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Abstract

Recently there is an increasing interest in video based inter-
face techniques, allowing more natural interaction between
users and systems than common interface devices do.

Here, we present a neural architecture for user localisa-
tion, embedded within a complex system for visually-based
human-machine-interaction (HMI).

User’s localisation is an absolute prerequisite to video-
based HMI. Due to the main objective, the greatest possible
robustness of the localisation as well as the whole visual
interface under highly varying environmental conditions,
we propose a multiple cue approach. This approach com-
bines the features facial structure, head-shoulder-contour,
skin color, and motion, with a multiscale representation.
The selection of that image region most likely containing
a possible user is then realised via a WTA-process within
the multiscale representation.

Preliminary results show the reliability of the multiple
cue approach.

1. Introduction

A considerable number of approaches for the design
of intelligent and adaptive human-machine-interfaces have
been proposed (see for instance [7, 8, 15]).

In our group, aproject named GESTIK (supported by the
Thuringian Ministry of Science, Research and Culture) was
started to develop a neural network architecture for video-
based HMI between a user and the robot MILVA (Multisen-
sory Intelligent Learning Vehicle in neural Architecture).
A two-camera-system with 7 degrees of freedom (for each
camera pan, tilt and zoom, additional pan for both cameras)
serves for the interaction with a possible user and actively
observes its operational environment. An additional cam-
era, mounted at the front of the robot, provides the visual
information for navigation. MILVA is shown in figure 1
and serves as the test bed for interaction with a user, at the

Figure 1. The mobile robot MILVA, pro-
vided with 68040-VME-system, 2 PC-systems,
CNAPS-board, framegrabbers, and several sen-
sors (3 cameras, laserscanner, ultrasound and
infrared distance measures, bumpers).

moment based on the transmission of behavioral commands
viastatic gestures.

The use of our system as an intelligent luggage carrier,
for instance at a railway station or an airport, was chosen
as a hypothetic scenario for the following reasons: First, we
must take into account the capabilities of our robot which
does not have manipulators and can only move itself. Sec-
ond, the scenario is to naturally motivate a gesture-based
dialogue between the user and the serving system. At a
railway station with a lot of people and a high amount of
surrounding noise a gesture-based dial ogue seems to be the
only possible way for interaction.

In this article, we concentrate on a subsystem responsi-
ble for the localisation of a possible user, which is the ab-
solute prerequisite to any kind of HMI. Dueto the fact, that
MILVA has to operate under highly variable environmental
conditions (scene content, illumination), the requirements
on the user localisation system are very hard. Consequently,
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we designed a neural architecture, integrating several cues
to make the localisation robust and most possible indepen-
dent of variable environmental conditions.

2. Neur al architecturefor user localisation and
gesturerecognition

Figure 2 provides a coarse sketch of the whole neural
architecture for user localisation and gesture recognition.
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Figure 2. Building blocks of the neural archi-
tecture for user localisation and gesture recog-
nition

That components of the architecture responsible for user
localisation are described in the following section.

3. User localisation
3.1. Cue modules

Initially both cameras of the two-camera-system operate
in wide-angle-mode in order to cover the greatest possible
area of the environment. Multiresolution pyramids trans-
form the images into a multiscale representation. Four cue
modules which are sensitive to skin color, facial structure,
structure of a head-shoulder-contour and motion, respec-
tively, operate at al levels of the two pyramids. The util-
ity of the different, parallel processing cue modules is to
make the whole system robust and more or less indepen-
dent of the presence of one certain information source in
the images. Hence, we can handle varying environmental
circumstances much easier, which, for instance, make the
skin color detection difficult or almost impossible. Further-
more, high expense for the development of the cue modules

can be avoided (see [4, 3, 11], too).

a) Skin color

For the generation of a skin color training data set, portrait
images of different persons (of our lab) were segmented
manually. The images were acquired under appropriate
lighting conditions.

A linear transformation maps the RGB-values into a phys-
iologically motivated fundamental color space (see [17]),
which isformed by a Red-Green(RG)-, Yellow-Blue(Y B)-,
and Black-White(BW)-dimension. The pixels (color val-
ues) of an image form a certain cluster within this color
space. The whole cluster will be elongated from the WB
axis (achromatic axis) depending on the illuminative con-
ditions during image acquisition. The elongation of this
cluster characterizes the deviation in illumination from the
typical daylight condition regardless of the image contents.
By means of a color adaptation process, the cluster istrans-
formed in such a way that its elongation will be along the
BW axis. So we can ensure equal color sensations under
different lighting conditions (see [17]).

Whereas the color adaptation is carried out within the
described fundamental color space, the skin color classifi-
cation takes place within the RGB color space. To reduce
the influence of varying intensities, the projection formed
by the normalized R- and G-achses (', ¢') is utilised. To
model the skin color distribution roughly, we define a 2-
dimensional Gaussian function via calculation of the mean
and the covariance (see figure 3, too) of the skin color data
Set.

If aface region could be verified, a new Gaussian model
is created, more specific for the illumination and the skin
type at hand. Viathis model the detection of skin colored
regions, especially hands, can be improved. This is very
important because the hand regions cannot be segmented
by structural information (see [13], too).

The different skin color models are necessary for thefol-
lowing two reasons. In the beginning, the system observes
its operational area and the skin color segmentation has to
operate with the coarse model because no face verification
is available. Just after the first successful face verification,
the fine-tuned model, based on actual skin color and illumi-
nation, can be used. Figure 3 gives a segmentation example
using the coarse as well as a fine-tuned skin color model.

A detailed description of our skin color investigations
can befoundin[6].

b) Facial structure

Because of the unknown distance between the camera and
the user to be localised, the detection of facial structure has
to be carried out at each level of the multiresolution pyra-
mids (see also figure 2). In our scenario we assume that a
person is an intended user if itsface is oriented towards the
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Figure 3. Top: original imageMiddle: coarse
Gaussian skin color model and segmentation
result; Bottom: fine-tuned Gaussian skin color
model after face verification and segmentation
result

robot.

The detection of facial structure uses the gray value image
and employs eigenfaces generated by a principal compo-
nent analysis (PCA) of the images contained in the ORL
data set (http://www.cam-orl.co.uk/facedatabase.html; see
[16], too). The image regions used for the PCA were ex-
tracted manually, cover aregion of 15 x 15 pixels, and the
regions were normalized by their mean and standard de-
viation (see also [20, 19]). Then, the input image is pro-
cessed with 3 eigenfaces (according to the largest eigenval-
ues). Besides the preprocessing steps, the classification of
the obtained fit values remains a difficult problem. The best
results we achieved with a Growing-Neural-Gas-Network
(GNG, [10Q]) performing a mapping from the fit values to
2 classes (face, no face). For the training of the GNG a

Figure 4. Detection of faces using eigenvec-
tor masks and GNG as neural classifier. The
detected faces are marked in the right image
(likelihood higher than 0.7).

data set of 174 positive (face) and 174 negative (no face)
examples was created. To improve the generalization abil-
ity of the network, we implemented a bootstrap algorithm
[19] which encloses false classified image regions into the
set of the negative examples automatically. Besides the pre-
processing steps explained above, we use no further trans-
formations as, for instance, histogram equalization. The re-
maining uncertaintiesof the detection of facial structure can
be compensated by the parallel use of all different cue mod-
ules (see also [9)]).

An example for the face detection is demonstrated in
figure 4, where an image taken from [19] was processed.
False positive detected regions cannot be avoided entirely,
but such regions very likely cover no skin color, and there-
fore, by combining skin color and facia structure such mis-
localisations can be rejected.

c) Head-shoulder-contour

Similar to the detection of facial structure, the localisation
of a head-shoulder-contour operates on the gray level image
of each level of the multiresolution pyramids. The basic
idea is to use an appropriate spatial configuration of Ga-
bor filters (see figure 5) and to classify the obtained filter
outputs by a specially tuned distance measure between the
actual filter outputs and a prototype.

d) Motion

Our favoured approach was proposed in [2] and [9], and
is demonstrated in figure 6. Based on image differentia-
tion motion is detected in the first step, leading to a binary
motion energy image. The second step accumulates this
motion energy over a certain period of time resulting in a
motion history image. This approach is reliable especially
for the following reason: The detection as well as the ac-
cumulation of motion could be realized via dynamic neura
fields, and by means of different sets of parameters of such
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Figure 5. Method for detection of a head-
shoulder-contour, based on a specially fitted
grid of Gabor filters and a task specific distance
measure

fields, different task specific aspects of motion information
can be obtained.

Eh |

Figure 6. Top Left: original image from the se-
quence; Top Right: binary motion image; Bot-
tom Left: thresholded binary motion image;
Bottom Right: motion history image

3.2. Generation of primary saliency maps

The output of the cue modules serves as the input for
the primary saliency maps at each level of the multiresolu-
tion pyramid. The maps are topographically organised neu-
ral fields containing dynamic neurons interacting with each
other (see [1, 14, 21, 12]). In the primary saliency maps

all that regions are to become prominent that cover gesture-
relevant parts such as faces and hands. Because of the fea
tures facial structure and head-shoulder-contour, faces be-
come the most prominent or salient regions. The saliency
map containing the overall most salient activity blob deter-
mines the further processing steps.

Currently, the pyramid containing the primary saliency
maps (see figure 7) is under construction.

selection of that region
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Figure 7. Generation of a scale space pyramid
of primary saliency maps

As a preliminary result concerning the primary saliency
maps, figure 8 shows the selection of the most likely head-
shoulder-contours at al levels of the multiresolution pyra-
mid. Here, dynamic neurons interact inside each level and
between adjacent levels of the pyramid. The neurons re-
ceive their input from the head-shoulder-contour detector.
Dueto thefact, that the head-shoul der-contour detector sup-
plies a strong output at adjacent levels of the pyramid, the
selection becomes much more robust, and numerous false
positive detections can be rejected.

The same principleis to be extended to the whole saliency
pyramid, integrating all cue modules.

3.3 Control of the two-camera-system

After thelocalisation of a possible user the final step en-
volves the control of the second camera.

Assoon asapossibleuser (faceregion) isdetected inone
of the camera images, this camera serves as general-view-
camera, whereas the second camera becomes the gesture-
camera. The necessary distance estimation is provided by
the cue modules detecting structural information (face and
head-shoulder-contour). The gesture-camera is controlled



Figure 8. Input images with marked head-
shoulder-contours, obtained at the different
levels of the multiresolution pyramid by the pro-
posed method; the left images of each exam-
ple show the result without dynamic selection,
whereas the right images contain the selected
contours obtained by means of dynamic selec-
tion (white rectangles mark the highest likeli-
hood).

such that the expected face region will appear on a prede-
fined position in the image with a predefined scale, too.

First, a camera control module for a single camera was
implemented based on a neural approach proposed in [18],
where a Kohonen-Map is used that learns an input-output-
mapping between the actual target position and the corre-
sponding pan/tilt angles.

Recently, this method was extended for the control of
the two-camera system. The basic idea is that a definite
configuration of the camerasis assumed, which is necessary
to use that mapping method of the single camera system for
the two-camera-system, too.

Therefore, after apossible user (face region) was located
in either camera image, the second camera is directed to-
wards this user. This is realized by means of controlling
the pan/tilt of this camera as well as the additional pan for
both cameras. Therefore, the initial camera configuration
(especially the base distance) remains stable. The result-
ing gesture-scene should contain all gesture-relevant parts
of theintended user. By means of the control of the gesture-
camera we can ensure that faces and hands will always have
approximately the same size, so we do not have to ensure
scale invariance by the further processing steps.

4. Conclusion and outlook
4.1. User localisation

Depending on the environmental conditions (illumina-
tion, image content, distance between robot and user) which
can neither be influenced nor be estimated a priori, the dif-
ferent cue modules provide more or less confident results.
Our preliminary results concerning user localisation clarify,
that only the parallel utilization of different methods leads
to appropriate localisation results. Hence, the system be-
comes much more robust, can handle highly varying envi-
ronmental conditionsand isless dependent on the presence
of one certain feature.

Furthermore, we concentrate on thefinal implementation
of the pyramid containing the primary saliency maps. Only
when the whole primary saliency system is stable running,
we can estimate the sufficiency of the developed cue mod-
ules. The cue module for motion analysis has to be realized
and integrated into the saliency system.

4.2. Work in progress

Generation of the secondary saliency map A secondary
saliency map is created for the gesture-scene, which deter-
mines the sequential processing of this scene. Similar to the
primary saliency map we utilize topographically organised
neural fields, too.

To simplify the task, we use only the skin color infor-

mation as the input for thisfield, thereby assuming that the
skin color segmentation is robust enough.
Because of the camera control, the prominent position and
size of a hypothetic face region is known. So, by means
of specially tuned field parameters (coupling width and
strength) theemergence of an activity blob covering theface
region is highly supported. Therefore, the face region will
be the first area to be analysed in detail (see the following
paragraph). The hand regions become salient, too.

Face verification and estimation of face orientation
The next processing step must provide a face verification,
that means we have to decide if there isaface at all, and if
it is oriented towards the robot.

Detection and interpretation of gestures For complex-
ity reasons, we have predefined a gesture alphabet and have
assumed only static gestures (poses), which are stable for a
certain period of time. The mapping between the gestures
to be recognized and the associated actions of the robot is
predefined, too (see also [15]).

Further, we assume that the content of a gesture can be
extracted only by taking into account the whole configura-
tion of face and hands, whereas the orientation of face and



Figure 9. Possible intuitive gestures (poses);
from left to right they could carry the following
meanings for the robot: hello, stop, come to
my left, move right

hands is not important at the moment (see fig. 9). These
restrictionsare only introduced to handle the ongoing prob-
lems and they shall be put away step by step.
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