right� because of the topographic orga�
nization of the Neurons within AFI� The local classi�
�cation results are shown as grey�values in a �
��

grid�

The Attentional Focus Identi�er �AFI� operates
on the focus of attention controlled by the At�
tentional Control Map� It determines the simila�
rity of the actual attentional focus feature set to

the feature sets extracted and learned in previous
scanning cycles� In this context� we implemented
and tested di�erent unsupervised learning neural
networks �Self�organizing Feature Maps �SOFM��
Neural Gas� FuzzyART�� Because of their topo�
logy preserving properties� the SOFM show very
robust and good reproducable classi	cation results
�see Fig� �� � a prerequisite for the extraction of
stable and speci	c intra�object relations during the
analysis of image sequences�
In the Validation Layer of the Target Focus Identi�
�er� a substructure of the AFI �see Fig� ��� the fea�
ture sets of the foci predicted by the Feature Tran�
sition Memory as �what�where�expectations� are ve�
ri	ed and evaluated returning reinforcement signals
to the system� This task is called speci�c hypothe�
sis veri�cation and is fundamental for the active
learning in the Feature Transition Memory�

��	� Feature Transition Memory �FTM�
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Fig� �� More detailed information �ow within the
�what��system of our model between the di�erent
neural subsystems for focus identi�cation and selecti�
on of the next shift in the scan process ��what�where��
expectation��

In the context of our behaviour�oriented approach
an object can be described as a temporal scanning
sequence of meaningful components belonging to�
gether� Therefore� FTM extracts and learns con�
tinuously stable intra�object transitions using the
statistics of the explorative behaviour during prece�
ding scanning processes� Preattentive inter�object
shifts can not be stabilized su�ciently in this me�
mory� since the objects in di�erent scenes usually
vary in their spatial arrangements �see Fig� ��� The
FTM learns stable feature�position relations bet�
ween subsequent foci of attention by linking positi�
on codings� that occur repeatedly in the Target Lo�
cation Map� with corresponding feature transitions
in the Feature Transition Map �FTM�� �see Fig� �
and ��� The feature transitions are learned by mo�



Fig� �� Some examples out of the gallery of ty�
pical �real�world� scenes composed of structured ob�
jects �not learned explicitly and therefore initially un�
known to the system� and varying complex background
situations for simulating the self�organization of
a behaviour�oriented implicit �object�understanding��
All objects show relatively stable intra�object relations
between salient or meaningful components� Since the
objects vary in the scenes with respect to translation�
illumination and view� we get unstable inter�object
and object�background relations�

difying the weights between the AFI and the FTM��
providing a measure for the stability of a move from
one region to the next expected region� An internal
Validation Layer �see Fig� �� continuously evaluates
the success of a �feature�position� prediction and
controls the learning process actively by giving re�
inforcement signals to the Feature Transition Map
and the Target Location Map� So� a reproducable
transition from one interesting region to another
certain region gains much reinforcement� whereas
unstable �what�where�relations� gain less reinforce�
ment�
The comparatively unspeci	c and very local hypo�
theses generated by this subsystem should rather
be considered as a preliminary stage for an implicit
object�understanding since more global temporal
relationships between the movements cannot be ex�
tracted and represented yet� This was the crucial
motivation for the development of a second atten�
tional level� the Episodic Object Memory�

��
� Episodic Object Memory �EOM�

This subsystem is the highest organizational level
of our architecture� where both internal anticipati�
on and dynamical control of the following scanning
process take place �see Fig� ��� While in the FTM
only unspeci	c hypotheses on the next most likely

Fig� �� Temporal evolution of an emergent object�
understanding to be seen as modi�cation of the scan�
ning behaviour of the same scene after presenting ���
��� 
�� �� and �� other scenes out of the gallery �from
top left to bottom right�� �top left� The marked shifting
of the focus of attention shows the course of the data�
driven search and the decomposition of the scene into
a sequence of striking local input components arranged
according to their local conspicuousness� The sequence
of the transitions is shown by superimposed black lines�
Without any internal knowledge about typical intra�
object relations ��what�where�when�� the system is not
able to establish suitable hypothesis about objects to
anticipate an e�ective scanning� In result� numerous
shifts occur between the penguin and the salient struc�
tures in background� The system is not able to select
the striking components of the same object successi�
vely in time� �bottom right� Result of the evolution
process � this �gure illustrates a completely knowledge
controlled scanning process starting from the penguin�
The white lines connect those foci of attention that
have been driven successfully by the EOM�FTM on the
base of the self�organized �what�where�when� object�
knowledge acquired during the last �� scenes�

move can be generated and veri	ed� the Episodic
Object Memory tries to take longer sequences of
successfully predicted focus transitions and to keep
them as candidates for whole objects or parts of
objects� For that purpose� the components of dif�
ferent scanning sequences are mapped into charac�
teristic memory traces within the columnar orga�
nized Episodic Object Memory� So� each sequence



of decisions on certain input components is trans�
ferred into a spatio�temporal representation within
the EOM� to be activated for a speci	c top�down
control� The Episodic Object Memory interacts re�
ciprocally with the Feature Transition Memory in
so�called �hypothesize�veri	cation�cycles� and tries
to control the course of the attentional search by
generating more global �what�where�expectations��
Via this feed�back the memory is able to search for
such input components which support best one of
the activated object�hypotheses� A more detailed
description of the neural architecture of the Episo�
dic Object Memory is presented in 
�
�

�� Simulation Results

Fig� �
� Another instructive example for a drastical
modi�cation in the scanning behaviour in result of the
evolution of an implicit �object�understanding� about
di�erent visual structures �penguins��

In Fig� � we present a gallery of typical scenes for
self�organization of a behaviour�oriented �object�
understanding� in attention based scene analysis�
In these scenes di�erent unknown objects �pengu�
ins� are arranged randomly in various locations�
Also numerous di�erent background situations are
used to achieve unstable inter�object relations� Du�
ring presenting this scene gallery� our model has
been able to extract and to learn stable intra�object
relations ��what�where�when�� autonomously and
to evolve an implicit object�understanding� Com�
pared with the original data�driven search dyna�
mics in Fig� � and �� �top left� a drastical modi�
	cation in the scanning behaviour can be obser�
ved in these 	gures� In conformity with Fig� ��
shifts between di�erent objects are reduced heavi�
ly� now all striking components of the same object
are selected successively in time� This much more
e�ective explorative behaviour is an expression of
that emerging implicit object�understanding� It is
the result of transforming reliably detectable object�
speci�c relations uncoupled with respect to time at
the beginning into more and more stable temporal
relations by active learning and temporal reshu�ing
the scanning process� A detailed description of the
model architecture� the several neural subsystems�
the activation dynamics within these subsystems

and the reinforcement based active learning mecha�
nisms is presented in 
�
�
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