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Abstract— We present a neural network architecture for
gesture-based interaction between a mobile robot and its
user, thereby spanning a bridge from the localisation of the
user over the recognition of its gestural instruction to the gen-
eration of the appropriate robot behavior. Since this system is
applied under real-world conditions, especially concern-
ing the localisation of a human user, some proper tech-
niques are needed which have an adequate robustness.
Hence, the combination of several components of saliency
towards a multi-cue approach, integrating structure- and
color-based features, is proposed. At the moment, the
gestures itself are very simple and can be described by
the spatial relation between face and hands of the per-
son. The organisation of the appropriate robot behavior
is realised by means of a mixture of neural agents, re-
sponsible for certain aspects of the navigation task. Due
to the complexity of the whole system, above all we use
“standard neural network models”, which are modified
or extended according to the task at hand. Preliminary
results show the reliability of the overall approach as well
as the sufficient functionality of the already realised sub-
modules.

I. INTRODUCTION AND SCENARIO

Fig. 1.  The mobile robot MILVA. Provided with the neces-
sary on-board equipment (68040-VME-system, 2 PC-systems,
CNAPS-board, framegrabber) and different sensors (3 cam-
eras, laserscanner, ultrasound and infrared distance mea-
sures, bumpers) MILVA serves as the testbed for the human-
machine-interaction.

Figure 1 shows our robot platformm MILVA (Multisen-
sory Intelligent Learning Vehicle in neural Architecture).
A two-camera-system with 7 degrees of freedom (for each

camera pan, tilt and zoom, additional pan for both cam-
eras) serves for the interaction with a possible user and
actively observes its operational environment. An addi-
tional camera, mounted at the front of the robot, pro-
vides the visual information for navigation.

The use of our system as an intelligent luggage carrier,
for instance at a railway station or an airport, was cho-
sen as a hypothetic scenario for the following reasons:
First, we must take into account the capabilities of our
robot which does not have manipulators and can only
move itself. Second, the scenario is to naturally moti-
vate a gesture-based dialogue between the user and the
serving system. At a railway station with a lot of people
and a high amount of surrounding noise a gesture-based
dialogue seems to be the only possible way for interac-
tion.

Recently there is an increasing interest in video based
interface techniques, allowing more natural interaction
between users and systems than common interface de-
vices do. A considerable number of approaches for
the design of intelligent and adaptive human-machine-
interfaces have been proposed (see for instance [8], [15],
[7]).

The superior goals of our research concerning the
proposed architecture (GESTIK-project!) are the high-
est possible robustness of the intelligent visual interface
under highly varying environmental conditions as well
as the sufficient organisation of the appropriate robot
behavior, achieved by continuous interaction between
robot and human user.

II. NEURAL ARCHITECTURE FOR USER LOCALISATION
AND GESTURE RECOGNITION

Figure 2 provides a coarse sketch of the neural archi-
tecture for user localisation and gesture recognition. The
several components of the architecture will be described
in the following subsections.
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Fig. 2. Building blocks of the neural architecture for user locali-

sation and gesture recognition

A. Multi-cue approach for user localisation

Initially both cameras of the two-camera-system op-
erate in wide-angle-mode in order to cover the great-
est possible area of the environment. Multiresolution
pyramids transform the images into a multiscale rep-
resentation. Four cue modules which are sensitive to
skin color, facial structure, structure of a head-shoulder-
contour and motion, respectively, operate at all levels
of the two pyramids. The utility of the different, paral-
lel processing cue modules is to make the whole system
robust and more or less independent of the presence of
one certain information source in the images. Hence, we
can handle varying environmental circumstances much
easier, which, for instance, make the skin color detec-
tion difficult or almost impossible. Furthermore, high
expense for the development of the cue modules can be

avoided (see [4], [3], [11], too).

a) Skin color

For the generation of a skin color training data set, por-
trait images of different persons (of our lab) were seg-
mented manually. The images were acquired under ap-
propriate lighting conditions (typical for our lab envi-
ronment).

In order to obtain almost constant color sensation,
first we map the RGB color space into a fundamental
color space and employ a color adaptation method (see
[21]). Then, we return into the RGB color space and de-
fine a 2-dimensional Gaussian function via calculation of
the mean and the covariance of that skin color data set
to model the obtained skin color distribution roughly.
Furthermore, if a face region could be verified, a new
Gaussian model is created, more specific for the illumi-
nation and the skin type at hand. Via this model the

detection of skin colored regions, especially hands, can
be improved. This is very important because the hand
regions cannot be segmented by structural information
(see [13], too).

A more detailed description of our skin color investi-
gations can be found in [5] and [6].

b) Facial structure

In our scenario we assume that a person is an intended
user if its face is oriented towards the robot.

The detection of facial structure wuses the gray
value image and employs eigenfaces generated by a
principal component analysis (PCA) of the images
contained in the ORL data set (http://www.cam-
orl.co.uk/facedatabase.html; see [19], too). The image
regions (15 x 15 pixels) used for the PCA were extracted
manually and were normalised by their mean and stan-
dard deviation (see also [24], [23]). Then, the input im-
age is processed with 3 eigenfaces (largest eigenvalues).
Besides the preprocessing steps, the classification of the
obtained fit values remains a difficult problem. The best
results we achieved with a supervised Growing-Neural-
Gas-Network (GNG, [10]), performing a mapping from
the fit values to 2 classes (face, no face). For the train-
ing of the GNG a data set of 174 positive (face) and 174
negative (no face) examples was created. To improve the
generalisation ability of the network, we implemented a
bootstrap algorithm [23] which encloses false classified
image regions into the set of the negative examples au-
tomatically.
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Fig. 3. Detection of frontally aligned faces. The detected faces
are marked in the right image (likelihood higher than 0.7).

The performance of the face detection is demonstrated
in figure 3, where an image taken from [23] was pro-
cessed. False positive detected regions cannot be avoided
entirely (top right), but this region very likely covers no
skin color, and therefore, by combining skin color and
facial structure such mislocalisations can be rejected.

¢) Head-shoulder-contour
Similar to the detection of facial structure, the locali-
sation of a head-shoulder-contour operates on the gray



level image of each level of the multiresolution pyramids.
The basic idea is to use an appropriate spatial config-
uration of Gabor filters (filter arrangement, see figure
4) and to classify the obtained filter outputs by a spe-
cially tuned distance measure (Hamming distance) be-
tween the actual filter outputs and a prototype.
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Fig. 4. Processing scheme for detection of a head-shoulder-
contour.
d) Motion

Our favoured approach was proposed in [2] and [9].
Based on image differentiation motion is detected in the
first step, leading to a binary motion energy image. The
second step accumulates this motion energy over a cer-
tain period of time resulting in a motion history image.
This approach is reliable especially for the following rea-
son: The detection as well as the accumulation of mo-
tion could be realised via dynamic neural fields, and by
means of different sets of parameters of such fields, dif-
ferent task specific aspects of motion information can be
obtained.

e) Dynamic neural fields for generation of primary
saliency maps

All cue modules supply input for the primary saliency
maps at each level of the multiresolution pyramid, as
shown in figure 5.

To achieve a good localisation a selection mechanism is
needed to make a definite choice. This is not limited to a
two-dimensional position. Since we use five resolutions
(fine to coarse) we actually can localise persons even
in different distances. Therefore, a neural field (array)
for selection of the most salient region should be three-
dimensional.

Those fields can be described as recurrent nonlinear
dynamic systems (cf. [1], [14]). Regarding to the selec-
tion task we need a dynamic behavior which leads to
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Fig. 5. Generation of a scale space pyramid of primary saliency
maps

one local region of active neurons successfully compet-
ing against the others, i1.e. the formation of one single
blob of active neurons as an equilibrium state of the field.
The following equations describe the system:
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Herein 7 = (z,y, z)7 denotes the coordinate of a neuron,
z(F,t) is the activation of a neuron # at time ¢, y(¥,t) is
the activity of this neuron, x(7 t) denotes the external
input, h(t) is the activity of a global inhibitory interneu-
ron, w(#—7) denotes the function of lateral activation of
neuron ¢ from the surrounding neighbourhood R. Fur-
ther, 7 is the time constant of the dynamical system
and o is the deviance of the gaussians determining the
function of lateral activation. For the computation we
used the following values for the constants: ¢, = 0.025,
e = 0.1, ¢ = 0.1, ¢ = 2 (halved z-direction), 7 = 10
with AT =1 (AT: sampling rate). The range R of the
function of lateral activation reachs over 5 pixels and
3 pixels in z-direction, respectively (anisotropic neigh-
bourhood).

The results of the systems shall be qualitatively il-
lustrated in figure 6. The presented results are exem-



plary, the usage of the shape of contour provides one
solution for the person localisation problem, even under
quite different conditions. In our ongoing work, the same
principle 1s extended to the whole saliency pyramid, in-
tegrating all cue modules. The novel approach with a
three-dimensional dynamic neural field can be assessed
as robust method for the selection process, very reliable
for the task at hand.

Fig. 6. Input images with marked head-shoulder-contours, ob-
tained at the different levels of the multiresolution pyramid
by the proposed method; left: without dynamic selection;
right: by means of dynamic selection (white rectangles mark

the highest likelihood).

B. Control of the two-camera-system

A camera control module, based on a neural approach
proposed in [22], was extended for the control of the
two-camera system. The basic idea is that a definite
configuration of the cameras is assumed. Therefore, af-
ter a possible user (face region) was located in either
camera image, the second camera is directed towards
this user. This is realised by means of controlling the
pan/tilt of this camera as well as the additional pan for
both cameras. Therefore, the initial camera configura-
tion (especially the base distance) remains stable.

As soon as a possible user (face region) is detected in
one of the camera images, this camera serves as general-
view-camera, whereas the second camera becomes the
gesture-camera. 'The necessary distance estimation 1s
provided by the cue modules detecting structural infor-
mation (face and head-shoulder-contour). The resulting
gesture-scene should contain all gesture-relevant parts of
the intended user. Furthermore, the gesture-camera is
controlled such that the expected face region will appear
on a predefined position in the image with a predefined
scale, too. Hence, we do not have to ensure scale invari-
ance by the further processing steps.

Fig. 7. Possible intuitive gestures (poses); from left to right they
could carry the following meanings for the robot: hello, stop,
move right

C. Detection and interpretation of gestures

a) Definition of a gesture set

For complexity reasons, we have predefined a gesture
alphabet and have assumed only static gestures (poses),
which are stable for a certain period of time (see fig. 7).
The mapping between the gestures to be recognized and
the associated actions of the robot is predefined, too (see

also [15]).

b) Generation of the secondary saliency map

A secondary saliency map is created for the gesture-
scene, which determines the sequential processing of this
scene. Similar to the primary saliency map we utilise to-
pographically organised neural fields.

To simplify the task, we mainly employ the skin color
information as the input for this field, thereby assuming
that the skin color segmentation is robust enough.
Because of the camera control, the prominent position
and size of a hypothetic face region is known. So,
by means of specially tuned field parameters (coupling
width and strength) the emergence of an activity blob
covering the face region is highly supported. Therefore,
the face region will be the first area to be analysed in
detail (see the following section). The hand regions be-
come salient, too.

¢) Face verification and representation of gestures

The next processing step must provide a face verifica-
tion, that means we have to decide if there is a face at
all, and if it is oriented towards the robot.

To obtain this information, a very simple method for
direct mapping of grey value image parts to the cor-
responding object orientation (both, faces and hands),
based on a MLP network, was tested. Preliminary re-
sults show the sufficient functionality of such an ap-
proach under certain constraints (unstructured back-
ground). At present, the approach is examined under
real world conditions. Furthermore, the detailed analy-
sis of faces and hands via a regular grid of Gabor filters
and a following classification of the Gabor filter outputs
with a neural classifier (see also [17], [18]), will be taken



into account, too.

If there is no face at the assumed position, the face
verification fails. In that case the gesture-camera turns
towards the next salient region of the primary saliency
maps or returns to the wide-angle-mode.

Besides the face, hand regions become prominent in
the secondary saliency map, mostly due to their skin
color, but we do not know whether the skin colored
regions are hands or skin colored regions of the back-
ground. For simplicity reasons, actually we describe the
static gestures by means of the spatial relation between
face and hands of the person. So, a graph-like data
structure is obtained. To decide, whether there is made
a relevant gesture at all and what gesture it is, a dis-
tance measure between the actually obtained graph and
the prototype gesture graphs will be implemented and
tested.

III. NEURAL ARCHITECTURE FOR NAVIGATION
BEHAVIOR

The superior direction of the research in our depart-
ment concerns the organisation of adaptive behavior. A
lot of projects deal with the different aspects of behav-
ioral organisation, such as direct mapping from sensory
information to motor commands, organisation of senso-
rimotor representations, integration of different sensors,
organisation of reactive as well as globally planning be-
havior and so on (see [12]), in order to extend the be-
havioral performance of the robot MILVA continuously.

A. Multi-agent approach
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Fig. 8. Neural architecture for organisation of complex navigation
behavior; see text for explanation

The second part of the GESTIK-project deals with
the mapping from sensory situations to articulated be-
havior. Figure 8 outlines the corresponding architecture.
The basic idea is that different neural agents are trained

to become experts for certain navigation tasks or actions,
respectively (turn left, straight ahead, turn right). The
design of the neural agents is grounded on the ALVINN-
approach proposed by Pomerleau [20], well known as a
kind of imitation learning. The ALVINN-approach was
extended in different directions: i) The input contains
a path history, including the last perceived sensory sit-
uations, because the last sensory situations have equal
importance for navigation, especially for turnings (de-
pending on the robot geometry). ii) The output consists
of a two-dimensional neural field, coding steering angle
as well as as velocity value in a topological manner. iii)
The selection of the appropriate action is done via a
WTA process inside the two-dimensional output field.

To superimpose the action proposals coming from the
different neural agents (“action selection” in figure 8),
we utilise a dynamic neural field approach, too. The
selected action is assumed as the best one, corresponding
to the actual sensory situation.

B. Integration of user’s gestural instruction

The interaction between the purely sensory based nav-
igation behavior and the intention of the user,
ing from the gesture recognition module, is realised by
means of an additional neural agent (“human manipula-
tion” in figure 8). The desired robot behavior could be,
for instance, “come to me”, articulated via the “hello”-
pose. Then this submitted intention leads to a mod-
ulation of the action selection process, such that the
moving towards the user is supported. However, the
finally selected action will always be determined by the
actions possible in the current sensory situation at all. In
other words, if the user’s intention supports the straight
forward action, but there i1s an obstacle in front of the
robot, the selection of this action will be inhibited. A de-
tailed description of the multi-agent based organisation
of robot behavior can be found in [16].

com-

bl

IV. CONCLUSION AND OUTLOOK

The investigations described above, concerning the
navigation behavior, were carried out using a minia-
ture robot KHEPERA. Currently, we realize and test the
submodules of the proposed neural architecture on the
MILVA robot for real world human-robot-interaction.

Our preliminary results concerning user localisation
clarify, that only the parallel utilisation of different
methods leads to appropriate localisation results. Hence,
the system becomes much more robust, can handle
highly varying environmental conditions and is less de-
pendent on the presence of one certain feature. Depend-
ing on the environmental conditions (illumination, image
content, distance between robot and user) which can nei-
ther be influenced nor be estimated a priori, the different
cue modules provide more or less confident results. For
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Fig. 9. Skin color (middle) and face structure (right) hypotheses
obtained from the input image (left)

example, the uncertainties concerning skin color segmen-
tation are demonstrated in figure 9 (middle). However,
the detection of facial structure supplies a reliable result
(right).

Furthermore, we concentrate on the final implemen-
tation of the pyramid containing the primary saliency
maps. Only when the whole primary saliency system is
stable running, we can estimate the sufficiency of the de-
veloped cue modules. The cue module for motion anal-
ysis has to be realised and integrated into the saliency
system.

Much effort is needed for the integration and test
of the whole system, running on MILVA. Besides the
parallel implementation of the methods detecting facial
structure and head-shoulder contours to fulfil real-time
requirements, the continuous interaction between robot
and user remains a still difficult problem. Here, an in-
teraction regime has to be developed, which allows the
user to understand the current interpretation state of
the robot.

Additionally to the visually-based interaction scheme
a model for selective auditory attention was developed
in our department (see [25]). This model was already
implemented on MILVA and is to support the user lo-
calisation. For example, the user can attract MILVA’s
attention by clapping her hands.
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