Proc. IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics (IMACS),
Berlin, 1997

SIMULATION OF SPARSE RANDOM NETWORKS ON A
CNAPS SIMD NEUROCOMPUTER

PETER PASCHKE

Email: peter.paschke@informatik.tu-ilmenau.de
Dept. of Neuroinformatics, Technical University of Ilmenau,
Gustav-Kirchhoff-Str. 2,
D-98684 Ilmenau, Germany

RALF MOLLER

Email: moeller@ifi.unizh.ch
AT Lab, Dept. of Computer Science, University of Ziirich,
Winterthurerstr. 190,
CH-8057 Ziirich, Switzerland

Neurons of the cortical tissue in a mammalian brain are connected in an extremely
sparse and random fashion. We use findings of neuroanatomy to model this special
connection scheme and present methods for a parallel simulation of such networks
on a digital CNAPS neurocomputer. A considerable speedup in comparison to
sequential computation is achieved.

1 Introduction

Biologically-inspired sensorimotor systems embedded in complex environments
are models for investigating the principles of biological information processing.
A real time simulation of neural networks for such systems demands an ex-
tremely high computing performance. Although hardware implementations
may be much faster, software simulations are needed for the design of neu-
romorphic models. General purpose parallel computers or special digital or
analog hardware speed up the simulations. This paper describes the simula-
tion of special network structures modelling some architectural aspects of the
cerebral cortex on a CNAPS system, which is integrated in the mobile robot
MILVA at the Department of Neuroinformatics in Ilmenau. Sparse connec-
tion structures are very relevant for neuromorphic engineering. Faggin and
Mead ! compared the human central nervous system with VLSI technology
and considered the aspect, that the brain is frugal in its use of communication
resources.

Sabine
Textfeld
Proc. IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics (IMACS), Berlin, 1997

2 Network Models

The complete (or at least regular) interconnection between or inside groups of
neurons is characteristic for the vast majority of artificial neural networks. In
real nervous systems, on the contrary, synaptic connections between neurons
are often sparse — there are few synaptic connections at a neuron compared
to the total number of neurons — and show a random pattern in some cases.
A typical example for this class of biological networks is the cerebral cortex of
mammalia.

The connectivity pattern which is the result of a self-organization process
in the animal’s ontogenesis is probabilistic and can be described by statistics 3
Anatomical studies * performed on the cortex of mice reveal an isotropic but
random pattern of synaptic connections between pyramidal cells, the main
neuron type of the cortex (about 85% of all neurons) which builds excitatory
synapses. A pyramidal cell connects to its postsynaptic neighbours with one
or only a few synapses. With approximately 8000 synapses counted at a single
pyramidal cell compared to around 20 millions of pyramidal neurons, the mean
connectivity is only 0.04%. Another group of cells (among the remaining 15%
of all neurons) that are considered in many models are inhibitory interneurons
which build inhibitory synapses on both main cell types.

7777777777777777 Pia mater
I
1

I Z it
\%

:'?.
N
|

/

J v
<

Vi

N

e

.4 a'
RIAW;

L5
EL K==

7
=
7 1‘
|
|
in

T White matter

Figure 1: Left: Pyramidal cells of upper layers of the cortex? Right: Symbolic sketch of the
A- and B-system of pyramidal cells.

In addition to the characteristics mentioned above, the network models
used here consider the main fibre systems of the cerebral cortex, called A- and
B-system according to Braitenberg! in a simplified way (figure 1). The A-
system is established by long-range axons of pyramidal cells forming synapses

7

I

Figure 2: Postsynaptic connections of an example network with a 100x100 grid of neurons.
Left: Connections from about 0.5% of the pyramidal neurons. Right: Connections from
about 5% of the inhibitory neurons.

at apical dendrites of far pyramidal cells, while the B-system consists of short-
range axon collaterals and basal dendrites of neighbouring pyramidal cells. At
the end of axons connecting distant regions of the cortex (A-system) there is a
local arborization, used to distribute the signals to several thousand synapses.

The special architectural properties of the cerebral cortex lead to assump-
tions about its information processing. One is that the function of the cortex
may be that of an associative memory because there are much more neurons
and intracortical connections than input connections

Although the input connections are necessary for sensorimotor systems,
until now our models include only the intracortical connections. Figure 2 shows
postsynaptic connections of some randomly chosen neurons out of a 100x 100
grid for an example network used to verify the CNAPS implementation. The
following generation method of the postsynaptic connections implies that the
presynaptic input of a neuron can come from all parts of the neuron grid: the
number of postsynaptic neurons ¢; of neuron 7 is a random number from the
interval [gmin, gmax]- Each pyramidal neuron i is assumed to send out only one
long-range fibre, connecting a number ¢;/2 of neurons selected at random from
a circular patch at the reentrance point of the fibre (A-system). The remaining
¢i/2 neurons are selected in a similar manner from a circular area around that
neuron (B-system). Each inhibitory neuron i connects to g; neurons out of
its local circular neighbourhood which has a radius that is smaller than the
collateral length of pyramidal cells” Between two neurons there exists at most

one connection. There are 85% pyramidal and 15% inhibitory cells in the
model networks.

A simple rate-coded neuron model with a nonlinear function applied to the
input scalar product and without learning is currently used, but can easily be
extended to more complex dynamic models with learning because the algorithm
of the simulation is similar.

3 CNAPS Architecture

Program Output Bus
Memory f
64K 64-bit words
’—‘—‘ Inter-PN Bus

Output Bus 8 7 | Output Buffer |

| 1(,35“ Address Local Memory

‘ Registers unit |9, aKB

|

| 2 Inter-PN Bus o I ‘

| PN PN - PN | | Ll
L | 0 1 “es 511 o
I L i H

|
| 32 2

16
] L
I 2 et g Inter-PN Bus 2
32 PN Instruction Bus

1
Tnput Bus

D
ata Memory PN Instruction Bus
32 MByte *

Input Bus 8

Figure 3: Left: CNAPS architecture. Right: Architecture of a processor node.

The digital CNAPS neurocomputer (Adaptive Solutions, Inc.) has been
designed as a general purpose parallel computer for artificial neural networks
and image processing tasks and was introduced by Hammerstrom in 19908
CNAPS (Connected Network of Adaptive Processors) consists of a sequencer
and a linear array of maximal 512 processor nodes and is a SIMD computer
(single instruction stream - multiple data stream). A single instruction bus
and three data busses connect the sequencer and the processor nodes: a broad-
cast input bus (8 bit), a shared output bus (8 bit), and a circular inter-PN
bus (2 bit) connecting neighbouring processors (figure 3 left). The sequencer
broadcasts an instruction to the processor nodes (single instruction stream),
which synchronously execute it, but process the data from their local memories
(multiple data stream). If a special flag is reset and a conditioned execution
command is used, processing nodes can be excluded from execution. Each pro-
cessor node (PN) owns an integer arithmetic-logic-unit (ALU) and 4 KByte
RAM to store the neuron’s states and weights and provide on-chip learning.

Hammerstrom ? explained the design decisions of CNAPS and suggested some
improvements of the architecture, e.g. 16 bit input-, output- and inter-PN-
bus, 16x16 bit multiply in one clock cycle, more on-chip memory and higher
frequencies, but these improvements were not realized so far.

CNAPS is flexible enough to simulate different network types: artificial
neural networks like Multi-Layer-Perceptrons with Backpropagation training
Self-Organizing-Maps,“12 Adaptive Resonance Theory,!® Growing Cell Struc-
tures 14 and also biologically inspired pulse-coupled networks!® Other appli-
cations are described by Hammerstrom? All these network types have a full
or regular connection structure. In the case of complete connections between
groups of neurons, a single processor emits the activity of one of its neurons
to the output bus. This value is transmitted to the input bus and read from
all processors containing postsynaptic neurons. There, another activity-weight
product is computed and added to the input scalar products of the postsynap-
tic neurons in parallel on all processors.

Broadcast communication is especially suited for the implementation of
fully or regularly interconnected neural networks, but works much less efficient
when applied to sparse random networks because of idle processors? Never-
theless, by use of special simulation algorithms and data structures inclusively
preparatory optimization procedures there can be still a considerable speedup
compared to sequential computation for this field of application, which will be
shown in the next sections.

4 Simulation of Sparse Networks on CNAPS

To simulate sparse networks on CNAPS some problems had to be solved: The
network structure had to be mapped onto the CNAPS architecture, the vari-
ables for states, activities and weights and computation had to use integer
arithmetic, and algorithms which efficiently use the SIMD parallel computing
had to be developed.

4.1 Efficient Description of the Network Structure

Sparse recurrent networks without regular structure need a special description
of their connection pattern: the memory demand for a complete weight matriz
(stored distributed in the local memory of the processing nodes) is far be-
yond the memory bounds of the CNAPS processors. Because of the sequential
data transmission on the output bus, swapping of local memory would be not
efficient.

CNAPS provides a hardware solution for compressed storage of sparse

weight matrices. This special ‘virtual zero mode’ uses one bit per memory
item to decide if a zero item is returned without memory access or if the (non-
zero) memory content is read. Even though the memory demand of zero items
is reduced to one bit, the total weight memory demand is still proportional to
N2 (N being the number of neurons), so the virtual zero mode becomes more
and more inefficient with decreasing mean connectivity of the network.

In these cases, the network structure can be described much more effi-
ciently in a graph-like manner by successor lists where, for a given neuron, all
postsynaptic neurons are enumerated. That way, the memory demand is re-
duced to a value proportional to the total number of synapses S with S < N?2
for extremely sparse networks.

For the CNAPS architecture, the successor lists are not stored at the presy-
naptic neuron, but are distributed to the processors containing the correspond-
ing postsynaptic neurons. The local parts of the successor lists are consulted
by the processors when an activity value is read, in order to determine which
local neurons use this value in their computation.

Before generating the CNAPS data structures from a network description
file the neurons are mapped onto processors using a greedy optimization al-
gorithm, which balances the demand of computing time and memory between
processors.

4.2 Efficient Computation

A problem during SIMD simulation is the efficient usage of the hardware’s
fine-grained parallelity. The CNAPS simulation works in three phases:

1. Neuron-sequential communication: Activity values of the neurons have
to be sequentially distributed over the output bus. This is a disadvantage
because the bus architecture prohibits working in parallel. Because of
the local memory limit communication and computation (phase 1 and
2) are interlaced and the communication of an activity is delayed until a
processor needs this value to avoid idle cycles in the second phase.

2. Synapse-parallel computation: The states (input scalar products) of the
neurons are computed in parallel for the synapses. With the help of a
ring buffer the activity values of different presynaptic neurons can be
used in the same cycle of computation by different processors.

3. Neuron-parallel computation of the output function: The new activity
values result from the neurons’ states in a neuron parallel computation.
For the nonlinear function a 256 byte lookup table is used. For large
networks the processor local memory for the lookup table has to be shared

with the ring buffer and before phase 3 destroyed values have to be
restored.

One optimization of SIMD programming is to avoid tests and the condi-
tioned execution. In some cases this can be done, if unused processors work
on dummy data structures, which have no influence on the simulation result,
instead of switching off the processors. Another possibility is to make the tests
in preparation of the parallel simulation and build data structures, which con-
trol the sequencer in an appropriate manner. On CNAPS a trade-off between
memory and time is necessary — the simulation algorithm has to consider
the local memory bound and use buffering to process large networks, which is
an overhead in comparison to an algorithm with no memory limits. Another
problem is the trade-off between programming effort and simulation speed. We
used CNAPS Assembler Language to get maximal speed, but the programming
effort was high and the portability to improved architectures is bad. For fur-
ther discussion of simulation methods and data structures see Paschke and
Moller 16

4.3 Application of the Simulation

Our network models are discrete dynamic systems and the properties of a
network, for instance the development of the mean activity and mean activ-
ity changes, depend on the initialization parameters?”'7 Parameters are the
spatial distribution of synapses on the axons during network generation (see
section 2), ratios of excitation and inhibition and intervals for the random
generation of the initial activities and weights.

First experiments with different initializations for the mean activity of the
network and ratios between excitatory and inhibitory weights have shown the
expected qualitative effects on the development of the mean activity: If the
inhibitory weights are too strong the mean activity alternates in every step
between high and low values. Otherwise if the inhibition is to weak all neurons
go to saturation. With other ratios the mean activity converges although the
activities of single neurons change in every simulation step. It remains to
investigate, whether it is possible to generalize these results for more complex
neuron models.

5 Speedup Results

The simulation algorithm has been implemented using the CNAPS microcode
assembler language CPL, because the executables run more efficient than the
code generated by the CNAPS-C compiler. Preparation of the data structures

(activities, weights, tables, buffers) for the local processor memories and opti-

mization of neuron-processor assignment is done at a host workstation before
the CNAPS simulation.

[MCPS] \
250
200
150
100 0
50

0

700000

10000

50000

60000 250000

Figure 4: The upper performance bound of the CNAPS simulation depends on the number
N of neurons and S of synapses. The broken line marks the memory limit of CNAPS with
512 processors. The symbols ¢ and + show the results really achieved for 2 examples.

Using CNAPS (512 PNs, 20 MHz) the simulation can be speeded up con-
siderably, although the result is far from the theoretical peak performance of
10240 MCPS (million connections per second), because of the loss of parallelity
with sparse networks. The performance bound in figure 4 is derived from the

lower bound T' of CNAPS’ computing time T with P processors, N neurons
and S synapses:

. N S
TZT:TI'[F}“‘T?'[ﬁ—‘+T3'N+T4

T is the time for a neuron parallel computation step, 7> for a synapse parallel,
T3 for a neuron sequential and T, for other sequential computation steps.

The performance achieved with the CNAPS implementation is demon-
strated for a network with NV = 2500 neurons, S = 484251 synapses, Gmin = 97
and gmax = 292. With this network, the simulation runs at 106.9 MCPS on a
CNAPS (¢ in figure 4). For approximate comparison with a sequential compu-
tation, a C program using integer arithmetic like CNAPS has been executed
on a 200 MHz Sun UltraSPARC workstation for the same network, resulting
in 3.5 MCPS. The corresponding speedup is approximately 30.

If the sequential part of the simulation grows the speedup decreases. There-
fore the CNAPS simulation for a network with NV = 10000 neurons, S = 447436
synapses, gmin = 22 and gmax = 68 achieved a speedup of only 8.7 (+ in figure
4). In this case about 90% of simulation time is needed for the sequential
part. If the parallel part of the simulation grows the speedup increases. This
would be the case for instance if learning rules were introduced, which can be
computed in parallel for the synapses.

6 Conclusions

It’s worth using findings from neuroanatomy to model the connection structure
of neuromorphic systems. Sparse neural network models reduce the number
of connections to linearly scale up with increasing neuron numbers. This has
some advantage for the memory and time requirements of software simulations
and also for space in neuromorphic hardware implementations.

Special methods for the SIMD simulation of sparse networks on the CNAPS
neurocomputer were developed. Although CNAPS was optimized for the sim-
ulation of regular networks, the architecture is flexible enough to simulate
sparse neural networks with a reasonable speedup in comparison to sequential
computation. The parallel simulation can be used for further investigations of
optimal parameters for sparse random network models.

References

1. Federico Faggin and Carver Mead. VLSI Implementation of Neural
Networks. In Steven F. Zornetzer, editor, An introduction to neural and
electronic networks, pages 297-314. San Diego: Academic Press, 1995.

2. M. Abeles. Corticonics: neural circuits of the cerebral cortex. Cambridge
University Press, 1991.

3. Almut Schiiz. Neuroanatomy in a computational perspective. In M. Ar-
bib, editor, The Handbook of Brain Theory and Neural Networks, pages
622-626. The MIT Press Cambridge, Massachusetts, London, England,
1995.

10.

11.

12.

13.

14.

15.

16.

17.

. Valentin Braitenberg. Cortical architectonics: general and areal. In

M. A. B. Brazier and H. Petsche, editors, Architectonics of the cerebral
cortex, pages 443-465. Raven, 1978.

S. R. Cajal. Histologie du systeme nerveuz de l’homme et des vertebretes.
Maloin Paris, 1911.

V. Braitenberg and A. Schiiz. Cortex - hohe Ordnung oder grofftmog-
liches Durcheinander? Spektrum der Wissenschaft, May 1989.

Giinther Palm. Neural Assemblies. Springer, 1982.

Dan Hammerstrom. A VLSI Architecture for High-Performance, Low-
Cost, On-chip Learning. In Proc. of International Joint Conference on
Neural Networks, volume 2, pages 537-544, 1990.

Dan Hammerstrom. A Digital VLSI Architecture for Real-World Appli-
cations. In Steven F. Zornetzer, editor, An introduction to neural and
electronic networks, pages 335-358. San Diego: Academic Press, 1995.
Hal McCartor. Back Propagation Implementation on the Adaptive Solu-
tions CNAPS Neurocomputer Chip. In Advances in Neural Information
Processing Systems, pages 1028-1031, March 1991.

Dan Hammerstrom and Nguyen Nguyen. An Implementation of Koho-
nen’s Self-Organizing Map on the Adaptive Solutions Neurocomputer.
In Artificial Neural Networks, pages 715-720, 1991.

Ville Pulkki and Taneli Harju. An Implementation of the Self-Organizing
Map on the CNAPS Neurocomputer. In Proceedings of ICNN’96, pages
1345-1349, 1996.

C.S. Lindsey and Th. Lindblad. Unsupervised learning with ART on the
CNAPS. In Proc. of 5th Int. Workshop on Software Engineering, Al
and Expert Systems, for High Energy and Nuclear Physics (AIHENP96),
Lausanne, Switzerland, Sept. 2-6, September 1996.

Johannes Steffens and Marcel Kunze. Implementation of the Supervised
Growing Cell Structure on the CNAPS Neurocomputer. In Proc. of
ICANN’95 Paris, 1995.

Jason M. Kinser and Thomas Lindblad. Implementation of pulse-coupled
neural networks in a CNAPS environment. In Special Issue of the IEEE
TNN on PCNN, (to be published).

Peter Paschke and Ralf Moller. Simulation of Sparse Neural Networks
on a CNAPS SIMD Neurocomputer. In Proc. of 15th IMACS World
Congress 1997 on Scientific Computation, Modelling and Applied Math-
ematics, Berlin, Germany, August 1997.

I. E. Dammasch and G. P. Wagner. On the properties of randomly con-
nected McCulloch—Pitts networks: differences between input-constant
and input-variant networks. Cybernetics and Systems, 15:91-117, 1984.

