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Neurons of the cortical tissue in a mammalian brain are connected in an extremely
sparse and random fashion� We use �ndings of neuroanatomy to model this special
connection scheme and present methods for a parallel simulation of such networks
on a digital CNAPS neurocomputer� A considerable speedup in comparison to
sequential computation is achieved�

� Introduction

Biologically�inspired sensorimotor systems embedded in complex environments
are models for investigating the principles of biological information processing�
A real time simulation of neural networks for such systems demands an ex�
tremely high computing performance� Although hardware implementations
may be much faster� software simulations are needed for the design of neu�
romorphic models� General purpose parallel computers or special digital or
analog hardware speed up the simulations� This paper describes the simula�
tion of special network structures modelling some architectural aspects of the
cerebral cortex on a CNAPS system� which is integrated in the mobile robot
MILVA at the Department of Neuroinformatics in Ilmenau� Sparse connec�
tion structures are very relevant for neuromorphic engineering� Faggin and
Mead � compared the human central nervous system with VLSI technology
and considered the aspect� that the brain is frugal in its use of communication
resources�
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� Network Models

The complete �or at least regular� interconnection between or inside groups of
neurons is characteristic for the vast majority of arti�cial neural networks� In
real nervous systems� on the contrary� synaptic connections between neurons
are often sparse � there are few synaptic connections at a neuron compared
to the total number of neurons � and show a random pattern in some cases�
A typical example for this class of biological networks is the cerebral cortex of
mammalia�

The connectivity pattern which is the result of a self�organization process
in the animal	s ontogenesis is probabilistic and can be described by statistics����

Anatomical studies � performed on the cortex of mice reveal an isotropic but
random pattern of synaptic connections between pyramidal cells� the main
neuron type of the cortex �about 
�� of all neurons� which builds excitatory
synapses� A pyramidal cell connects to its postsynaptic neighbours with one
or only a few synapses� With approximately 



 synapses counted at a single
pyramidal cell compared to around �
 millions of pyramidal neurons� the mean
connectivity is only 
�
��� Another group of cells �among the remaining ���
of all neurons� that are considered in many models are inhibitory interneurons
which build inhibitory synapses on both main cell types�
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Figure �� Left� Pyramidal cells of upper layers of the cortex�� Right� Symbolic sketch of the
A� and B�system of pyramidal cells�

In addition to the characteristics mentioned above� the network models
used here consider the main �bre systems of the cerebral cortex� called A� and
B�system according to Braitenberg�� in a simpli�ed way ��gure ��� The A�
system is established by long�range axons of pyramidal cells forming synapses



Figure �� Postsynaptic connections of an example network with a ������� grid of neurons�
Left� Connections from about ��	
 of the pyramidal neurons� Right� Connections from

about 	
 of the inhibitory neurons�

at apical dendrites of far pyramidal cells� while the B�system consists of short�
range axon collaterals and basal dendrites of neighbouring pyramidal cells� At
the end of axons connecting distant regions of the cortex �A�system� there is a
local arborization� used to distribute the signals to several thousand synapses�

The special architectural properties of the cerebral cortex lead to assump�
tions about its information processing� One is that the function of the cortex
may be that of an associative memory because there are much more neurons
and intracortical connections than input connections��

Although the input connections are necessary for sensorimotor systems�
until now our models include only the intracortical connections� Figure � shows
postsynaptic connections of some randomly chosen neurons out of a �

��


grid for an example network used to verify the CNAPS implementation� The
following generation method of the postsynaptic connections implies that the
presynaptic input of a neuron can come from all parts of the neuron grid� the
number of postsynaptic neurons qi of neuron i is a random number from the
interval �qmin� qmax�� Each pyramidal neuron i is assumed to send out only one
long�range �bre� connecting a number qi�� of neurons selected at random from
a circular patch at the reentrance point of the �bre �A�system�� The remaining
qi�� neurons are selected in a similar manner from a circular area around that
neuron �B�system�� Each inhibitory neuron i connects to qi neurons out of
its local circular neighbourhood which has a radius that is smaller than the
collateral length of pyramidal cells�� Between two neurons there exists at most



one connection� There are 
�� pyramidal and ��� inhibitory cells in the
model networks�

A simple rate�coded neuron model with a nonlinear function applied to the
input scalar product and without learning is currently used� but can easily be
extended to more complex dynamic models with learning because the algorithm
of the simulation is similar�

� CNAPS Architecture
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Figure �� Left� CNAPS architecture� Right� Architecture of a processor node�

The digital CNAPS neurocomputer �Adaptive Solutions� Inc�� has been
designed as a general purpose parallel computer for arti�cial neural networks
and image processing tasks and was introduced by Hammerstrom in ���
��

CNAPS �Connected Network of Adaptive Processors� consists of a sequencer
and a linear array of maximal ��� processor nodes and is a SIMD computer
�single instruction stream � multiple data stream�� A single instruction bus
and three data busses connect the sequencer and the processor nodes� a broad�
cast input bus �
 bit�� a shared output bus �
 bit�� and a circular inter�PN
bus �� bit� connecting neighbouring processors ��gure � left�� The sequencer
broadcasts an instruction to the processor nodes �single instruction stream��
which synchronously execute it� but process the data from their local memories
�multiple data stream�� If a special �ag is reset and a conditioned execution
command is used� processing nodes can be excluded from execution� Each pro�
cessor node �PN� owns an integer arithmetic�logic�unit �ALU� and � KByte
RAM to store the neuron	s states and weights and provide on�chip learning�



Hammerstrom � explained the design decisions of CNAPS and suggested some
improvements of the architecture� e�g� �� bit input�� output� and inter�PN�
bus� ����� bit multiply in one clock cycle� more on�chip memory and higher
frequencies� but these improvements were not realized so far�

CNAPS is �exible enough to simulate di�erent network types� arti�cial
neural networks like Multi�Layer�Perceptrons with Backpropagation training��	

Self�Organizing�Maps������ Adaptive Resonance Theory��� Growing Cell Struc�
tures �� and also biologically inspired pulse�coupled networks��
 Other appli�
cations are described by Hammerstrom�� All these network types have a full
or regular connection structure� In the case of complete connections between
groups of neurons� a single processor emits the activity of one of its neurons
to the output bus� This value is transmitted to the input bus and read from
all processors containing postsynaptic neurons� There� another activity�weight
product is computed and added to the input scalar products of the postsynap�
tic neurons in parallel on all processors�

Broadcast communication is especially suited for the implementation of
fully or regularly interconnected neural networks� but works much less e�cient
when applied to sparse random networks because of idle processors�� Never�
theless� by use of special simulation algorithms and data structures inclusively
preparatory optimization procedures there can be still a considerable speedup
compared to sequential computation for this �eld of application� which will be
shown in the next sections�

� Simulation of Sparse Networks on CNAPS

To simulate sparse networks on CNAPS some problems had to be solved� The
network structure had to be mapped onto the CNAPS architecture� the vari�
ables for states� activities and weights and computation had to use integer
arithmetic� and algorithms which e�ciently use the SIMD parallel computing
had to be developed�

��� E�cient Description of the Network Structure

Sparse recurrent networks without regular structure need a special description
of their connection pattern� the memory demand for a complete weight matrix
�stored distributed in the local memory of the processing nodes� is far be�
yond the memory bounds of the CNAPS processors� Because of the sequential
data transmission on the output bus� swapping of local memory would be not
e�cient�

CNAPS provides a hardware solution for compressed storage of sparse



weight matrices� This special �virtual zero mode	 uses one bit per memory
item to decide if a zero item is returned without memory access or if the �non�
zero� memory content is read� Even though the memory demand of zero items
is reduced to one bit� the total weight memory demand is still proportional to
N� �N being the number of neurons�� so the virtual zero mode becomes more
and more ine�cient with decreasing mean connectivity of the network�

In these cases� the network structure can be described much more e��
ciently in a graph�like manner by successor lists where� for a given neuron� all
postsynaptic neurons are enumerated� That way� the memory demand is re�
duced to a value proportional to the total number of synapses S with S � N�

for extremely sparse networks�
For the CNAPS architecture� the successor lists are not stored at the presy�

naptic neuron� but are distributed to the processors containing the correspond�
ing postsynaptic neurons� The local parts of the successor lists are consulted
by the processors when an activity value is read� in order to determine which
local neurons use this value in their computation�

Before generating the CNAPS data structures from a network description
�le the neurons are mapped onto processors using a greedy optimization al�
gorithm� which balances the demand of computing time and memory between
processors�

��� E�cient Computation

A problem during SIMD simulation is the e�cient usage of the hardware	s
�ne�grained parallelity� The CNAPS simulation works in three phases�

�� Neuron�sequential communication� Activity values of the neurons have
to be sequentially distributed over the output bus� This is a disadvantage
because the bus architecture prohibits working in parallel� Because of
the local memory limit communication and computation �phase � and
�� are interlaced and the communication of an activity is delayed until a
processor needs this value to avoid idle cycles in the second phase�

�� Synapse�parallel computation� The states �input scalar products� of the
neurons are computed in parallel for the synapses� With the help of a
ring bu�er the activity values of di�erent presynaptic neurons can be
used in the same cycle of computation by di�erent processors�

�� Neuron�parallel computation of the output function� The new activity
values result from the neurons	 states in a neuron parallel computation�
For the nonlinear function a ��� byte lookup table is used� For large
networks the processor local memory for the lookup table has to be shared



with the ring bu�er and before phase � destroyed values have to be
restored�

One optimization of SIMD programming is to avoid tests and the condi�
tioned execution� In some cases this can be done� if unused processors work
on dummy data structures� which have no in�uence on the simulation result�
instead of switching o� the processors� Another possibility is to make the tests
in preparation of the parallel simulation and build data structures� which con�
trol the sequencer in an appropriate manner� On CNAPS a trade�o� between
memory and time is necessary � the simulation algorithm has to consider
the local memory bound and use bu�ering to process large networks� which is
an overhead in comparison to an algorithm with no memory limits� Another
problem is the trade�o� between programming e�ort and simulation speed� We
used CNAPS Assembler Language to get maximal speed� but the programming
e�ort was high and the portability to improved architectures is bad� For fur�
ther discussion of simulation methods and data structures see Paschke and
M�oller���

��� Application of the Simulation

Our network models are discrete dynamic systems and the properties of a
network� for instance the development of the mean activity and mean activ�
ity changes� depend on the initialization parameters������� Parameters are the
spatial distribution of synapses on the axons during network generation �see
section ��� ratios of excitation and inhibition and intervals for the random
generation of the initial activities and weights�

First experiments with di�erent initializations for the mean activity of the
network and ratios between excitatory and inhibitory weights have shown the
expected qualitative e�ects on the development of the mean activity� If the
inhibitory weights are too strong the mean activity alternates in every step
between high and low values� Otherwise if the inhibition is to weak all neurons
go to saturation� With other ratios the mean activity converges although the
activities of single neurons change in every simulation step� It remains to
investigate� whether it is possible to generalize these results for more complex
neuron models�

� Speedup Results

The simulation algorithm has been implemented using the CNAPS microcode
assembler language CPL� because the executables run more e�cient than the
code generated by the CNAPS�C compiler� Preparation of the data structures



�activities� weights� tables� bu�ers� for the local processor memories and opti�
mization of neuron�processor assignment is done at a host workstation before
the CNAPS simulation�
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Figure �� The upper performance bound of the CNAPS simulation depends on the number
N of neurons and S of synapses� The broken line marks the memory limit of CNAPS with

	�� processors� The symbols � and 
 show the results really achieved for � examples�

Using CNAPS ���� PNs� �
 MHz� the simulation can be speeded up con�
siderably� although the result is far from the theoretical peak performance of
�
��
 MCPS �million connections per second�� because of the loss of parallelity
with sparse networks� The performance bound in �gure � is derived from the
lower bound �T of CNAPS	 computing time T with P processors� N neurons
and S synapses�

T � �T � T� �

�
N

P

�
� T� �

�
S

P

�
� T� �N � T�

T� is the time for a neuron parallel computation step� T� for a synapse parallel�
T� for a neuron sequential and T� for other sequential computation steps�



The performance achieved with the CNAPS implementation is demon�
strated for a network with N � ��

 neurons� S � �
���� synapses� qmin � ��
and qmax � ���� With this network� the simulation runs at �
��� MCPS on a
CNAPS �� in �gure ��� For approximate comparison with a sequential compu�
tation� a C program using integer arithmetic like CNAPS has been executed
on a �

 MHz Sun UltraSPARC workstation for the same network� resulting
in ��� MCPS� The corresponding speedup is approximately �
�

If the sequential part of the simulation grows the speedup decreases� There�
fore the CNAPS simulation for a network withN � �



 neurons� S � ������
synapses� qmin � �� and qmax � �
 achieved a speedup of only 
�� �� in �gure
��� In this case about �
� of simulation time is needed for the sequential
part� If the parallel part of the simulation grows the speedup increases� This
would be the case for instance if learning rules were introduced� which can be
computed in parallel for the synapses�

� Conclusions

It	s worth using �ndings from neuroanatomy to model the connection structure
of neuromorphic systems� Sparse neural network models reduce the number
of connections to linearly scale up with increasing neuron numbers� This has
some advantage for the memory and time requirements of software simulations
and also for space in neuromorphic hardware implementations�

Special methods for the SIMD simulation of sparse networks on the CNAPS
neurocomputer were developed� Although CNAPS was optimized for the sim�
ulation of regular networks� the architecture is �exible enough to simulate
sparse neural networks with a reasonable speedup in comparison to sequential
computation� The parallel simulation can be used for further investigations of
optimal parameters for sparse random network models�
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