
A Simple Hardware Solution for Fast Computation of Shortest Paths

R. Möller
University of Tübingen, Dept. Computer Architecture

Köstlinstr. 6, D-72074 Tübingen, Germany
e-mail: moeller@informatik.uni-tuebingen.de

P. Paschke
Technical University of Ilmenau, Dept. Neuroinformatics

Gustav-Kirchhoff-Str. 2, D-98684 Ilmenau, Germany
e-mail: Peter.Paschke@Informatik.TU-Ilmenau.DE

Keywords: shortest paths, parallel hardware, graph-searching

ABSTRACT

The computation of shortest paths can be accomplished by graph-searching algorithms. These algo-
rithms are based on a time-consuming computation of potential vectors. A new approach to paral-
lelization is presented, which enormously reduces the complexity of an implementation in a digital
hardware. It is based on the transformation of costs into time-delays.

INTRODUCTION

The computation of shortest paths in maps of the environment is a basic task of robotics. The two
main approaches to this problem are graph-searching algorithms [1, 7] and artificial potential fields
[5, 6]. Artificial potential fields suffer from the existence of undesired local minima, whereas graph-
searching algorithms do not have that problem but are often considered time-consuming [3]. At-
tempts have been made to accelerate graph-searching algorithms using a fine-grained, highly parallel
hardware with locally interconnected nodes [4]; they are based on a direct mapping of the algorithm
to the hardware. This paper presents another approach to a parallel hardware that starts from a re-
formulation of the graph-searching algorithms where distances are transformed into time. With this
approach, the hardware effort and the time for computation are enormously reduced.

BASIC GRAPH-SEARCHING ALGORITHMS

Graph Model

The environment of the robot is encoded as a graph: nodes represent positions in space and edges are
assigned weights wij encoding the costs for the transition from node i to node j. In the following,
costs will be restricted to geometrical distances. The algorithms discussed below are ‘all-shortest-
path’ algorithms, computing the paths with minimal sum of costs from all nodes to a reference node.
In the first run, a potential vector p � �p�� � � � � pn� is computed, where pi is the shortest distance from
node i to the reference node. The potential vector is used for path tracking in the second run.

Computation of Potential Vectors

Many ‘all-shortest-path’ algorithms are variations of DIJKSTRAs algorithm [1]: Initially, all nodes
are uncoloured; the potentials are pk � �� �k� k �� z and pz � �, with z being the reference node.

Sabine
Textfeld
Proc. IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, Berlin, vol. 1, pp. 339-344, 1997



Initially, index i is set to z.

1. Colour node i.

2. For each uncoloured node j receiving an edge from i, recompute its potential by

pj �� minfpj� pi � wijg (1)

3. From the uncoloured nodes with finite potential select the node i with minimal potential.

4. If there is no such node, stop, otherwise proceed with 1.

For the comparision with the performance of the hardware an improved version of the above
method is used. It benefits from a discretization of the weights: the minimum search in step 3 is
avoided by a partition into sets of nodes with equal potential. In addition, step 4 is modified, so that
the computation is finished at the node representing the initial position. Both the hardware and this
improved algorithm compute identical potential vectors, shown in figure 1 (center) for an example
from mobile robotics with a grid-like graph (left).

Figure 1: Left: Example map (256�256 nodes). Black: obstacles of the original map, gray: map
dilated by roboter size. Center: Potential map (termination at stop node). Gray values encode
potentials, black being �. Black cross: stop node, white cross: reference node. Right: Gray: nodes
with output Y � � when the stop node was reached. Black: shortest path calculated by sequential
backtracking (method by DREYFUS).

Path Tracking

A sequential tracking procedure like the one proposed by DREYFUS [2] applied to the potential
vector provides a shortest path from the initial to the target position: Starting at the node i encoding
the initial or current position, the next node on the path is a node j sending an edge to i, for which

pi � pj � wji (2)

is valid. This is repeated until the reference node is reached. For most applications it will be sufficient
to compute only the local course; in this case, only one or a few steps with equation (2) are executed.
For the example map, the resulting path from a complete tracking is drawn in figure 1 (right).



PRESENT APPROACH TO PARALLEL HARDWARE

Algorithm

In [4], another variation of DIJKSTRAs algorithm is presented, which is suited for an implementation
of the potential computation (being the time-consuming part of the path-planning) in a fine-grained
parallel hardware. Whereas in equation (1) the potential of a node i is distributed to all nodes receiv-
ing edges from i, in this version each node i gathers the potentials pj of all nodes sending edges to i

(j � �i), adds the corresponding weights wji, and updates its own potential pj, if the result is below
pi:

pi �� min
j��i

fpi� pj � wjig� (3)

This computation can be performed for all nodes in parallel, until the potentials converge.

Hardware

For grid-like graphs, where a node is connected to its immediate 8 neighbours, [4] describes a hard-
ware solution that is an immediate projection of equation (3) into a parallel hardware: each graph-
node is assigned a hardware node performing this computation. Therefore, a full parallel computation
requires 8 comparators and 8 adders for each node. Furthermore, potentials have to be exchanged
between the nodes via parallel lines. This high effort conflicts with the low inherent parallelism of
the problem: only the nodes at a wave front spreading from the reference node update their potential,
each node usually only once or a few times.

NEW APPROACH TO PARALLEL HARDWARE

Algorithm

The approach to parallelization presented here starts from a reformulation of the algorithm: instead
of summing up weights using adders, the computation is based on the summation of time-delays
proportional to the distances between the nodes. This is much easier to realize in a digital hardware.
Starting at the reference node z, a binary wave spreads across the nodes, until the stop node is reached.
Between the nodes only a single bit is passed with a delay proportional to the distance. When the
wave arrives at a node, the node registers the time elapsed since the wave has been started; this time
corresponds to the potential of that node. It is another advantage compared to the algorithm in [4],
that the computation can be terminated as soon as a stop node is reached.

Hardware

In a digital hardware, as shown in figure 2, the measurement of time can be realized by a global
counter (Cntr.) and latches (Reg.) in each node. The global counter starts from 0 and is incremented
synchronously with the delay elements. As soon as the binary wave arrives at a node, the latch of
that node is locked and preserves the current value of the global counter which corresponds to the
potential of the node. Nodes that have not been reached when the wave arrived at the stop node
should be assigned ‘infinite’ potential. This can be achieved in a simple way if the computation is
continued for one step. The value of the global counter can then be interpreted as infinity.

The hardware benefits from simplifications for the special field of shortest-path problems, namely
regular, grid-like graphs and symmetric weights with only three values (between a node and its 4



C

R

D Q

=>1

C

R

D Q

=>1

=>1
C R

Y

Y

Y

Y

Y

Y

Y

Y

C

R

D Q

=>1

Y

P

C R

Z

Cntr.SE

SW

NW

W

S

E

N

NE

F

& Reg.
RC

Figure 2: Circuit of a single node, and global counter (Cntr). YN � � � YNW denote the outputs of
neighbouring nodes. F is a 1-bit memory deciding between free space (1) or obstacle (0). At C, the
clock signal is fed in, at R the reset signal. Z = 1 identifies a reference node. The output signal of a
node is marked by Y. After the latch (Reg) is locked due to Y = 1, P gives the potential of the node.

orthogonal resp. 4 diagonal neighbours, or infinity, if one of two connected nodes is an obstacle). In
a digital hardware, the signal delays have to be integer. The distances � and

p
	 to the 8 immediate

neighbours are approximated by time-delays of 	 and 
 cycles in the hardware of figure 21. These
delays can be integrated into a single delay line with only 3 D-flip-flops. It is fed by a combined
signal of the outputs (YN � � � YNW ) of the orthogonal as well as the diagonal neighbours. The end of
the delay line is connected to the lock input of the latch.

To encode infinite weights between nodes, it is sufficient to prevent an obstacle node from being
stopped and from emitting Y � �. For this purpose, between delay line and latch an AND-gate and
a one-bit memory F is inserted that suppresses the transmission of the signal 1, if F � �, i.e., if the
node does not belong to the free space. In a similar way the reference node is encoded: a one-bit
memory or signal line Z and an OR-gate will force an output of Y � � if Z � � and lock the latch
— the reference node is clamped to potential 0.

Compared to the hardware described in [4], the complexity of a node is radically reduced: in-
stead of 8 adders and 8 comparators, there are only 3 delay elements, a latch and some logic gates.
Furthermore, the signal transmission between the nodes is reduced to a single bit (Y ).

SIMULATIONS

Shortest Paths

The hardware of figure 2 has been tested in simulations; all examples presented here relate to a map
of the size 256� 256 nodes. The resulting potential vector is shown in figure 1 (center); this vector is
identical to the vector obtained from the improved DIJKSTRA-algorithm. As visible in figure 1 (white
areas in the middle picture, gray areas in the right picture), the computation was terminated at the stop
node, so some of the free-space nodes in reach are not stopped and therefore carry ‘infinite’ potential.
The path length and, therefore, the potential of the stop node are 1355 cycles, the computation was
stopped at cycle 1356. With only 20 MHz assumed as the basic clock, the computation would be

1This should be a sufficient approximation: the discretization error is small compared to the error resulting from the
approximation of the wave-front as an octogon when the 8 immediate neighbours are used.



completed within 68 �s. The improved DIJKSTRA-algorithm coded in C and executed on a 133 MHz
Pentium PC takes approx. 63 ms, resulting in a speedup of approx. 1000.

Safe Paths

Another possible application of the hardware is the computation of ‘safe’ paths running in safe dis-
tance from obstacles. For that purpose, the Z input in figure 2 has to be realized as a one-bit memory.
All nodes are assigned F � � to mark them as part of the free space, and all obstacle nodes have
Z � �. The potentials pdi obtained from this computation can be interpreted as the distance to the
nearest obstacle; see figure 3 (left). The computation can be terminated at a cycle corresponding to
the maximal distance in an empty map (length of the diagonal line), which is 768 resp. 38 �s with
20 MHz for the example map.

Figure 3: Left: Potential vector pd obtained for reference points at all obstacles, potential � is black.
Center: Skeleton computed with a local algorithm from potential vector pd. Right: Safe path calcu-
lated from pt and pd.

There are several possible ways to incorporate both this potential vector pd and the vector pt

obtained for the reference node z at the target position in a tracking procedure for safe paths. Fast
local methods, that can be restricted to the first few steps of a path without the need to compute the
complete path, should be preferred, because deviations from the path as well as the availability of
new sensor data will require a recomputation anyway. The simple method used here searches for
a node with maximal distance to an obstacle among all neighbouring nodes, that are nearer to the
reference node z than the current path node i:

�pdi � max
j���

i

fpdjg� ��

i � fk � �i � p
t
k � ptig (4)

Then, in a second pass, among the neighbours having the maximal obstacle distance �pdi , the neighbour
with minimal distance to the reference node is identified; this node becomes the next path node i�:

i� � arg min
j����

i

fptjg� ���

i � fk � ��

i � p
d
k � �pdi g (5)

The resulting path is shown in figure 3 (right). In contrast to artificial potential fields (that also
consider the distance to obstacles) it is guaranteed, that a safe path to the reference node can be
found, as long as the reference node is reachable from the initial node.

Another possible application of the method is to compute a kind of ‘skeleton’ of the map (similar
to the generalized Voronoi diagram [6, 8]); see figure 3 (center). This can be achieved by a purely
local procedure (involving only the 5 � 5 neighbourhood of a node) that detects all points at the
‘crest’ of the potential vector pd.



CONCLUSION

The hardware presented could be shown to be suited for the very fast computation of shortest as
well as of ‘safe’ paths. It should be especially advantageous for the computation of paths in large,
high-resolution maps, where paths have to be recomputed along the acquisition of new data for the
model, if the target point changes (pursuit [3]), or for complex planning algorithms where different,
alternative paths are requested.

Compared to the proposed hardware in [4], the hardware effort is radically reduced, enabling
the VLSI implementation of large grids on a single chip. The circuit shows basically the same
construction as a RAM memory and could be implemented and used in a similar way.

The delay line of the nodes could be prolonged by additional flip-flops and expanded with multi-
ple, switchable entry points into the line to encode different weights. This would extend the possible
application of the hardware from shortest-path problems in the strict geometrical sense to more gen-
eral minimal-cost problems, e.g. including special penalties. Furthermore, an expansion to higher-
dimensional maps is possible.

REFERENCES

[1] E.W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische Mathematik,
1:269–271, 1959.

[2] S.E. Dreyfus. An appraisal of some short-path algorithms. Operations Research, 17:395–412,
1969.

[3] R. Glasius, A. Komoda, and S. Gielen. Neural network dynamics for path planning and obstacle
avoidance. Neural Networks, 8(1):125–133, 1995.

[4] Mohamad H. Hassoun and Ashvin J. Sanghvi. Fast Computation of Optimal Paths in Two- and
Higher-Dimensional Maps. Neural Networks, 3:355–363, 1990.

[5] Oussama Khatib. Real-time obstacle avoidance for manipulators and robots. The International
Journal of Robotics Research, 5(1):90–98, 1986.

[6] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, Dortrecht,
London, 1991.

[7] E. Minieka. Optimization Algorithms for Networks and Graphs. Dekker, New York, Basel, 1978.

[8] Sebastian Thrun and Arno Bücken. Learning maps for indoor mobile robot navigation. Technical
Report CMU-CS-96-121, School of Computer Science, Carnegie Mellon University, Pittsburgh,
1996.




