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Abst rac t .  This paper examines the reason for a particular impairment 
of cognitive functioning in brain-damaged patients called visual neglect. 
To achieve this goal a Selective Attention Identification Model (SAIM) 
was developed which performs translation-invariant object recognition. 
SAIM uses a constraint satisfaction routine based on a continuous Hop- 
field network to map an object into a focus of attention. The simulation 
results show that SAIM is a successful model of visual attention and 
visual neglect. 

1 I n t r o d u c t i o n  
There is a growing impact  of neuropsychological findings on the understanding 
of the cognitive functioning of the brain. (e.g [1]). Neuropsychology is mainly 
concerned with cognitive deficits of bra in-damaged patients. In this article we 
focus on examine the reason for a part icular  impairment  called "visual neglect". 
The term "visual neglect" is used to refer to brain-damaged patients who fail to 
respond appropriately to stimuli presented on the side of space contralateral to 
their brain lesion. They fail to eat food on one side of an object, to cancel lines 
on one side of a sheet, to draw one half of an object  or to read words on one side 
of a text. Classically, neglect is related to lesions of the right parietal lobe [4]. 
In order to examine how visual neglect might emerge following damage to an 
object recognition system, we developed a model called SAIM (Selective Atten- 
tion Identification Model, Fig. 1), which aims at a translation-invariant object  
recognition [2] [5]. It  does this by mapping  from locations on a retina through to 
a smaller "attentional" window, the Focus of Attention (FOA), with activation 
within the FOA providing the input to an object recognition system. This ap- 
proach is similar to the model of [7], which focused on anatomical issues, whereas 
our work concentrates on psychological and neuropyschological modelling. 

2 T h e  N e t w o r k  
The architecture of SAIM is illustrated in Fig. 1. It  shows three different subnet- 
works: the contents network, the selection network and the knowledge network. 
These networks will be introduced in this section. 

2.1 C o n t e n t s  N e t w o r k  
The contents network contains "sigma-pi" units that  determine the activation 
values assigned to units in the FOA: 
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Fig. 1. Overview of SAIM. In order to achieve a translation-invariant object recogni- 
tion, SAIM maps the visual field through to a smaller FOA. This mapping is performed 
by two networks: The contents network contains "sigma-pi" units, that determine the 
activation values assigned to units in the FOA by combining multiplicatively activation 
in retinal units with that in units in the selection network. There is one unit in the 
contents network for every unit in the FOA. The selection network determines which 
retinal units have their activation values mapped through to the FOA (via the contents 
network). Which retinal units come to be mapped through to the FOA is determined 
by process of mutual constraint satisfaction between units in the selection network, 
and mutual constrain satisfaction is in turn achieved by the network embodying cer- 
tain constraints in its pattern of inter-connectivity. The knowledge network introduces 
knowledge about objects into SAIM and modulates the behaviour of the selection net- 
work in a top down way. 

Here, " F O A  Y i j  is the activation of units in the FOA, ~ V F  Ykl the activation of units 
in the visual field and Yikjl the activation of units in the selection network. N is 
the size of the visual field. Every unit in the visual field can be mapped through 
to any FOA unit, if the appropriate unit in the selection network is active. In 
this way, the contents network enables a translation-invariant representation of 
the contents of the visual field. 

2.2 S e l e c t i o n  N e t w o r k  

The selection network (Fig. 2) determines which retinal units have their activa- 
tion values mapped through to the FOA (via the contents network), as depicted 
in Fig. 1. Within the selection network are separate "control layers" of units, 
and the units in each control layer are activated by input from specific retinal 
locations and each control layer controls one unit in the contents network. Which 
retinal units come to be mapped through to the FOA is determined by process of 
constraint satisfaction between units in the selection network. The constraints 
aim at representing correctly the contents of the selected region in the visual 
field in the FOA. For this constraint satisfaction process the energy function 
approach by [3] is used, where minima in the energy function are introduced at 
a network state in which the constraints are satisfied. The constraints are: 
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Fig. 2. Contents network. The topology derived from the energy function has three 
main feature: global inhibition between and within control layers and excitatory con- 
nections on the diagonal. Two type of lesioning are considered: The "vertical" lesion 
only affected the left part of the selection network and restricted the effect of the lesion 
to the left part of the visual field. The "horizontal" lesion affected inputs into the left 
side of the FOA for inputs across the visual field. 

1. Only one unit in each control layer must be maximally active and all other 
units must have zero output  activity. If this were not the case, there would be 
an overlap between the contents of retinal units in the FOA. Therefore, the 
maximally active unit has to suppress all other units through a global inhibition 
in a winner takes all fashion. The energy function for a WTA behaviour can be 
defined as: 

E W T A ( y l )  = a.  ( E  Yi -- 1) 2 - E Yi " el (2) 
i i 

Where Ii is the input. This energy function is minimal, when all yi's are zero 
except one yi and corresponding Ii has the maximal value of all Iis (see [6]). 
This equation would force one unit of the control layer to be one; however there 
should be the possibility for attention not to be allocated to any location. Thus, 
a two state winner take all (WTA2) was introduced: 

(1) (3) 

i j  k,l k,l 

The multiplicational part of this equation introduces a second minimum into 
the energy function, where all units can stay zero and so attention is not directed 
to any location. This equation adds a threshold function to the WTA behaviour, 
whereby the output  activity of the units stay zero as long as the input activity 
is below a certain level. The input to the WTA2 will be introduced below. 

2. The same competition has to occur between corresponding columns of the 
control layers, because only one unit in each column must be maximally active, 
otherwise, the contents of one retinal unit is mapped more than one time onto 
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the FOA. This constraint leads to a WTA2 behaviour between control layers 
E (2) ( WTA2(Yik j l ) )"  

3. The selection network has to maintain the spatial relationships between 
retinal units in the FOA. Therefore, an appropriate energy function should have 
its minima, if units on the diagonal of the contents network are active: 

L L 

Eneiahbo~(yikjl)  = -- E E E g ~  "Yikjt "Yi+r,a+~j+~J+s (4) 
i , j , k , l  s=- -L  r - ~ - L  

The coefficient gsr introduces Gaussian weighting into the equation. In addi- 
tion, this implements a simple form of perceptual grouping determined by the 
proximity of the elements. 

4. For simplicity, the constraint for considering the visual input is imple- 
mented in the same way as the inputs in Eqn. 2. 

2.3 K n o w l e d g e  N e t w o r k  
In order to introduce knowledge into SAIM a simple template matching approach 
was used. Here, the match between templates and contents of the FOA was 
determined using a scalar product  as a similarity measure: 

M M 

i t e m p  E E  FOA*  m ~ = Yu "wu (5) 
I=1  j = l  

Where w~ ~'s are the templates and M is the size of the FOA. 
In the knowledge network the templates are formed from the connecting weights 
into template units ( y ~ m p ) .  A WTA is used to detect the best matching tem- 
plate. The same energy function as in Eqn. 2 was used with I tm e m p  a s  input. 

In order to get the complete energy function of SAIM which satisfies all con- 
straints, one simply sums the different energy functions: 

E / t emp  E ( 1 )  , ~ E ( 2 )  ~otat~Ym , Y i k j l )  ---- a l  " W T A 2 ~ Y i k j l )  "~ a2 " W T A 2 ( y i k j l )  + b2 " E i n p ~ t ( y i k j l )  (6)  
r~ /~ t emp  

+ bl • E n e i g h b o u r ( y i k j l )  + ba • ~knowledgekym , Y i k j l )  

The coefficients of the different energy functions weight the different constraints 
against each other. 

2.4 T o p o l o g y  and Lesion o f  Se lec t ion  Network  
The energy function introduced in the previous section defines minima at certain 
values of Yikjl and am~lternP, where they satisfy the constraints for a correct func- 
tioning of SAIM. To find these values a gradient descent was used as in [3]. This 
leads to the following differential equation system (for corresponding topology 
see Fig. 2): 

i n t r  -F V F td 
= " Iikjl)  + "Ykt X~kjZ --Xlkyl + d~ksz " ( - - I~ j t  + bl b2 + b3 • I~kjl (7) 

Where I~kjl provides global inhibition, which comes from the WTA2 behaviour. 

Ii+jl is derived from the neighbourhood preserving behaviour, yk VF comes from 

the visual field and Itdjt is the top-down modulation from the knowledge network. 
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In order to simulate visual neglect, an additional factor Zintr ~ik j l  is introduced in 
order to lesion the model. This type of lesioning is called intrinsic lesioning, 
because it only involves intrinsic inputs from within the selection network. We 
report  here effects of lesioning units in the selection network corresponding to 
inputs from the left visual field. [5] and [2] contain fuller reports  in which several 
other forms of lesioning were examined. 

3 R e s u l t s  

t=O.O t= 1 ~8 t=2,0 t=2.2 t--2.4 

t=1.8 t=4.8 t=5.2 t=5.6 t=6,0 

Fig. 3. Simulation of Posner Task. In the Posner Task [8] the reaction times of subjects 
vary as a function of whether a spatial precue matches the position of a subsequent 
target (with valid cues, relative to invalid cues where positions of the cue and the target 
do not match). This result is mimicked by SAIM. The time course of the FOA activity 
on the top shows the behaviour in the valid condition with a square as precue and 
a cross as target. The time course on the bottom shows the result in the non valid 
condition. Reaction times are faster with a valid cue. 

In general, SAIM selects an object from the visual field by the criteria of size and 
the focus of at tention falls at the centre of gravity of the object. This behaviour  
is mainly due to the interplay between the neighbourhood constraint and the 
WTA2 behaviour. 
The Posner Task [8] is a classic experiment associated with selective at tent ion 
and, its experimental  data  can be mimicked by SAIM (Fig. 3). In the Posner 
Task, patients with damage to the parietal lobe show particular problems in 
responding to invalid targets  presented on the side of space contralateral  to their 
lesion. This can be mimicked by SAIM as well [5]. The main reason in SAIM for 
these results is the storage of the activity in the dynamics of SAIM caused by 
the precue. In the lesioned version, the stored activity cannot be overcome by 
the activity of the target.  
Fig. 4 shows the performance of the model after lesioning. When the cross is 
in the far left (lesioned) side, only activation from the right-side of the cross 
is mapped  through to the FOA. Because of the lesion, the computed  centre 
of gravity of the cross is shifted and the shape is project into the left side of 
the FOA. This result suggests that  one of the reason for visual neglect is a 
distorted computat ion of the centre of gravity. This finding has to be tested in 
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Fig. 4. Visual Neglect patients tend to neglect left parts of objects if they appear on 
the left[4]. This can be mimicked by SAIM. The row on the top shows the contents of 
visual field and the row on the bottom shows the resulting contents of the FOA. The 
lesion in SAIM was "vertical" (see text). 

appropr ia te  experiments.  This neglect effect can be overcome by increasing the 
top down modulat ion of the knowledge network [2]. This result is well-known 
in neuropsychology, where additional knowledge about  objects can compensate 
perceptual  deficits [4]. 

4 C o n c l u s i o n  and O u t l o o k  
SAIM successfully simulates aspects of visual at tention and neglect in human 
subjects. There remains some problems in scaling up the model, because the 
number  of necessary units in the selection network increase quadratically with 
the number  of input units and units in the FOA. [7] suggested a dynamic routing 
circuit in order to overcome the problem. This might be worth integrating into 
our approach. 
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