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Abstract. This paper addresses the use of self–organizing maps for baseline construction in chromatograms. Unlike
local techniques, the problem is seen in terms of global optimization: a straight and smooth path including sampled
points with high significance for baseline membership is to be found. For their smoothing capabilities, and for repro-
ducing the probability density function of the input, self–organizing maps allow for balancing between these demands
accomplishing a kind of nonparametric weighted regression. The significances are determined from feature extraction
and feature fusion at a local scale. Applying global optimization, robustness is achieved in two ways: First, the result
will align to the position of the majority of significant points, and, second, a single false decision on the local level won‘t
be able to change the course of the baseline completely ensuring comparability of peak measurements in similar chro-
matograms. Comparability, however, is essential for routine analysis which is the intended field of application.

1 Motivation

1.1 Baseline Definition

Chromatographic separation is a widely used technique for
quantifying complex mixtures of chemical substances. The
chromatographic process decomposes the mixture into a
sequence of their individual components resulting in an
intensity vs. time profile – the chromatogram – as shown in
figure 1. Substances can be distinguished by the positions of
their corresponding peaks while the peak area indicates the
amount of a substance.

An ideal chromatogram consists of well–separated Gaus-
sian peaks. In reality, peak overlap, drifts of varying sign,
negative peaks, and ruptures of the kind shown in figure 2
can be found. For peak measurement, and, therefore, for
exact quantification, chromatograms have to be corrected
such that the profile of all detected substances is obtained.
A curve called baseline is searched for ignoring peak over-
lap, separating negative peaks from positive ones, and fol-
lowing drifts and ruptures.

For more details on chromatography, see e.g. [1].
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Fig. 1. Chromatogram and manually assigned baseline

1000 2000 3000 4000 5000

1.2 Other Approaches

Constraints on slope and drift Most automatic strategies
(e.g. [2]) identify the construction of a baseline which is
described as a mainly horizontal and straight curve, with
estimating slopes. Following this, baseline candidates are
those points having small or zero slope. Having in mind the
properties of real chromatograms, minima between overlap-
ping peaks and the tips of negative peaks will be marked
baseline members by mistake. This problem is usually han-
dled by introducing a threshold upon drift. Though includ-
ing additional data points for the decision, the strategy
remains local retaining the following shortcomings:

1. Problems in using binary decisions: Threshold criteria are
critical in two ways: First, including a data point into the
baseline in one chromatogram and excluding it in another
one generally results in significant differences in the course
of the constructed baselines such that peak measurements in
two similar chromatograms will possibly not be compara-
ble. Second, adaptation problems occur: With the threshold
being too low, the baseline cannot follow the chromato-
gram, otherwise, it runs into groups of overlapping peaks.

2. Adequacy of slope: Though baseline is a preferably hor-
izontal signal, at a local level, differing orientations are
allowed in principle. That is, even data points with higher
slope can be baseline members [3].

Spectral analysis If baseline was a low–frequent signal,
low–pass filtering should produce a baseline. Spectral anal-
ysis stresses the global aspect of a baseline, assuming low
and high frequency parts of the spectrum separated from
each other, which is not given here. Because an ideal peak
of Gaussian shape contains low frequencies, too, low–pass
filtering for extracting baseline will fail because even ideal
chromatograms will be deformed. With sharp peaks, the
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deformation is diminished. As in the case of ruptures, the
baseline can even contain high frequencies.

In conclusion, there are problems with both purely local and
unspecific global methods for baseline construction. The
proposed conception introduced in the next section will
combine local and global aspects of a baseline.

2 Conception

Local decisions on baseline membership without a close
interplay with the course of the whole chromatogram don‘t
seem to be reasonable. Considering this, a system of two
stages is proposed. In the first and local stage, each data
point is assigned a continuous value considered as its degree
of baseline membership or significance. The second and
global stage applies an optimization strategy for balancing
these significances and for producing the final curve, simul-
taneously.

Expecting a single feature not sufficient for a decision on
baseline membership, the local stage assigns to each of the
data points a vector of features and fuses them for obtaining
the significances. Globally, piecewise linear weighted
regression is performed by constrained topological map-
ping with the weights given by these significances.

When describing a baseline as a mainly straight signal con-
taining data points of high significance, self–organizing
maps seem to be appropriate because of their topology pre-
serving and smoothing capabilities as well as their ability to
reproduce the probability density function of the input. Fol-
lowing the nodes of a one–dimensional map, the sequence
of weights gives the knots of a piecewise linear path through
the data. If probability is identified with significance, the
network nodes shall shift their weights towards significant
points in input space.

Obviously, for the performance of the proposed strategy, the
choice of adequate features and their sensible fusion is
essential. Nevertheless, the global stage does not expect all
points actually belonging to baseline having significantly
higher membership values than non–baseline points.
Rather, besides significance, the position of an individual
sampled point in relation to the position of the other signif-
icant points is considered. The self–organizing map bal-
ances significances such that points having high
significances can be excluded from baseline, while points
with low significance can be included according to the posi-
tion of the majority of the significant data points; thus,
significances are corrected implicitly. Single inappropriate
significances should not have a large influence on the result.

The plan of the paper is as follows: Section 3 starts with
describing the global stage; the determination of the signifi-
cances is introduced in section 4. Results, problems, param-
eters as well as a comparison to smoothing splines is given
in section 5.

3 Baseline Construction

3.1 Basic Idea

The idea is to interpret the chromatogram as a superposition
of two (deterministic) signals: the baseline searched for and
a disturbing signal given by (positive and negative) peaks.

Thus, baseline construction can be considered as a problem
of approximating an unknown function of one variable (the
baseline course) by identifying the dependent
variable  and the independent variable  with intensity
and time, respectively (see figure 1).

Besides other model–free algorithms such as smoothing
splines (see e.g. [6]), self–organizing maps have been
proven for performing function approximation [7][8][9]. In
their ability to handle multi–valued functions, in automatic
knot positioning [7][8], as well as in numerical stability,
they are superior to these methods.

3.2 Constrained Topological Mapping

Generally, in order to approximate an unknown function of
 variables

(1)

in a given domain by a sequence of  vec-
tors , ,
input samples

will be given, and, therefore, each of the  nodes of the
self–organizing map carries a weight vector

.

Here,  represents the dependent variable, and

represents the independent variables

,

respectively.

For approximating single–valued functions of one or more
variables, topology preserving [10] in the space of the inde-
pendent variables is necessary that is not a priori given by
applying the original algorithm of Kohonen. To ensure
topology–preserving, the following constraints (constrained
topological mapping, [7]) have to be put on weights and
weight adaptation:

3. Initialization of the weights such that a topological order
in the space of independent variables is given.

2. During the learning process, the preservation of that top-
ological order is accomplished by searching for the best–
matching node in the space of independent variables only.
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Thus, weight adaptation for each of the  nodes in the map
will be by

1. Finding the best–matching node

(2)

4. Adapting all weights including the dependent variable

(t)  = (t–1) +∆
k

(t) (3)

∆
k

(t)  = η(t) h
cn

(t) (  – (t–1)) (4)

with being a monotonously decreasing neighbourhood
function and  a learning rate, both being gradually
shrunk. Clearly, the smoothness of the resulting curve
depends on the final width of .

Allowing the adaptation of all the weights, there is corre-
spondence to principal curves [11][12] minimizing the
summed squared error in both the dependent and the inde-
pendent variables.

3.3 Weighted Regression

Self–organizing maps reflect the probability distribution of
the input: nodes accumulate in areas of high input density.
If probability or input density is identified with significance,
the resulting curve is expected to have its course through the
most significant data points, that is, nodes should preferably
shift their weights towards these points. Referring to [12],
presenting input samples according to their probabilities, or
modulating the learning rate by these probabilities produces
qualitatively comparable results. With significances
given, (4) becomes

∆
k

(t)  = sk η(t) h
cn

(t) (  – (t–1)) (5)

that is, the degree of weight change and the significance
value are directly proportional.

4 Local Processing: Obtaining Significances

For the local stage, the following conceptions hold:

Handling the chromatogram as a 2D image This is the
basis of how an expert evaluates a chromatogram. There, a
baseline can be described as a preferably horizontal signal
touching data points at the lower border of the chromato-
gram, whereby, at a local level, differing orientations are
allowed in principle. Referring to an image, positional rela-
tions between sampled points can be considered. Besides
slope (see section 1), two features are computed: distance to
points at the lower data border, and local point density.

Feature fusion The features assigned to each point are
fused to a continuous value, its significance for baseline. In
order to avoid false decisions at this stage, threshold func-
tions leading to binary significances are not applied. Rather,
a rule describing the dependency of the significances from
the local features is given, which is handled in fuzzy logic
terms. First, the features are identified with linguistic varia-
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bles, then, appropriate membership functions for the corre-
sponding linguisticterms are derived. The parameters of the
membership functions and the type of inference is obtained
from a cost function upon a set of pre–classified data points
and their local features.

4.1 Local Features

Distance The idea is to introduce some blurring into the line
image: each point is dilated1 to an area called the structuring
element. The curve resulting from an erosion at the lower
border of this chromatogram area (using the same structur-
ing element) is employed as the reference for the following
distance measurement, where a feature
describing the vertical distance to its corresponding point on
that curve is assigned to each sampled point2.

With line images as the chromatogram, there is no need for
performing closing on the image itself, and, therefore, no
need for scaling. With rectangular structure elements, dila-
tation is equivalent to a ‘running minimum', and erosion to
a ‘running maximum‘, respectively. Both can be performed
with low computational effort.

Point Density If the chromatogram is seen as a scatterplot,
there is – in general – a higher point density at the baseline.
Because of a preferably horizontal baseline course, an ani-
sotropic Gaussian filter is applied with the width larger than
the height.

The obtained features  are shown in figure 2. Though the
computation of this feature needs a 2D representation of the
chromatogram, there is, again, low computational effort:
point density has to be determined only in certain positions
in the image (the positions the data points project to).

Here, scaling will be needed but adjusting a significant peak
to a given height/width ratio and applying the resulting scal-
ing factor to the whole chromatogram seems to be suffi-
cient. Scaling is considered a less critical factor because of

1. For an overview of image processing methods see e.g. [4].
2. All features are normalized to the feature extrema of the chroma-
togram the data point belongs to – features are relative.

Fig. 2. Closing by a rectangular structuring element. Both
negative peaks and baseline disturbance are included in the result.

mc 0 1,[ ]∈

md

in NEURAP'95, 8th Intern. Conference on Neural Networks and their Applications, March 20-23, 1996, Marseilles, France, 
pp. 26-32 , Presses de l'Imprimerir SEDIMM, Marseilles 



Constrained Topological Mapping for Baseline Construction 4/7

the continuous filter surface, i.e., small changes in the filter
size will produce small density changes

4.2 Feature Fusion

The significance of a sampled point for baseline should be
high, if there is a small slope , a small distance , and
a high point density, .

The feature analysis supporting this hypothesis is given in
figure 4 showing the histograms of the individual features
for baseline and non–baseline points, separately.

With principal forms given for the membership functions
for both the linguistic terms ‘high‘ and ‘small‘,

(6)

and

, (7)

Fig. 3. Local point density
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Fig. 4. Feature histograms (nonlinear transformation of ms and mc
into [0,1]). Most but not all of the baseline points meet the
conditions above. Values are divided intoh=10 classes with class

 collecting values from the interval [(i – 1)/h, i/h]; i = 1, …,h.
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the kind of feature fusion is obtained from the following
steps:

1. Optimizing the parameters (inflection point) and
(width) of both functions according to a cost function using
a training set of feature vectors  together
with their classification as a baseline or a non–baseline
member.

2. Specifying an operator for fusing the individual condi-
tions stated in the rule, again derived from a cost function.

Optimizing Membership Functions Optimization is
intended to sharpen the discrimination between baseline
and non–baseline points. For each of the linguistic termsM
∈ {M

s
, M

c
, M

d
} bound to the individual features, the param-

eter setp = (a, δ)T was determined by minimizing the cost
function

whereM = µ(m, p), M
k
 = µ(m

k
, p) (8)

upon a set ofK manually pre–classified data points from
various chromatograms of different forms. (A sampled
point is classified as a baseline member, if it fits a baseline
drawn by an expert.) Here,µ(m, p) is the membership func-
tion describingM, andM

k
 is the value ofµ applied to feature

m of data pointk, m
k
. Baseline membershipb

k
 is coded

binary (b
k
 = 1 indicating baseline members,b

k
 = 0, other-

wise). This function will penalize both non–baseline points
with high membership values and baseline points having
small ones. The optimization result is shown in figure 5.

Fusion The kind of feature fusion is again derived from (8),
with the argument  being replaced by an operator

 and  replaced by
, respectively. The value

 will be taken for the significance of point  for base-
line.
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Fig. 5. Histogram of fuzzified features. Discrimination has been
sharpened, but not all of the baseline points have got significantly
higher membership values than non–baseline points, yet.
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From the set of non–parametric average operators  (min-
imum, geometric mean, arithmetic mean, dual–of–geomet-
ric–mean, maximum) chosen to cope with inconsistencies
within the features, geometric mean was found to produce
minimal costs. See figure 6 for results.

5 Application

5.1 Network, Parameters, Results

Approximating a function of one variable, which is the case
in baseline construction, the self–organizing map consists
of a chain of nodes with  weights each. As the best
matching node will be computed in only one dimension,
again, there is no need for scaling.

The weights are initialized such that their projections into
the input space form a straight line connecting the first and
the last sampled point of the chromatogram. In the course of
weight adaptation, each input or sampled chromatogram
point excerts a force on this line with the strength of defor-
mation depending on the size of its significance.

As done in [7], shrinking the learning radius  of the neig-
hbourhood function

(9)

is bound to shrinking the learning rate

, (10)

by

. (11)

In (9),  and  denote the indices of the best matching and
an arbitrary node in the chain, respectively; in (10) and (11),

 and  give initial and final values of the learning rate,
 and  are the number and the maximal number of

learning steps.

The qualitative course obtained is mainly dependent on the
ratio .

Results are shown in figure 7.

Matching sampled points There is a conceptual problem
inherent in the regression technique used: Because of mini-
mizing the distance (in the dependent variable) between the
individual sampled points and the resulting curve, or, more
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Fig. 6. Histogram of significances sgmobtained from applying the
geometric mean operator.
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specifically, minimizing the sum of squared errors in con-
nection with a smoothness constraint (12), points of high
significance will not necessarily be included into the result-
ing curve – a qualitative course of a baseline is obtained.
However, ‘qualitative‘ does not really mean a limitation of
the method if one keeps in mind that the chromatogram
itself is subject to random disturbances.

The problem could be tackled by putting a threshold on the
distance of individual data points to the obtained curve and
by connecting only points with distances below threshold
for baseline construction. This threshold could be given
absolutely (but depending on the intensity range of the chro-
matogram), or – avoiding an additional parameter – by sta-
tistical methods.

Contraction Because of the vector quantisation properties
of self–organizing maps, a contraction of the weights
towards the weighted centre of gravity of the input data is
unavoidable. That contraction can be suppressed by exclud-
ing the first and the last network node from weight adapta-
tion.

5.2 Constrained Topological Mapping vs. Smoothing
Splines

A short comparison of the performance of smoothing spli-
nes and constrained topological maps is given emphasizing
the choice of constrained topological maps for baseline con-
struction.

Smoothing splines minimize a cost function  consisting
of two contrary conditions: The first term in (12) forces the
resulting curve to include all data points, while the second
is for obtaining a straight curve:

(12)

with  being the approximation of the sampled data point
 at position . Furthermore,  is the overall spline

function consisting of a sequence of polynomials valid in
succeeding intervals.

For weighted splines employing weights ,
becomes

(13)

With equal knot positions and number of nodes in the map,
the smoothing parameter  balancing the influence of both

 and , and the final learning radius of the con-
strained topological maps show comparable effects. That is,
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with a large learning radius or a small parameter , smooth-
ing predominates.

Caused by the iterated procedure, weight adaptation in self–
organizing maps demands extended computational effort.
This disadvantage is compensated for by numerical stabil-
ity: The computation of splines comes down to an inversion
of a system matrix. With small parameters , with large
data vectors, and with using weights, the invertability of this
matrix is not necessarily guaranteed but has to be deter-
mined on the data at hand, which, in turn, is time consum-
ing.

Last, using splines, there will be a problem in handling zero
weights which are allowed by feature fusion. There, data
points with zero weights have to be eliminated from the data
vector leading to the computation of non–equidistant spli-
nes resulting in increased computational effort, again. By
eliminating single data points, the probability for an over-
shooting of the resulting curve rises, such that additional
efforts have to be taken.

6 Discussion

In this approach, baseline construction in chromatograms
has been stated from a global point of view. A baseline was
defined as a straight path including data points of high sig-
nificance. Significances have been obtained locally by
extracting a couple of features and by fusing them. How-
ever, a clear decision on baseline membership by these
significances will not be obvious in general. Therefore, a
global stage is considered for producing the final curve cor-
recting the significances according to global demands,
implicitly.

To accomplish this, weighted nonparametric regression is
performed by constrained topological mapping. In the
present application, there are some important reasons for
preferring this method to ‘classical‘ ones, e.g. smoothing
splines.

Obviously, the result depends on the appropriateness of the
significances obtained in the local stage, and therefore, on
the adequacy and on the parameters of feature extraction.

Results could be further improved if the parameters of fea-
ture fusion would be optimized on a training set containing
data points of similar chromatogram forms – at the expense
of losing generalization.

The proposed strategy leads to robustness in the following
sense: Because the resulting curve aligns to the position of
the majority of points evaluated as significant, no single
false decision on the local level will be allowed to disturb
the curve or will be able to change the course of the baseline
completely. Considering global aspects, comparability of
peak measurements in similar chromatograms is obtained,
which is essential for routine analysis, the intended field of
application of the proposed strategy.

p

p
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Fig. 7. Result of the proposed algorithm in four chromatograms of different form and with different number of
sampled points. Parameters: , , , ,N 300= η0 1 0,= η1 0 05,= tmax 15K= S0 80 80 80 200, , ,( )=
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