in: Proc. WCNN’96, World Congress on Neural Networks 1996, San Diego, pp. 94-99,
Lawrence Erlbaum Associates, Inc. Publishers 1996

Sensory-based Robot Navigation using
Self-organizing Networks and Q-learning *

H.-M. Gross, V. Stephan, H.-J. Boehme

Technical University of Ilmenau, Department of Neuroinformatics
D-98684 TImenau (Thuringia), Germany
email: homi@informatik.tu-ilmenau.de

Abstract

We present a rapidly learning neural control architecture for sensory-based navigation of a mobile robot and
compare the learning dynamics and the navigation behavior in the context of different implemented network
approaches and learning schemes. Our control architecture is a combination of i) alternative vector quantiza-
tion techniques (Neural gas and Kohonen feature map) for optimal clustering and categorizing of continuous
input data spaces and ii) a neural implementation of the Q-learning, a very efficient reinforcement learning
method for the choice of the appropriate actions. Our simulation experiments in an artificial environment of
changeable geometrical complexity demonstrate that a robot, utilizing this control scheme, can learn the de-
sired behavior rapidly, irrespective of the chosen contradictory navigation tasks. Moreover, we can show that
only simultaneous learning schemes develop a kind of ‘functional categorizing’ of sensory situations. Only they
are capable of acquiring knowledge about the sensorial consequences of executed actions from the beginning.

1 Introduction

Reinforcement Learning (RL) refers to a class of learning tasks and algorithms in which the learning system
learns an associative mapping 7 from sensory situations X to appropriate motor actions A by maximizing
a scalar external or internal evaluation of its performance. A variety of parametric function approximation
methods has been employed so far to solve RL problems practically. These methods have the advantage of
being able to generalize beyond the training data and hence give reasonable performance also on unvisited
parts of the input space. Among these, neural methods are the most popular ones, especially methods based
on adaptive clustering the input space [2], [5]. The advantage of neural networks is to overcome the essential
problems: memory requirement for storing all possible situation-action utility values and generalization of
sensory situations in continuous input data spaces.

2 Q-learning Based Neural Control Architecture

The global architecture of our neural system is illustrated in Figure 1 (on the left). Two neural subsystems
are used: a Sensory Map (SM or sm in equations) that codes the sensory-based input state (situation) and a
Motor Map (MM or mm) that decides what action (movement) should be selected in this state. In our model,
the Sensory Map gets information from infrared distance sensors of the robot, constituting a n-dimensional
Input space (IS or is). Each neuron r of the Sensory Map has an associated reference vector wim-is ¢ R™,
The reference vectors can be regarded as positions of the corresponding units in input space. In comparison
with the real mobile robot Khepera [2] - our target platform for the following ‘real-world’” experiments - the
robot in our simulation possesses only three infrared sensors. They are disposed in a somewhat circular
fashion (to the left, to the front, to the right) and allow to measure distances only in a short range: 2 to 5
cm, similar to the real Khepera.

Both approaches of our Sensory Map are based on vector quantization techniques [4]. In the Kohonen feature
map [3] implemented first as Sensory Map, the neurons weights specify clusters that sample the input space
such that the point density function of the clusters tends to approximate the probability density function of
the input vectors. In addition, the weights are organized such that topologically close neurons are sensitive
to inputs that are physically similar. The main principle of the Neural gas algorithm [4], we implemented
as alternative method for vector quantization of the Input Space, is similar but neglects topological relations
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Fig. 1: (Left) The neural control architecture. (Right) Some examples of used typical “non-grid”-worlds
of variable geometrical complexity composed of walls, obstacles and dead-ends.

within the Sensory Map: For each input signal x only the k nearest centers in the input space are adapted
whereby k is decreasing from a large initial to a small final value.

The actions - in this application movements of the robot in its environment - are chosen among m possible
ones in the Motor Map. Despite the chosen contradictory navigation tasks (moving forward and straight
ahead as fast and as long as possible and avoiding obstacles) we implemented only four elementary move-
ments: turn left, turn right, go straight ahead, and go backward, each of them a fixed quantity. Which
action is chosen in a concrete situation, is the result of a selection process based on reinforcement learning
between the Motor Map and the Sensory Map. The philosophy of this learning process is very simple: from
a given sensory situation, if the chosen action caused pain, then the link between the sensory situation in the
Sensory Map and the chosen action in the Motor Map should be inhibited. If it caused pleasure, it should
be reinforced. Tf no pleasure and no pain happened, then it should slightly be reinforced (see equation 5 in
paragraph 3). With the appropriate learning rule for adaptation of the weight matrix W™™=*" connecting
the Memory Map with the Sensory Map (see Fig. 1 (left)) it is possible to avoid making movements that
cause pain when a similar situation has been met before. Based on the original Q-learning algorithm of [6],
we developed a modified neural implementation of this delayed reinforcement learning algorithm.

3 Learning and Control Algorithm

1. Tnitialize the weights W*™-'* between Sensory Map (SM) (Kohonen feature map or “neural gas”-network)
and the n—dimensional Input Space (IS) with random values and the weights W™ =" hetween Motor
Map (MM) and Sensory Map (SM) with fixed values.

2. Present the current sensory input x(¢) = (z1,...,7,)7 with x(t) € X

3. Select the best-matching neuron ' in the Sensory Map (SM) (neuron with the minimum Euclidean
distance between reference weight vector and input vector)
w2 () = x(0)]] = min|lw™ (1) — x(1)]] (1)
r
4. Compute the activation y7} (t) of the “neighbor neurons” in the Sensory Map: y*™(t) = f(x(t)). Goal
is to enable only a localized learning in the Sensory Map (Kohonen feature map) or in the Input Space
(Neural gas) according to two different “diffusion functions”. In this way, the situations ‘near’ x are
modified similarly while the values of states ‘far’ from x remain unchanged.

Ir =P

ks
Kohonen map: y,7 () = exp (— W) Neural gas: y.7 (t) = exp (— b(t)) (2)

ki are the result of a “neighborhood ranking” of the reference vectors w, for the actual input vector

x(t) in the input space, with w2/-i

= ko = 0; b(t) is a decreasing adaptation range.



5. Select a suitable action a; out of a finite set A = ay,as,q;,...,a, on the basis of the accumulated
weights (representing merits or Q-values for the exploration policy) between the neurons of the Motor
Map and the best-matching neuron r’ of the Sensory Map

e mazx selector: ;= Max) <j<m W7 (t)

e Controlled stochastic action selector: a popular stochastic action selector is based on the Boltz-
mann distribution,

nr= ()

P(a;) = exp (WW) g:lexp (%ﬁ;ﬂu)) (3)

where T is a nonnegative real parameter (temperature) that controls the stochasticity of the action
selector. When 7' — oo all actions have equal probabilities and, when T — 0 the stochastic policy
tends towards the greedy policy in the maz selector. To learn, T is started with a suitable large
value and is decreased to values near zero using an annealing rate. This way, exploration takes
place at the initial large T' values.

To choose the action, select a random value 7 in interval [0, 1]

i=1 : 0 < 7 < Plm)
i=2 : Pa) < 7 < P(ay)+ P(as)

a; = . . (4)
i=m : Pla)+...4+Plam—1) < 7 < 1

6. Execute the chosen action a; in the environment, this yields a new sensory situation x(¢ + 1).

7. Evaluate the chosen action with an internal or external reinforcement value R(), for instance in our
robotics scenario with R(¥) = R4 (t) + Rs(t)

—1.0, movement led to a collision (pain) 40.1, robot drove straight ahead

Ra(t) = { 0.0, if no collision occurred (pleasure) Bo(t) = { —0.8, robot drove backward
(5)

8. Determine the best-matching neuron r” in Sensory Map associated with the new sensory situation
x(t + 1) after executing a@; in x(¢) and select the corresponding Q-values w/?=*"(t).

ir?
9. Update the weights w*™=* of r' and its neighbors (topological neighbors in Kohonen map, k nearest
centers in input space in Neural gas) towards x(¢) controlled by activation y:7} (t) to make these neurons

more responsive to the last input

W) = () + Aug () ()
= wi" () () -y () (1) — wi()
Decrease learning rate 7(t) and adaptation range b(t). To prevent an overfitting, we modified the
NG-learning rule as follows: Update Neural gas-weights only if ||w2"* — x(¢)]| > dmin
10. Update the weights w™™=*" (Q-values) between the motor neurons and the neighborhood of »/
w41 = w™T () + aAwp () (7)

with  Awl™=m (1) =y () (R() + V() — wpm =" (1)) (8)

« - constant learning rate (in contrast to the original Q-learning algorithm) , V'(¢) - evaluation function

max wi="" (1) maximum learning rule - optimistic evaluation
1<i<m
: s . . C .
min w?]] t minimum learning rule - pessimistic evaluation
V=4 1B, grile v )
m
1/m Y wir-s"(t) : averaging learning rule
i=1

11. Switch between time levels: x(¢) = x(t +1), ' =7»"

12. Tf a stopping criterion (e.g., performance measure) is not fulfilled yet go to step 4.



4 Navigating the Robot: Experiments and Simulation Results
In order to illustrate the learning properties of the different versions of the control architecture, we investiga-
ted the robot’s navigation behavior in an artificial environment, where obstacles of varying complexity can be

introduced or removed. Figure 1 (right) illustrates some typical artificial worlds for simulation experiments.

a) General navigation behavior in unknown and known environment

Fig. 2: 1. Random trace of motion before learning in the first world. 2. Trace of a typical collision avoiding
exploration behavior in a known environment beyond learning. 3. & 4. Significant traces of motion in
unknown environments on the basis of the sensorimotor knowledge acquired only in the first world.

The aim of the first experiment is to demonstrate how our simulated robot learns to solve the conflict between
the two contradictory tasks: moving forward and straight ahead as fast and as long as possible and avoiding
obstacles by local navigation with the help of an internal reward or punishment (pain and pleasure). Figure 2
illustrates this learning and navigation behavior and shows that unforeseen abilities such as escaping from a
dead-end even emerge without explicit planning by the designer.

b) Clustering of input data space
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Fig. 3: (From left to right) 1. Adaptation of the two-dimensional Kohonen feature map and 3. of the
“Neural gas” network to the probability distribution of the sensory input data from distance sensors. The
positions of the reference vectors in R? input space are shown as projections onto a R? subspace after 1000
learning steps (x-direction: distance sensor to the left, y-direction: forward sensor; minimum distances lie
in the upper left corner). 2. frame shows the synaptic weights of the neurons in the Kohonen map, the 4.
frame of the Neural gas neurons after adaptation, coding all frequently experienced sensory situations. We
use three gray-filled small bars for visualization of the synaptic weights per neuron (black: small distance).
This corresponds to the arrangement of the distance sensors on the robot (see als Fig. 1).

Figure 3 illustrates the results of clustering the three-dimensional Input Space by the investigated neural
vector quantization methods, the Kohonen feature map and the Neural gas network. Although most of the
input data are localized near the boundaries of the Input Space (frequently experienced sensory situations),
some weights of the Kohonen neurons (first frame from left) are shifted gradually to the center of the Input
Space due to the neighborhood operations during SM-learning. This worsens the quality of the vector quan-
tization, the clustering error increases. In contrast, the Neural gas neurons float in the input space like gas
particles (third frame from left). Their weights approximate the probability density function of the input
signals better than the Kohonen weights, the clustering error is comparatively small (see also Fig. 4 (left)).



¢) Characteristic Q-learning results
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Fig. 4: (Left) Development of Q-learning in intervals of 5.000 steps each. The first 5.000 steps show
Neural gas based Q-learning, the second period shows learning on the basis of Kohonen mapping between
IS and SM. The number of collisions and the mean reinforcement value behave very similar, but in the
second, the Kohonen-period, the clustering error is larger and fluctuates stronger in contrast to the first
period. This is expression of a non-optimal clustering of the input space in Kohonen learning. (Right)
Results of sequential and simultaneous learning schemes for the Sensory and the Motor Map. First 5.000
steps show the development of the mean input space clustering error during sequential learning of SM-
and MM-weights with Kohonen based Sensory Mapping. Next 5.000 steps are expression of a simultaneous
SM- and MM-learning (with Kohonen map), the third period shows once more a sequential learning (but
now with a Neural gas mapping) and the last period a simultaneous learning (with NG). It is to seen
that simultaneous learning of SM and MM leads to better results (referring to the clustering error). This
results from the fact, that sensory situations, achieved by randomly selected movements during sequential
learning, are not adequately to those situations obtained by an immediately controlled navigation during
simultaneous learning. The peaks after 2.000 and 12.000 steps are expression of these learning problems.

Figure 4 (left) shows the time behavior of the sliding average of collisions, of the mean reinforcement value,
and of the mean squared clustering error ex = 1/100 S _, _ oo [x(k) — w37 (k)| in learning intervals of 5.000
steps each. In these experiments we investigated the influence of the different vector quantization techniques
to the quality of the Q-learning and to the navigation behavior. Figure 4 (right) illustrates the influence
of a phase segregation in organizing the Sensory Map and the Motor Map on the navigation behavior of
the robot. We can show, that only control architectures with simultaneous learning schemes develop a kind
of ‘functional categorizing’ of sensory situations since only they are suited to acquire knowledge about the
sensorial consequences of executed actions in the environment from the beginning. Sequential learning is
not able to categorize all relevant sensory situations in this action oriented sense. In this case, all presented
sensory input data result only from robot movements selected randomly since no sensorimotor knowledge
can be acquired during this first phase. Therefore numerous sensory situations are rather hypothetical than
of practical relevance for real navigation. Since these situations nevertheless are mapped onto the Sensory
Map we get only a data-driven categorizing of input space, but not a task-specific or functional one. This is
non-optimal for the desired navigation tasks.

Figure 5 (left) illustrates the learning dynamics and the time behavior of describing parameters (average col-
lisions, mean reinforcement and mean clustering error) dependent on the chosen method for action selection
(controlled stochastic selection (Boltzmann) and maximum). We studied the influence of the temperature
T on the stochasticity of the action selection. The larger the temperature 7' the longer the robot shows
poor navigation behavior (higher collision rate, decreased mean reinforcement values, increased clustering
error, slower learning). The maximum selection in any case chooses the action with the largest Q-value in
the current sensory situation. This leads to rapid learning and reliable obstacle avoiding behavior but no
exploration behavior evolve. Figure 5 (right) finally depicts the navigation behavior when different learning
rules (maximum, minimum, average) are chosen. The maximum rule leads to an optimistic navigation beha-
vior, the robot often maneuvers itself in situations not easy to solve. The minimum rule creates pessimistic
behavior. The robot takes no risks, it already searches for a way out at the smallest danger of collision. So
far, the minimum rule stands for a risk-free learning.
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Fig. 5: (Left) Development of Q-learning using different action selection methods: first three periods of
5.000 steps each use the “Boltzmann selection” with different temperatures (Ty = 0.5, Ty = 5.0, Ty = 10.0),
the fourth period is based on the maximum selection. (Right) Comparison of the learning behavior
in dependence of the implemented evaluation function in the Q-learning rule (maximum, averaging and
minimum for 5.000 steps each)

d) Compatibility between simulated robot and Khepera

Because of the intended compatibility of the control architecture for simulated and real robot navigation
we oriented on equivalent sensory signals and movements in the simulator and on the Khepera from the
beginning. So, we were able to learn much faster in our simulator and to load down the adapted weights
onto Khepera. Tt was unexpected that the real Khepera was able to navigate without problems in reality
only on the basis of knowledge acquired externally on the simulated robot.

5 Conclusion and Future Work

Experiments in learning a navigation behaviour on our simulated robot and on Khepera illustrate the ef-
ficiency of the different versions of neural control architectures in a situation-action space of considerable
size. Altogether, we achieved the best results with the Neural gas based control architecture. Although the
results obtained up to now are very promising, it is necessary to investigate the performance of the network
for more complex problems than the ones presented here. Another promising direction of research is the
combination of incremental neural networks, like the “Growing Neural Gas”-network of FRITZKE [1], with
neural reinforcement learning described in this paper. An advantage over the NG method of MARTINETZ is
the incremental character of the GNG-model which eliminates the need to pre-specify the network size and
which allows to implement never-ending learning also in the Sensory Map. This way, the whole SM- and
MM-learning process can be continued indefinitely or until an internal (robot-defined) performance criteri-
on i1s met. The first results of this incremental Q-learning network are very promising and we are further
investigating this currently.
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