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Abstract

This paper describes a 1M Hz CMOS implementa-
tion of a neural network used for auditory attention.
Signals are coded into binary spikes modelling the biol-
ogy. A uniform model of pulse propagating cell is used
in different performing stages. The signal processing is
distributed to neurons and synapses realized as analog
circusts.

1 Introduction

The concept of attention in an acoustical environment
is mainly concerned with the solution of the object-
background problem (Cocktail-Party Effect). Our
spike propagating network approaches this task by re-
assembling the functionality of the timing pathway in
vertebrates. Based on the evaluation of interaural time
delay of arrival we separate the sound sources in an
acoustical scene by their azimuthal location relative to
the 25 ¢cm microphone base. A knowledge guided se-
lection principle 14 is employed to extract the most
attractive sound source in terms of recent appearance
and correspondence with other sensoric systems of the
multi sensoric robot MILVA.

2 Functional Structure of the
Network

The functional structure of our approach consists of
four major stages. The first stage is marked in Fig.1 as
preprocessing module. It’s main parts are the model
of cochlear mechanics and the biological coding per-
formed in the inner hair cell model. To duplicate
cochlear mechanics, a sequence of 64 second order all
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Figure 1: Module Structure of the Acoustical Attention
Network
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pole gammatone filters [4] has been assigned to each
perception channel. The filter response is duplicating
the traveling wave behaviour of the inner ear basilar
membrane with its maximum elongation at a specific
position along this membrane. We achieved correct
preservation of inter-aural time delay and computing
time was cut downto 1/10 of real time at 32 kHz sam-
pling rate by parallel simulation on a 128 processor
CNAPS architecture.

The biological coding procedure of the basilar mem-
brane movements into specific timing of spikes at the
acoustical nerve is the functional concern of our in-
ner hair cells (IHC). Like most models [1] we assign
just one Inner Hair Cell (IHC) to each ofthe frequency
channels. Since the stereocilla (hairs) of an THC cause
alternating hyper- and depolarizing currents, the re-
sulting soma potential duplicates the movement of the
basilar membrane (see Fig.2 upper panel).

Comparing this potential with a threshold just above
the resting potential leads to the emission of a first
spike at a fixed point of the positive movement cy-
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Figure 2: Coding Procedure at a Inner Hair Cell

cle. The number of emitted spikes depends on the
amplitude of elongation and duration of the neurons
refractory period. The refractory period results from
chemical processes in the cell body which prevent the
neuron from firing immediately after a spike is emitted
and decreases its firing probability during a period of
30 to 100 ms. It has a major impact onthe behaviour of
the entire system and has been tuned for each THC sep-
arately. All of the acoustical information is now coded
into the timing of spikes and will be processedthis way
throughout the network.

The timing evaluation module is concerned with the
extraction of interaural time delays common to all fre-
quency components originating from a specific sound
source. It consists of a three layer structure. At
the input, delay lines, as in the biological Olivar nu-
clei, counter-propagate the spikes of corresponding fre-
quency channels from the left and the right ear through
36 neurons in line. Acting as coincidence detectors the
cells of the second layer will only fire if spikes at the
left and right frequency channel appear with a certain
delay, i.e. the component originates from a certain di-
rection. Since many channels are evoked by a sound
arriving from a certain direction, the time delay in-
formation is several times detected in the time-delay-
frequency plane of the second layer. Summing over the
frequency channels has been found in biology at the
Inferior Colliculus and was introduced in our model by
a non learning summation layer at the output of the
timing evaluation network. The resulting time delay
vector is not only cue for the localization of a sound
but also separates different sound sources by increased
activity at different locations of the output vector. A
more detailed description of the timing pathway model
is to be found in [6].

In order to realize an acoustical focus, one of the de-
tected sound sources has to win over the other activity
locations in the time-delay vector. The general ap-
proach to this problem is the well known Winner Take
All (WTA) network [3]. This will result in a winning
unit being the most intense in its firing (see Fig. 3).

Since the intensity of firing in the azimuthal space does

Figure 3: Two flute from different positions - Acousti-
cal Focus on the left flute

not mirror the significance of a sound to the robot, an
attentional signal is needed to offset the WTA layer
and support the sound source of interest. An "inter-
esting” sound is either a new appearing source or a
specific structured signal identified by the attentional
map. In order to realize the focus shift to new appear-
ing sounds an inhibitory connected feed back neuron is
assigned to each focus cell. It is suppressing long term
firing of the winning cell, i.e. the system ”gets used to”
the sound and returns to global attention. Therefore
a new appearing source will immediately take over the
focus of attention. Despite the time dependent sup-
pression method a supporting algorithm is applied to
increase the firing probability in case of a positive sig-
nal from the attentional system. By coupling the atten-



tional nodes to the focus layer, excitatory firing from
the attentional network will lift the soma potential of
the focus neurons just below threshold and therefore
increase their firing probability.

The attentional system contains one layer fully con-
nected dynamic memory as proposed by [7] and a five
layer attentional map. The dynamic memory uses Heb-
bian time resolved learning to store and recall spatio-
temporal spike pattern, typical for often repeated but
unappealing sounds like the robots motors. These pat-
tern if evoked at the memory input are repeated at the
output and subtracted from the original data.

The remaining information is mapped through a five
layer structure of frequency-time spike coincidence de-
tectors resulting in a positive or negative attentional
signal. It is evaluating the structure of a sound based
on the principles of Time-Delay networks. The third
information included in the attentional system is the
visual focus of attention provided from other systems
and introduced as offset to the focus cell of the desired
direction.

The sound selection as last stage of the system uses
time resolved de-inhibition for the exclusive transmis-
sion of spikes with the desired time delay between left
and right channel. The resulting information contains
the spike pattern of the selected sound in the focus of
attention.

3 Hardware Implementation

For the realization of several stages of this system we
have chosen a CMOS technology and one power supply
of 5V. Using the 1M H z clock rate results in increasing
the time resolution above the natural kH z range. The
implementation is based on uniform analog pulse prop-
agating cells. Combining these basic cell with modified
parameters and different connectivity the specific func-
tionality of different stages can be achieved. Opposite
the less accurate processing and stability problems the
advantage of such an analog system lies in the less phys-
ical layout area and thus allows the complete physical
implementation of every neuron and synapse.

The internal information processing of neurons as well
as the weight storage of synapses are locally dis-
tributed. The interconnections within the network are
achieved by choosing an array architecture. This en-
ables simple realization of a wide variety of network
topologies. Emphasizing on the evaluation of spike tim-
ing a fixed pulse width and height has been chosen. The
internal processing is based on two temporal deferred
clocks to prevent the system to a certain extent from
oscillations and to ensure time accuracy critical to the
function.

3.1 Neuron

The neuron cell model was designed with regard to full
custom design using library of neural elements. In-
cluding the functionality of an integrate and fire cell
similar to [1] and capable of variable functionality by
tuning its parameters the neuron circuit shown in Fig. 4
was developed. Each neuron receives spatially added
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Figure 4: Scheme of a Neuron

current pulses from affiliated synapses placed in the
column above. The analog amplitude of each synap-
tic current depends on its stored weight and covers the
range £15uA. The Soma Potential Capacitor Z re-
alises the spatio-temporal sum of all incoming current
pulses. The charge of Z accounts for the soma po-
tential of the cell. A discharging resistor in parallel
with the 5pF capacitor Z approximates the temporal
behaviour of postsynaptic potential as S-function with
fading duration of 30 us and resting potential of 0V.
The neural activity A is a result of the comparison be-
tween the soma potential at Z and the threshold. The
determination of activity depends only on the excita-
tory potential, so the full voltage range from 0V to Vg
is used for EPSP at Z. The processing controlled by
two clocks is divided into an increase of soma potential
during the Clock2 period and a transmission of activ-
ity A synchronous with Clockl. If the soma potential
exceeds the threshold, the rail-to-rail comparator gen-
erates a trigger point for the inner activity A;. Taking
over with Clockl in edge triggered dynamic memory
the activity A comes into being. The Short Time Mem-
ory (STM) is realized as an gate capacitance buffer.

To reproduce the lower firing probability immediately
after a spike is emmited, each activity is followed by



the refractory period. When A turns to high the After
Hyperpolarization (AHP) capacitor is charged simul-
taneously and the threshold is lifted to V4. The out-
put of the comparator returns to low and therefore the
storage of A is essential. The AHP potential returns
to resting potential in a two stage process combining a
defined absolute refractory period with an exponential
decrease during the relative period of 100 ps.

The History circuit H is included to model the firing
history of the neuron needed for local distributed Heb-
bian learning at the site of synapses. The functionality
is similar to the capacitor Z. Increasing the potential
by a constant A U during the activity pulse and after-
wards discharging with the time constant of 30 us. To
overcome the current switching the circuit performes
by switching voltages between resting potential (2.5V)
and OV to an op-amp integrator. Thus history poten-
tial ranges from 2.5V to maximum of 5V. The signal
is propagated as postsynaptic potential H in the row
along with the activity and as dendritic potential Hy
to all synapses of the dendritic tree (column).

3.2 Synapse
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Figure 5: Scheme of a Synapse

The Hebbian learning rule is widely accepted as
one of the biological plausible methods. Although
evidence for dendritic potential is still missing, its
learning behaviour duplicates best the local process
at the synapses. The principle first proposed by
Gerstner [7] considers the coincidence of sending and
receiving neuron potentials. The synaptic weight is
increasing only if the receiver spikes shortly after the
arrival of an excitatory pulse. Dependent on the task
other learning rules are conceivable, but requires fix
hardware implementation.

The synapse is modeled as a weighted transmission
of voltage pulses into current levels at the dendritic
tree. The synaptic weight is stored locally, as a
voltage across a 5 pF poly capacitance. Its full voltage
range is split into an exciting weight range (2.5V
to 5V) and into an inhibiting weight range (0V to
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Figure 6: Charge Pump Circuit

2.5V). The modular structure shown in Fig.5 results
from all these requirements. In Gilbert multiplier
both history potentials are joined with a linearity of
0.6% at 1V x 1V inputs. The disadvantage of its
mV dynamic range can be compensated by higher
comparator sensitivity in the following stage, the
charge pump. Based on the idea of [5] the main
part, a voltage-to-time converter, comnsists of two
comparators with symmetrical rising and falling slew
rates. Comparing the differential multiplier output
with a ramp reference proportional voltage pulses
are generated. The sign is considered by using two
switching lines (AND,OR) as shown in Fig.6. The
weight capacitor C,, is charged with a current switched
by these pulses. The capacitor change depends on the
histories multiplication as well as the learning rates
due to the variable current. Different learning rates
can be achieved by modification of the charge current
in this stage.

To generate a current output a single input rail-to-rail
V-I-converter (see Fig.7) with saturation in the power
supply region is used. The proposal of [8] have been
adapted with an inverting amp to attain high input
impedance and better linearity. At the output the
currentis sampled by activity A of sending neuron and
added to other currents in the column line.

The major problem arises with the bad long term
storage characteristic of the weight capacitor. A
refresh unit (see Fig.8) similar to the idea of [2] is
necessary for the discharge compensation. The voltage
across the weight capacitor is continous compared
iwth an increasing ramp reference. When the reference
exceeds the capacitor voltage, the weight is carried
along the reference until the next reset pulse. Using
a 1MHz reset clock and 256 us refresh cycle the
achieved accuracy fulfils the 8 bit level (20mV).
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Figure 7: Single Input V-I-converter

4 Conclusion

To make possible variety of implemented neural net-
works for different applications and still using the per-
formance of full custom design we are simultaneously
working on design automation. Embedded in the CA-
DENCE environment the tool kit allows reduction of
design expense in the layout generation domain. Based
on a library of neural elements it considers different
network connections and sizes including partitioned
layout for multi chip modules.

An example of the synapse circuit has been imple-
mented in a 2,4um CMOS technology on a 0.5 mm?
chip area. Due to decreasing the neural connecting
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Figure 8: Weight Refresh

complexity at some stages we expect averaged 20 im-
plemented neurons in upcomming 0.5 um technologie
on a single chip of 50 mm?2.

This work is a result of the collaboration of depart-

Figure 9: Layout of the Implemented Synapse

ments of Neural Computer Science and Microelectronic
Circuits & Systems at the TU Ilmenau and was sup-
ported by the DFG.
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