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ABSTRACTThis paper introduces a way to locate persons in visual images of cluttered scenes using a shape-of-contour approach.The contour which we refer to is that of the upper body of frontally aligned persons.As we know from the Gestalt psychologists,1 perception utilizes mechanisms to combine discrete sensations inorder to assess their spatial and/or temporal relationships (grouping mechanisms). From an abstract viewpoint,Gestalt e�ects appear if some quality criteria based on local features are ful�lled. For those features we restrictto oriented edge elements extracted by means of oriented �lters modeling oriented receptive �elds.2{4 What isimportant is the correct integration of pieces of edges in order to obtain separate objects.The most important Gestalt laws related with this approach are good continuation and symmetry both describinge�ects which necessitate grouping mechanisms.5,1 Since a shape or a silhouette might be partially concealed oroccluded, the detection is just a variant of contour completion.After deriving an approximation of it using a set of example images we take a spatial arrangement of steerable�lters to determine the pointwise orientation along the contour.However, the application of the �lter arrangement typically yields a coarse distributed outcome. To select themost promising location we apply a dynamic pattern formation within a three-dimensional dynamic neural �eld toget the location even considering the distance of a person. It turned out that by means of simple homogeneousinternal interaction rules the dynamic neural �eld can �nd robust localization solutions. The activity of the �eld-neurons can be considered as internal state enabling a permanent localization helpful for tracking the person.Keywords: Computer Vision, 3D Dynamic Neural Field, Winner-Take-All, Steerable Filter, Person Localization1. INTRODUCTIONThe present work deals with the visual detection and localization of persons in the context of gesture-based human-robot interaction. One should consider that detection does not mean to recognize just a certain pattern of color,brightness or intensity, since persons obviously can be worn in huge variety. Further we think, on those scalesinteresting for the localization task the contour shape represents a really high invariant, especially against thebackground of real-world scenes. Therefore, we refer to a person based on a typical shape of contour. Our simplecontour shape prototype model consists of an arrangement of oriented �lters (e. g. �Gabor-shaped�6 or steerable ones7)doing a piecewise approximation of the upper shape (head, shoulder) of a frontally aligned person. The arrangementitself was formed based on a set of training images. Applying such �lter arrangement in a multi-resolution manner,8this leads to a robust localization of frontally aligned persons even in depth.The central problem of selecting the most promising (salient) image region is treated by means of a three-di-mensional dynamic neural �eld performing a winner-take-all (WTA) process (blob-like pattern formation9). Becauseof the three-dimensional nature of the input (several pyramidal levels) a three-dimensional dynamic neural �eld isrequired. To our knowledge, this type of �eld is novel. The main advantage of dynamic neural �elds is the use ofsimple homogeneous interaction rules leading to an implicit solution which occurs as a local blob of active neuronsas equilibrium state of the �eld. From the mathematical point of view the �eld can be compared to a recurrentnonlinear dynamic system. Therein, the activity of the neurons can be considered as internal states providing apermanent localization helpful for tracking.Send correspondence to {andreac,ulf}@informatik.tu-ilmenau.de or fax to ++49 3677 69 1665, or call ++49 3677 69 1302/1305.More information can be obtained at http://cortex.informatik.tu-ilmenau.de
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2. ARRANGEMENTS OF STEERABLE FILTERS2.1. Motivation and Related WorkOur idea refers just to a description of the outer shape of head and shoulders, whereas the interesting and inde-pendently developed approach of Oren and Papageorgiou10 considers the complete body of persons (pedestrians)using Haar wavelet templates. The common aspect between the two approaches is a set of locally distributed oriented�lters used to determine the strength of certain orientations of visual �structure� for a small region. In our applicationit cannot be ensured that one can capture the whole body of a person so that our model refers to just the head-shoulder-region.Further, using steerable �lters (see subsection 2.3) we can be more precise in determining local orientations whilefortunately keeping the computational load quite low. Since steerability means that one needs just a �xed basisset of �lters for convolutions followed by an analytical maximization to determine the angle of the most dominantorientation, the application of steerable �lters can be considered really elegant for our purposes.The idea of taking a set of oriented �lters for orientation determination is based on some physiological knowledgeon the mammalian visual system. The light stimuli entering the eye and striking the receptor cells in the retinaare �rst converted into electrical signals and then, after some processing stages, sent to the visual cortex. Here,at the back of the brain, the incoming information is processed by cells having orientation selectivity doing localdecompositions of the visual information with respect to the frequency space. These so-called simple cells areorientation sensitive showing a maximum response to a pattern of a given orientation and a less one to patterns ofsome other orientation. Young4 developed a mathematical model of simple cell's receptive �elds based on GaussianDerivative (GD) functions. Jones and Palmer11 proposed another model to �t the spatial shapes of cortical simplecells visual receptive �elds based on Gabor functions. Although we can �nd in the literature other approaches2 thereare some reasons for preferring GDs rather than others. These non-GD models have some drawbacks compared tothe GD ones. They require more parameters, their basis functions are not orthogonal and not separable in space andfrequency. In addition, the Gabor functions get closer and closer to the GD functions of order n as n approachesin�nity.As we know from the Gestalt psychologists,1 perception utilizes mechanisms to combine discrete sensations inorder to assess their spatial and/or temporal relationships. Such e�ects are referred to as grouping mechanisms.The perception of form and Gestalt is an elementary facility of the visual system. The underlying mechanisms areassumed to work at rather early stages of visual processing using specialized visual pathways. From an abstractviewpoint, Gestalt e�ects appear if some quality criteria based on local features are ful�lled. For those features, werestrict to oriented edge elements extracted by means of oriented �lters modeling oriented receptive �elds. What isimportant is the correct integration of pieces of edges in order to obtain separate objects from them.For our application we conceptualized the approach of an arrangement of spatially distributed oriented �lters todescribe persons as visual objects by means of the outer shape of head and shoulders. The most important Gestaltlaws related with this approach are good continuation and symmetry which both obviously describe e�ects whichnecessitate grouping mechanisms.5 Since this shape might be partially concealed or occluded for some reasons, thedetection task is just a variant of contour completion.The problem of detecting and locating persons is just a binary problem and no selection between alternatives.Therefore we do not need e. g. some deformable contour models to adapt to di�erent contour shapes in order to �ndthe most certain but can restrict to one static contour. However, the matching process with the �lter arrangementis controlled by means of a dynamic selection process based on mutually interacting models of dynamic neuron. Theprocess can �nd that position where the most heaped responses occur and considers this to be the most promisingposition of a complete contour.However, each section of the contour should be approximated by a special oriented �lter. Thus, searching aperson would require possibly as much di�erently oriented �lters as �lters belong to the arrangement, which iscomputationally very costly.2.2. Determining the Course of ContourIn our previous work12 we use an arbitrary model of the contour based on a manually design restricting to justfour �lter orientations. Obviously, one would have a more precise model using more than four orientations, i. e. thecontour model should be closely related to real data.



Figure 1. A Schematic sketch of the arrangement of steerable �lters.Steerable �lters have the nice property that an initially limited number of convolutions is su�cient to derive anyorientation information within an image. Thus, their use provides an extended set of orientations, avoids lots ofadditional �lters and enables a more accurate computation of the course of contour.Our complete data set consists of images showing ten persons in front of a homogeneous background under threedi�erent viewing angles (0�;+10� and �10�, where 0� correspond to an exactly frontal aligned face). Additionally, inorder to have a symmetrical response the whole data set was vertically mirrored extending the data set to 60 images.Following, the 256�256-images (grayscale) were lowpass-�ltered and downscaled resulting in the size 16�16. Then,we applied a Sobel operator� to the images enhancing the edges of each image. This operator (similarly to others,13e. g. Robinson-, Kirsch-, Prewitt-operators) approximates the �rst derivative. In the case of a 3�3 convolution mask,the gradient is estimated in eight possible directions, and the convolution result of highest magnitude indicates thegradient direction. Next, all of those edge-marked intermediate images are averaged, since the contour to determineshould on average match the real outer contour. To �nd that edge representing the typical contour shape wethresholded. High threshold values give gaps within the contour, whereas low ones yield too broad contoursy.Now, we have the course of the contour of interest resulting in a 16� 16 binary matrix where the elements alongthe contour are set to 1, the others remain 0. We refer to this contour matrix as �. What is further of interest isthe local orientation of each contour element. It is achieved by means of the steerable �lters (see below) applied tothe binary contour shape so that for each element of � an angle of orientation can be determined.
Figure 2. From left (a) to right (d): Two example images (16� 16) out of the data set; determined binary shapeof contour supp (�); orientation angles coded with gray values � (0�: black; 90�: medium gray; 180�: white). Notethat around the parting transitions 180� to 0� occur. Since the original data set was mirrored the contour model issymmetric.�For simplicity reasons we did not use the true de�nition of the non-linear Sobel operator but a faster linearized approximation madeup as linear superimposition.yIn our work we chose a threshold of 17%.



2.3. Applying Steerable FiltersThe previous task provides a binary image representing an averaged head-shoulder-portrait but give no informationabout the local orientation at a given contour point. After determining the contour, we measure the local orientationby means of the application of a set of �lters which are oriented in every direction. This again could be done, e. g.using the conventional Gabor-type �lters but it requires the choice of certain directional (pair of) �lters each of themdi�ering from the others by a certain small rotation. In this case each �lter pair corresponds to that angle the �lter istuned to. It also means that the orientation at a point of the contour is provided by the �lter pair which has maximalresponse in this point. Unfortunately, by such an approach there is a trade-o� between the required exactness of thevalue of the angle and the number of �lters. The more exactly the measure of the orientation has to be, the more�lters (e.g. certain orientation) we have to choose. In this paper we consider a di�erent approach using the steerable�lters7 for orientation estimation. This approach provides an e�cient �ltering output by applying a few basis �lterscorresponding to a few angles and then interpolating the basis �lter responses in the desired direction. Steerable�lters are computationally e�ciency and do not su�er from the orientation selection problem.The mathematical directional derivative operator of a two-dimensional function embodies the principle of steer-ability: @@~n : C1(
;R) �! C0(
;R)f �! rf � ~n (1)Here Ck(
;R) indicates the space of the k-fold di�erentiable functions de�ned from some interval 
 � R2 intoR and r = ( @@x ; @@y ) is the gradient operator. This directional operator is always with respect to a unit vector~n = (nx; ny) which unequivocally determines a direction. By means of simple trigonometrical considerations the unitvectors ~n can be written as function of a unique angle # in the range [0; 2�) as ~n = (cos#; sin#). The de�nition ofthe directional derivative operator in accordance with the above considerations yields:@@~n = nx @@x + ny @@y= cos# @@x + sin# @@y (2)The equation states that the directional derivative operator can be synthesized at any arbitrary orientation # froma linear combination of the operator tuned to 0� and 90�z. The operators @@x and @@y are called basis set while thefunctions sin# and cos# are referred to as the interpolation functions.In general, a function f(�) is considered steerable if it satis�es the following:� the basis set is made up of their M rotated copies f�1(�) : : : f�M (�) on any certain angles �1 : : : �M� a rotated copy f#(�) of it on some angle # can be obtained by superimposition of its basis set times interpolationfunctions I(�j )(#) by f#(�) = MXj=1 I(�j )(#)f�j (�) (3)In our work we take a quadrature pairx by using the second order derivative of a Gaussian and an approximation ofits Hilbert transform by a third-order polynomial times a Gaussian. We refer to the second derivative of a Gaussianand its Hilbert transform approximation respectively as G and H . To measure the orientation along the contour weuse the phase independent squared sum of the output of the quadrature pair. This squared response as a functionof the �lter orientation at a point (x; y) represents a local oriented energy14 and is computed asE(x;y)(#) = �G(x;y)(#)�2 + �H(x;y)(#)�2 (4)zIf ~n = (1; 0) or ~n = (0; 1) the directional derivative is exactly the partial derivative with respect to x or y, respectively.xA pair of �lters is in quadrature if they have the same frequency response but di�er in phase by �2 .



Because of the symmetry of the functions G(x;y)(#) and H(x;y)(#), the energy at every pixel is periodic of period �.Moreover, from the steering theorems7 it follows that a linear combination of MG = 3 and MH = 4 basis functionsis su�cient to synthesize every version rotated to any angle # of respectively G and H .Because the property of steerability is not dependent on the selection of the basis functions being oriented atsome certain directions we select the three �j with j = 1 : : : 3 evenly spaced orientations 0�, 60� and 120� for G andthe four �j with j = 4 : : : 7 likewise evenly spaced orientations 0�, 45�, 90� and 135� for H . On account of the choiceof the above directions, the Gaussian derivative part G(x;y)(#) of the �lter pair tuned on some angle # can be writtenas G(x;y)(#) = I(0�)G (#)G(x;y)(0�) + I(60�)G (#)G(x;y)(60�) +I(120�)G (#)G(x;y)(120�) (5)with interpolation functions7I(�j)G (#) = 14�2 cos(#� �j) + 2 cos (3(#� �j)) � j = 1 : : : 3 (6)For the same reason its approximated Hilbert transform H(x;y)(#) can be written in the formH(x;y)(#) = I(0�)H (#)H(x;y)(0�) + I(45�)H (#)H(x;y)(45�) +I(90�)H (#)H(x;y)(90�) + I(135�)H (#)H(x;y)(135�) (7)with corresponding interpolation functions7I(�j)H (#) = 15�1 + 2 cos (2(#� �j)) + 2 cos (4(#� �j)) � j = 4 : : : 7 (8)The whole quadrature pair can also be expressed with M = MG +MH = 7 basis �lters.From equations 5 and 7 and by means of trigonometric identities the equation 4 can be written as a Fourier seriescontaining only the even frequencies:E(x;y)(#) = a0 + 3Xk=1 bk sin (2k#) + 3Xk=1 ck cos (2k#) (9)We then use this expression for the oriented energy to accurately estimate the dominant local orientation by pointwisemaximizing the oriented energy. The simplest way to solve this maximization problem consists of calculating theenergy for each angle within the set [0; �) (with a certain angular step) and then taking#(x;y)MAX = argmaxfE(x;y)(#) j # 2 [0; �)g (10)The smaller the step is chosen, the �ner is the solution. However, to �nd this maximum value we do not searchdegreewise because of the computational cost indeed we look for some analytical solution.For complexity reasons we restrict to E(x;y) including only the �rst order term so that E(x;y) is simpli�ed to:E(x;y)(#) � a0 + b1 sin (2#) + c1 cos (2#) (11)Now we search the maximum of E(x;y)(#) among the zeroes of @E(x;y)(#)@# .De�ning A = c1pb21 + c21 (12)the analytical expression for #(x;y)MAX is:#(x;y)MAX = argmax�E(#); 8# j # 2 �� arccos(�A)2 �� (13)



The parameters b1 and c1 are easy determined by equating equation 4 and 9. One yieldsb1 = 4p39 �G(60�)G(60�) +G(0�)G(60�) �G(0�)G(120�) �G(120�)G(120�)�+p24 �H(0�)H(45�) +H(90�)H(45�) +H(0�)H(135�) �H(90�)H(135�)��12 �H(0�)H(90�)�+ 34 �H(45�)H(45�) �H(135�)H(135�)� (14)c1 = 89 �G(60�)G(120�) �G(0�)G(0�)�� 12H(45�)H(135�)+49 �G(60�)G(60�) �G(60�)G(0�) +G(120�)G(120�) �G(120�)G(0�)�+p24 �H(45�)H(90�) �H(45�)H(0�) +H(135�)H(90�) +H(135�)H(0�)� (15)The angular value #(x;y)MAX is a measure related to certain coordinates (x; y). We further refer to the matrix of allthese values as �.Unlike a Gabor-type �lter approach the processing scheme by steerable �lters requires no additional convolutionafter the initial pass through the seven basis �lters. Moreover, we choose these certain steerable �lters because thereexists a separable basis set in Cartesian coordinates which considerably lowers the computational costs.3. DYNAMIC NEURAL FIELDS FOR LOCALIZATION3.1. Neural Field Input: Responses of the Filter ArrangementThe previous section extensively describes the theory and use of steerable �lters. By means of those �lters we calculateboth the matrix � describing a typical course of the head-shoulder-portrait and that matrix � (corresponding tothe image wherein a person is to be found) containing the dominant local orientation values.At next, we are going to search for the presence of the kernel � within the matrix �. To do it, we utilize amatching technique based on a similarity measure m(x;y). That measure should ful�ll the following conditions:� m(x;y) is a superimposition as following:m(x;y) = I�1Xi=0 J�1Xj=0�i;j 6=0 em��i;j � #(x+i� I2 ;y+j� J2 )MAX �card (supp (�)) (16)where in our work I = J = 16 are the dimensions of the matrix �, �i;j is the element of � at position (i; j)and #(x+i� I2 ;y+j� J2 )MAX is element of � at position (x + i� I2 ; y + j � J2 ),� the single function em(
) describes the similarity between two elements of � and �; due to the �-periodicity ofthe outcome of the steerable �lters it should have just the same periodicity,� em(0) = em(�) = max
 fem(
)g and em��2� = min
 fem(
)g,� em(
) decreases for 
 2 h0; �2� and increases for 
 2 h�2 ; ��Therefore, it seems convenient to use a trigonometrical function as Cosine, so thatem(
) = cos (2 j
j) + 12 (17)



For simplicity reasons one might replace the cosine in equation 17 with a piecewise linear function:em(
) = ���� 2� 
 � 1���� (18)The normalization to the cardinality of the support{ of the matrix � in equation 16 ensures m(x;y) 2 [0; 1] which isneeded for the further processing.3.2. The 3D Nonlinear Dynamic FieldTo achieve a good localization a selection mechanism is needed to make a de�nite choice. This is not limited to a two-dimensional position. Since we use �ve �ne-to-coarse resolutions we actually can localize persons even in di�erentdistances. Therefore, a neural �eld for selection the most salient region should be three-dimensional. The advantagesof using 3D dynamic neural �elds are the following:� the process leads to an implicit solution using simple homogeneous interaction rules� the activity of the neurons considered as internal states provide a permanent localization (any-time) helpful fortrackingThat �eld F can be described as recurrent nonlinear dynamic system. Regarding to the selection task we need adynamic behavior which leads to one local region of active neurons successfully competing against the others, i. e. theformation of one single blob of active neurons as an equilibrium state of the �eld. The following equations describethe system: � ddtz(~r; t) = �z(~r; t)� chh(t) + cix(~r; t)+cl ZN w(~r � ~r 0)y(~r 0; t)d3~r 0 with (19)w(~r � ~r 0) = 2 exp(�3j~r � ~r 0j22�2 )� exp(�j~r � ~r 0j2�2 ) (20)y(~r; t) = 11 + exp(�z(~r; t)) (21)h(t) = ZF y(~r 00; t)d3~r 00 (22)Herein ~r = (x; y; z) denotes the coordinate of a neuron; z(~r; t) is the activation of a neuron ~r at time t; y(~r; t) isthe activity of this neuron; x(~r; t) denotes the external input (corresponds to the re-coded similarity measure m~r,cf. equation 16 and see �gure 4); h(t) is the activity of a global inhibitory interneuron activated by each neuronover the entire �eld F � R3; w(~r � ~r0) denotes the function of lateral activation of neuron ~r from the surroundingneighbourhood N � R3. Further, � is the time constant of the dynamical system and � is the deviance of theGaussian determining the function of lateral activation. For the computation we used the following values for theconstants: ch = 0:025, cl = 0:1, ci = 0:1, � = 2 (halved in z-direction), � = 10 with �T = 1 (�T sampling rate). Therange I of the function of lateral activation reachs over 5 pixels and 3 pixels in z-direction, respectively (anisotropicneighbourhood).As illustrated in �gure 4 to use a three-dimensional neural �eld one has to consider that local correspondencesbetween the resolution levels. Therefore, we do a re-coding into a cuboid structure. One side e�ect is that thecoarser a pyramid level is the less one can locate something by means of the similarity measure. However, withoutparticularly treating this e�ect we just noticed that those levels z of the neural �eld activated from the rather coarsepyramid levels take little more steps to develop a blob (or a part of a blob, respectively).{The support of a matrix considers only nonzero elements.



Figure 3. Localization results in an indoor (top) and outdoor environment (bottom): The localization of aperson does not sharply occur at one of the pyramidal planes, the originating spatial blob is most strongly developedon the central of the �ve planes. Each row contains the results of one of the �ve computed resolutional levels, fromtop to bottom 96� 71, 68� 50, 48� 36, 34� 25 and 23� 18 pixels. In the seven columns the following results aredepicted: input, results of the orientation �ltering (0�, 45�, 90� and 135�), the result of the �ltering with the �lterarrangement and eventually the result of the selection within a three-dimensional �eld of dynamic neurons.Note that for clarity reasons of this presentation we have restricted here to just four di�erent orientations.



3.3. ResultsThe results of the system are qualitatively illustrated in �gure 3. Each row contains the results of one of the �ve(distance 1=p2) computed resolution steps, from top to bottom 96� 71, 68� 50, 48� 36, 34� 25 and 23� 18 pixels.The images of the rightmost column show the state of the �ve layers of the dynamic neural �eld in a snapshot atthat moment when the activity change �y of the most active neuron became less than 1%. From the second to the�fth column the results of the image �ltering task with steerable �lter along four certain directions (0�, 45�, 90� and135�) are shown. The sixth column gives the results of the image �ltering task with the arrangement of steerable�lters. Finally the leftmost column shows the localization task result.On average, the system takes less than 11 iteration steps. The range of the blob is not restricted to one plane. Toget a more precise speci�cation of the distance of a person one could interpolate the z-coordinate of the blob center.As far as the system reachs an equilibrium state, another frame is taken and processed the same way. A blob inan equilibrium state does not necessarily indicate the presence of a person in the image, however supposed a personis present it will be easily found. If a localized person moves between two captured frames the correspondent blobwill follow over the iteration steps reaching a new equilibrium state.Our presented results are exemplary, the usage of the shape of contour provides one solution for the personlocalization problem, even under quite di�erent conditions. The novel approach with a three-dimensional dynamicneural �eld can be assessed as robust method for the selection process.
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Figure 4. Processing steps for person localization. Starting from a multi-resolution representation of the image,each level is treated by steerable �lters. Applying the �lter arrangement we determine a distance measure whichis taken as input of a three-dimensional �eld of dynamic neurons. The resulting blob (locally delimited pattern ofactive neurons) is used to localize a person.The dark marked segments depict the lateral activation region for one (black marked) dynamic neuron coveringlateral neurons even from neighboured levels. For the used activation function see equation 20.4. FUTURE WORKOnce a person is localized, we can precisely analyze the person in detail, e. g. concerning gestures. Gestures are staticor �exible postures of hands, arms or the body of a person usually used to convey information from one human beingto another. In the context of human-computer interfaces gestures can be used to interact with a computer system.In a framework of an image-based gesture recognition system on board of our mobile robot platform MILVAk thelocalization of a user's head has essential importance, since it prerequisites for any further gesture-related analyses(e. g. distance and angle between hands and/or head).ACKNOWLEDGMENTSAndrea Corradini is supported by the EU Fellowship: TMR Marie Curie Research Training Grant # ERB FMBICT 97 2613. He thanks the Provincia Autonoma di Trento (Italy) for previous partial support, as well as GiulianaCurti for her help.kMultisensory Intelligent adaptive Vehicle in neural Architecture
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