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Abstract

Extensions of the ALVINN-Architecture are introduced for
a KHEPERA-miniature robot to navigate visually robust
in a labyrinth. The reimplemantation of the ALVINN-
approach demonstrates, that also in indoor-environments a
complex visual robot navigation is achievable using a di-
rect input-output-mapping with a multilayer perceptron net-
work, which is trained by expert-cloning. With the exten-
sions it succeeds to overcome the restrictions of the small vi-
sual field of the camera by completing the input vector with
history-components, intrduction of the velocity dimension
and evaluation of the network’s output by a dynamic neural
field. This creates the prerequisites to take turns which are
no longer visible in the actual image and so make use of
several alternatives of actions (f.e. at crossings).

1. Introduction and scenario

Topic of the project GESTIK is to develop a neurally
based control architecture for a mobile robot to navigate vi-
sually while maintaining “eye contact” with an operator to
follow his (gesture based) orders [1]. Static and dynamic
obstacles on the route are to be avoided suitably. For the
intended performance it is significant, that only local be-
havior is feasible, because the real environment never ap-
pears unambiguously with respect to the global position in
the operating field (no unambiguous landmarks). This is no
restriction in context of the project’s topics, because through
cooperation of the operator and the vehicle the desired per-
formance is achievable completely and unequivocally. This
interactivity is achieved by a heterarchic structure of agents
to represent the complete situation-specific action-space ina
separable manner. These several agents are physically iden-
tic as described in detail in this paper, but trained with dif-
ferent intentions [2].

Target system is the robot MILVA (http://

*These studies are part of the project GESTIK supported by the
Thuringian Department of Science, Research and Culture.

cortex.informatik.tu-ilmenau.de/technik.
html), which is equipped with a triocular vision system
and on-board-PC. Presently the miniature robot KHEPE-
RA (round, =55 mm; central color camera) serves as
experimental platform for the investigations introduced
here, whose practical application proceeds remarkably
unproblematic and can substitute simulations well.

The idea of ALVINN [3] is to use direct feed forward
processing of a camera-picture to a steering angle by a
two layer multilayer perceptron (MLP) with a small num-
ber of hidden units (about 4) to steer a street-vehicle on
different kinds of roads. Therefore the images of a car-
mounted camera were recorded together with the corre-
sponding steering manipulations of the driver on extended
trips to teach the network this relation by backpropagation
(’expert-cloning”). The analogous value of the appropriate
steering angle was presented by the activations of a whole
vector of output neurons in topological coding instead of
coding by a single neuron.

2. Realization of the ALVINN-approach on
KHEPERA

For the control architecture of KHEPERA a two-layer-
perceptron in exclusive feed-forward structure is used as
network too. Preprocessed and subsampled images form
the input vector of the network, read from the KHEPERA~
PAL-camera with a framegrabber.

Due to the wooden walls on a light blue ground, the
labyrinth appears within sharp blue-yellow contrast. There-
fore it is suggested to perform a conversion of the original
picture into the blue-yellow-activations of the physiological
color space according to [4]. A suitable sigmoid function
spreads the values to a range (—1...1). (fig. 1) The
network has to map the situation-adequate steering angle
in topological coding. Because KHEPERA with its two
driven wheels has no explicit control parameter “steering
angle”, it is to be calculated from the speed difference
of the two wheels (LS=LeftSpeed,RS=RightSpeed) by
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Figure 1. The steps of image preprocessing for
KHEPERA: the original picture (left), the blue-
yellow-activations (2nd f. left), after threefold sub-
sampling (2nd f. right), and dynamic adaptation

(right).

normalization to the total velocity. The following equation
is applied to map this angle onto a m-dimensional output
vector representing a Gaussian of M Neurons width (fig.
2):
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Figure 2. One-dimensional topologic coding of the
steering angle: Graph for m=31, M=10, RS=5x LS

The multilayer perceptron is trained with a database con-
taining 2500 samples of input - output patterns, recorded
from the exemplar behavior of a human trainer (“expert”)
and preprocessed as described above. It has to be pointed
out that the navigation while recording proceeds exclu-
sively based on the video-images of KHEPERA’s on-
board-camera to guarantee consistent data sources in train-
ing and recall. Therefore the expert steers the robot using a
video head-set.

During the network-teaching the whole database is re-
peatedly presented in mixed order. In this way it is pos-
sible to use direct learning instead of batch learning with-
out disadvantages in respect to both robustness and learning
speed. As number of hidden units, 6 proved to be suitable.
Finally, the proper quantity of hidden units should be deter-
mined empirically. An unnecessarily high number can only
be identified by the development of quasi identical weight
patterns in the weight diagram of the network.

As a useful number of cycles to repeat the training set,
only a range between 10 and 50 can be specified. Although
a considerable minimization of the error, integrated across
the training set, becomes obvious in this range, there is
no crucial improvement of the subjective behavior with ex-
tended training. Because of the considerable expenditure to

create training examples, the data base for validation is lim-
ited and therefore not able to completely avoid overfitting.
It should be noted here that no benchmark was developed
yet to compare different training sets, teaching cycles, net-
work configurations and so on. Perspectively, a test must
be realized, which is based on recording the real behavior
combined with an evaluation of yet to be defined criteria.
Figures 3 and 6 are first results of these procedures, visual-
izing a tracking of a colored label on top of the KHEPERA.

To use the network, firstly the centre of gravity of the
output activation was calculated to project it to a relation
of wheel speeds, which corresponds to the maximum of the
Gaussian at this position. This approach is simplified as
compared to the methods of [3] (best correlating Gaussian)
and [5] (only a window for the neighbourhood of maximum)
but yields sufficient results. As a constant basic speed, a
usual value from the teaching phase was chosen. KHEPE-
RA masters all good-natured situations, even in an unknown
labyrinth, largely free of collisions and shows the expected
behavior. It lines up centrally in alleys; if only one wall is
visible, it attempts to follow the wall with a lateral distance
typical for alley passages (fig. 3). It is necessary to keep
parts of the floor in the visible range of the camera perma-
nently. While doing this, the restricted area of view appears
very limiting (fig. 4).

Figure 3. The achievable behavior of KHEPERA
with the original ALVINN-approach (circle=KHEPE-
RA-base).

Itis possible, that the vehicle crashes into obstacles which
it does not see at this moment. That’s why the expert uses
special behavior while creating the training set. Typical for
that is to go straight ahead as far as possible and to turn
away only if the way in front of the vehicle is blocked. With
the necessity to keep a part of the floor always in the im-
age, the radius must not fall bellow 10 cm (outer wheel) in
bending alleys. With that there is no exit from blind alleys
closer than 20 cm. It turns out, that also the vertically lim-
ited visible field has a negative effect because the estimation



Figure 4. The restricted visible field of the KHE-
PERA-camera limits considerably the achievable
behavior (left), comparable to conditions for the
MILVA-robot (right).

of distances to obstacles is based on recognition of the po-
sition on the floor.

3. Extensionsof the ALVINN-approach
3.1. Path window

Because the same problems will appear for the MILVA-
robot with its traktix from 3-wheel-kinematics in a com-
parable manner (fig. 4), structures are to be developed al-
ready in the KHEPERA-scenario to create adequate behav-
ior trough a sensomotory projection. Since the previous im-
ages of the path history have equal importance for the navi-
gation behavior, a path window was introduced. This seems
more appropriate compared with the use of recurrent net-
works or dynamic neurons, respectively (fig. 5). This struc-
ture is a simplified application of the ”Sliding-Window"-
technique in TDNN according to [6]. In this path window,
previous input vectors (images) are presented in addition to
the actual one. For such an expansion of the network in-
put layer, it is important to use a constant distance for the
images presented simultaneously. To realize this also with
variable speed, the input vectors are saved up to a deter-
mined horizon together with the step distance belonging to
them. From this buffer distance-equalized input vectors are
chosen. To teach the network with such an input history,
a database of training sets was created, which consists of a
continuous sequence of training patterns. In this database, a
training sample at any position can be pointed to by reading
of a section according to the dimension of the path window.

It was interesting to observe that even a human expert
does not succeed in turning around a corner with the current
picture only. The action-reaction-feedback from target of
motion - KHEPERA-movement — change of the picture is
so mediate, that only extended practice leads to some rou-
tine. That’s why it was necessary to complete the senses of

Figure 5. Whereas recurrent network structures
represent past information comparable to PT1-
behavior (left) the relevance of picture information
keeps on constant high level up to a path cor-
responding to the vehicle’s dimension and com-
pletely collapses after that (right).

the driver by 2 ”senses of touch” in addition to the visual
field. The distance value of the 2 outer lateral IR sensors
of KHEPERA are passed on to the driver by headphones
as stereo noise. But this procedure contains a latent dan-
ger; that the behavior of the teacher is dominated too much
by this additional, for the network not usable modality (IR-
sensors) leading to inconsistences between training and net-
work recall.

Application of this extension shows the desired success
not only in lateral positioning to obstacles or changing al-
ley widths, even those which are no longer visible in the
actual image (Figure 6), but also in reduction of ambiguous
situations. Now decisions how to move are possible also in
positions close to a wall, based on the information in the
path history (Figure 7). Moreover, now there are no prob-
lems to loose the “eye”-contact to the floor temporarily in
sharp curves. As a number of input vectors in the path win-
dow, 3 proved suitable in a distance of about 3 cm (conforms
to half KHEPERA-diameter). More history layers increase
the number of adaptive weights in the network too much,
higher distance of the vectors causes too much variety to be
retraced by the network in a sensomotorical coincidence.

Generally the introduction of the path window is a leap
in quality compared to the original architecture because
the sensory basis is created to make use of alternatives of
actions (of driving forward) possible, f.e. driving along
turns which are not longer visible in the actual image. So
it becomes feasible to create several training sets based on
different action incentives to achieve agents with different
intentions of behavior.

3.2. Dimension of speed

Simultaneously to the extensions described above, a sec-
ond dimension was integrated in the action space to repre-
sent the vehicle speed according to behavior of the expert.
Therefore, the previous m-dimensional output vector was
converted to a m x n—dimensional one to code steering angle
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Figure 6. The recording of the vehicle-behavior
near a lateral obstacle in the labyrinth shows the
achieved progresses using the path window: The
original network is forced to evade very early (A)
and reverts to the alley centre prematurely (B)
(left). With the additional information from the path
window both evading (A) and returning (B) take
place with the expected distance to the obstacle

(right).

and speed in a two-dimensional (about M x N dimensioned)
Gaussian (eq. 3, fig. 8).
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The afferent (in each case top) and efferent (in each case
bottom) weights of 6 hidden units of a trained network with
2-dimensional output coding without path window are de-
picted in the weight diagram fig. 9. In the weight patterns
of the input layer the structure of the input data appears
clearly, the output layer shows strongly excitatory (light)
and inhibitory (dark) weights in the typical regions of the
action space (stop at v=0,0=0: in the action map central at
bottom).

3.3. Focus of activation

From a methodological point of view the two-dimen-
sional representation offers crucial advantages compared to
a conceivable double one-dimensional mapping of steer-
ing angle and speed, because multiple action suggestions
are separ able across the activity distribution of output neu-
rons. With the resulting output activation, a dynamic neural
field according to [7] and [8] can be appropriately stimu-
lated. Hence, the desired effects can be achieved, which are
included in a intelligent” interpretation of the netework’s
output:

1. Mechanisms of selection of maxima focus on the re-
gion of highest intensity. For this the region has to

10

v

Figure 7. Path window with 3 input vectors (3 x
10 image lines): While the actual vector (bottom)
represents an ambiguous situation, a turn to the
right is recognizable with the additional informa-
tion from the vectors past.

Figure 8. Two-dimensional topologic action cod-
ing for a slow turn right in a 10 x 5 dimensioned
Gaussian at a 25 x 15-dimensional output vector
(as mesh-plot).

exceed its neighborhood both in spatial expansion and
activation. The activation of all non-supported regions
is inhibited.

2. After selection of a local maximum it will be focused
on, even if its activity falls below that of others, up to a
certain limit. Such cases appear when the actual situa-
tion, represented in the input vector, was not or hardly
contained in the training set of the network, caused by
noise effects, dynamic obstacles or momentary loss of
the ground in the actual view. This hysteresis quality
leads to a kind of perseverance avoiding the loss of fo-
cus during short-term crashes of local activity.

3. Even during a movement of the local activation its cen-
tre will still be matched. With this, the never station-
ary "blobs” on the output layer can be tracked perma-
nently.

The neural field consists of a two-dimensional layer of first
order dynamic neurons (time constant 1), whose activities



Figure 9. The weight diagram of a 200-6-375—
network, see text for explanation.

are changed according to the following differential equa-
tion:
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The change of the state of a neuron at position i in the as-
sembly is a function of its previous state u(T,t), the global
inhibition h < 0(Hp) , the sum of all neighbouring neurons
weighted by the distance function w(i — T’), the threshold
function S( ) and last but not least the input pattern x(i,t).
For simulation the differential equation is suitably approxi-
mated with the one step technique according to EULER and
CAUCHY using step width AT in the following time discrete
equation for the state activities:
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Equation 6 defines the lateral distance function w(-) with
local excitatory and global inhibitory effect such that only
one compact cluster can succeed. As threshold functions
serves a suitable sigmoid function (eg. 7).
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Figure 10. The activation of the output layer of the
net (each on top) and the neural field operating
on it: a conflict situation on the left and a non-
ambiguous situation on the right.

Figure 10 demonstrates the selective effect of the neural
dynamics. But the static image can hardly convey the real
behavior of this neural layer, as especially its time series of
activation is symptomatic for the global behavior. On the
basis of the activation of the dynamic neural field, a drive
command could be generated without mistakes by determi-
nation of the centre of gravity. However, the best results
were achieved by gating a local region of the original output
activation through suppressing all other neurons, whose cor-
responding units in the dynamic layer were inhibited. Be-
cause of the high resolution in the output coding the position
of the maximum activation in this gated window can be used
directly with suitable low pass filtering afterwards.

4. Outlook

The used dynamic neural field will gain further signifi-
cance for the fusion of intentionally different taught agents
to represent the complete situation-conform repertoire of
actions (see section 1.). The fusion proceeds in that their
gated output activations are overlied appropriately (maxi-
mal activation in easiest case) to stimulate a similar neural
layer to focus in a energetic centre for selecting the finally
executed action. A decomposed multi-agent-structure, as
proposed here, offers the opportunity of a local nonspecific
modulation of the several agents by a hierarchically higher



decision level to produce an interactive complete architec-
ture, as draft in fig. 11:

1. The individual agents project the visual data stream
(distance-normalized vector sequence) onto a sit-
uation-adequate action (suggested actions) coded
topologically in two-dimensional maps. They receive
their intentional orientation by training with different
training sets (aimed at "turning left” / "going straight
ahead” / "turning right”) created by an expert (human
pretraining).

2. The action suggestions of the agents operating on
identical data streams are superposed (+) and can be
biased by instructions of the operators intentionally
(human manipulation), so with regard to the agents
(desirable intention), as well as with regard to an ac-
tion (desirable action). Because of the purely mod-
ulating manipulation it is certain, that the vehicle will
act according to the external instructions, but only with
its own repertoire of behavior in conformance to the
actual situation.

3. For further adaption of the individual agents the finally
selected (action selection) and executed action is re-
turned to the agents to assign them the achieved suc-
cess. The basis for evaluation is the sensory experi-
ence of collisions, which leads as internal reinforce-
ment the entire system to select another (better) action
in the next comparable situation. The module human
evaluation represents an evaluation by an expert with
external reinforcement.
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Figure 11. Draft of a total architecture with activ
learning, intentional agents.

As mentioned above, an adaptive design of the several
agents should be achieved through completing the MLP-
networks with an active learning structure, which in ad-
dition to the situation-specific action learns an estimation

of the network’s competence in this situation. This struc-
ture is comparable to the AHC (adaptive heuristic critic) —
approach according to [9]: the additional network functions
as adaptive critic element (ACE) and learns the value func-
tion of the fixed policy of the MLP-network. In contrast to
the MLP working as function approximator, for this ACE it
is necessary, that its architecture is not based on a statisti-
cal learning of the input-output-mapping, but able to grasp
critical exceptions in one step (one-shot-learning) (fig. 12).
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Figure 12. The functional diagram of a complete
agent in AHC-architecture.

As noted, the actions available for the execution may dif-
fer from those suggested by an individual agent. Therefore,
a value of responsiblity must be computed by comparison
of suggested and finally executed action. The ACE learns
a prediction of the reward (0...1) in the actual situation,
which is used to modulate the output activation of the MLP-
network.
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