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Abstract

For any wisually-based interaction between persons and acting systems
within a real-world environment the localization of a user by the system
is a necessary condition. The presented work deals with this visual loca-
lization problem of a user concretely referred to the autonomous mobile
robot system MILVA of our department. Since this system is applied under
real-world conditions especially for the localization some proper techni-
ques are needed which have an adequate robustness. In our opinion, this
requires the combination of several components of saliency towards a
multi-cue approach, consisting of structure- and color-based features [2].

This paper introduces one of them: the localization based on a typi-
cal shape of contour. A simple contour shape prototype model consists
of an arrangement of oriented filters doing a piecewise approximation of
the upper shape (head, shoulder) of a frontally aligned person. Applying
such filter arrangement in a multiresolution manner, this leads to a ro-
bust localization of frontally aligned persons even in depth. The central
problem of selecting the most promising (salient) image region is trea-
ted by means of a three-dimensional dynamic neural field performing a
dynamic winner-take-all process (WTA, [1, 6]).

After a successful localization of a person one can start a more de-
tailed analysis of the gesture’s meaning: besides the recognition of static
gestures we also concentrate on the acquisition and later the recognition
of dynamic gestures.

1 Introduction

The autonomous mobile robot system MILVA of our department serves not
only as an experimental platform for investigations of autonomous robot navi-
gation in real-world environments, but also for work concerning gesture-based
interaction between user and robot. It’s getting more and more important for
both navigation and interaction to tolerate a rising level of complexity of the
surroundings the robot system is operating in. The goal should be to operate
even without special preparations so that e. g. no remarkable restrictions should
appear concerning lighting conditions etc. Our superior goal is that MILVA de-
velops an intelligent behavior both concerning navigation and interaction using
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an architecture consisting of elements with neural or neurally inspired mecha-
nisms.

MILVA can develop an active and therewith intelligent detail analysis (at-
tention-based perception, e.g. for the analysis of a gesture) only if there are
a priori proper saliency mechanisms available enabling a preselection of a vi-
sual image. Consequently, for the interaction with persons we need saliency
mechanisms to localize them.

After the introduction of one of the used saliency mechanisms and its selec-
tion process with dynamic neural fields we show what follows the localization
of a person: a detailed visual analysis of that person. Besides the recognition
of static gestures [2] we also concentrate on dynamic gestures. So, the second
part of the paper introduces our present results of segmenting regions of motion
in visual images by means of the Poggio-Reichardt motion computation model
and a following dynamic neural WTA process.

2 Arrangements of Oriented Filters for Feature

Extraction
This paper introduces a contour shape based approach
HL (A for saliency based on some physiological considerations
i i as well as on psychophysical effects. Recently, Oren [9]
mYARESTE independently developed an interesting similar approach.
" ii)}(/ %z ou While our idea refers just to the shape of head and shoul-
& 0 der, his approach considers the complete body of pedes-
i Bs trians.
1 (1

The visual cortex consists in several parts of cells
Figure 1: Schem- with oriented receptive fields. Thus, referred to a retinal
atic sketch of the position broad ranges of the frequency space are cov-
arrangement of ori- ered by a set of oriented filters. A lot of investigations
ented filters. [5, 7] have exposed that there is a high similarity between
the profiles of the mentioned receptive fields and two-dimensional Gabor-func-
tions. So, local operations decomposing the visual information with respect
to frequency space are made. Psychophysical aspects as good continuation or
symmetry (both belonging to the Gestalt laws, [8]) obviously describe effects
which necessitate grouping mechanisms. Against this background we concep-
tualized the approach of arrangements of oriented filters. While fig. 1 shows
the positions of the filters it does not explicitly show the respective directions.
What is important is that we only use four orientations. Since we do not want
to discriminate an orientation in the range of [0, 7) we should cover 45°-sectors
of the frequency space. That’s why the filters belonging to the arrangement do
have exactly that orientation which is the most prominent caused by the con-
tour shape within the filter range'. The arrangement is applied by determining

IThe positioning and orientation selection of the filters is in general an optimization prob-
lem. However, since we use a rather coarse discrete grid and very few different orientations
it is not as complex so that one would be forced to use a special algorithm. If one defines an
energy function there would be on principle no reason against an adaptive neural algorithm.



whether the dominating orientation at each coordinate fits the dominating ori-
entation of a prototype shape. As distance measure we use simply the relative
Hamming distance.

Gabor filters are ideal if one considers their sharpness both in position and
frequency space, but have high computational costs. There is a way providing
a good compromise between computational cost and exactness. This is the
approach of inertia tensors [4]. The direction of such tensor corresponds to
that of the most dominant oriented visual structure within a certain range.
The computational costs are magnitudes less than those of the Gabor filters.

3 Dynamic Neural Fields for Selection

To achieve a good localization a selection mechanism is needed to make a
definite choice. This is not limited to a two-dimensional position. Since we use
five fine to coarse resolutions we actually can localize persons even in different
distances. Therefore, a neural field for selecting the most salient region should
be three-dimensional.

What do we understand by dynamic neural fields? Those fields can be
described as recurrent nonlinear dynamic systems. Regarding to the selection
task we need a dynamic behavior which leads to one local region of active
neurons successfully competing against the others, i.e. the formation of one
single blob of active neurons as an equilibrium state of the field. The following
equation describes the system:

T%Z(F, t) = —2(7,t) — cph(t) + ciz(F,t) + ¢ /N w(F — 7y, t)d* 7" (1)
Herein 7 denotes the three-dimensional coordinate of a neuron position in the
field, z(7, t) is the activation of a neuron 7 at time ¢, y (7, t) is the output activity
of this neuron computed as a sigmoidal function, z(7,¢) denotes the external
input, h(t) is the global inhibition at time ¢ gathering the activity from each
neuron over the entire field and w(# — ) denotes the Mexican-hat function
of lateral activation of neuron 7 from the surrounding neighborhood N C R?.
The constants cp, ¢; and c; represent parameters of the system.

Figure 2: These pictures illustrate the localization results in an indoor environ-
ment of one pyramidal plane (48 x 36 pixels). From left to right: input image,
orientation filtering (0°, 45°, 90° and 135°), filter arrangement result, selection
within a 3D field of dynamic neurons.

The results of the system shall be qualitatively illustrated in fig. 2. All
the images show the state of the system in a snapshot at that moment when
the activity change Ay of the most active neuron became less than 1%. On
average, the system takes 11 steps. The expansion of the blob is not restricted



to one plane. To give a more precise specification of the distance of a person
one should determine the center of the blob and interpolate the distance.

Our presented results are exemplary, the usage of the shape of contour
provides one solution for the person localization problem, even under quite
different conditions. The novel approach with a three-dimensional dynamic
neural field can be assessed as robust method for the selection process.

4 Motion-based segmentation

Our goal is to build a motion-based recognition framework which can detect
motion from a sequence of monocular images of a scene in which objects are in
motion.

The knowledge of research in neurophysiology and psychophysics has influ-
enced the design of vision systems particularly in recognition, interpretation
and description of motion from a time-varying image sequence. In our paper
we present an approach for the recognition of motion from image sequences
modeling biological vision. Many psychophysical experiments have shown that
the human visual system is able to detect, localize and isolate a moving object
against a surround on the basis of motion information alone. The relative move-
ment, between an object and the ground permits both to identify its boundaries
and to detect its presence [10].

Based on behavioral experiments and neurophysiological knowledge of the
visual system of the fly Musca domestica, Poggio and Reichardt [10] proposed
a neural circuitry for the figure-ground discrimination by relative motion. In
our work we used a neural circuitry with forward shunting inhibition like the
Poggio-Reichardt’s one adapted for monocular images. We computed the mo-
tion region R(t) between each sequential pair of images at time ¢ and ¢ + 1 of
a certain interval and then we summed over ¢ in order to obtain an cumulative
image named binary motion region BMR [3]. It describes those spatial regions
within the sequence where motion occurred starting from the beginning of the
recognition task.

In order to remove the noisy regions from the detected ones we then ap-
plied to the BMR image a process of extraction of relevant regions by a neu-
rally-plausible, iterative competition/cooperation system of artificial neurons;
a WTA mechanism.

Because the BMR image is two-valued, say on and off, the task the WTA
has to aim at is to find that connected region consisting of the largest number
of on-values. Because of the conditions of the images to process and the goals
to aim at, selecting the actually largest region within the image cannot be
accomplished by the neural scheme employed for the localization task® but
only by a different approach.

This another WTA circuit, referred to as largest region WTA (LRWTA),

2The dynamic neural field introduced in the previous section cannot treat this problem
because the blobs (fig. 2) cannot exceed some certain size (equilibrium) but the motion regions
we want to segment now might be quite different depending on the kind of motion. Moreover
we need a different approach dealing with binary inputs.



is composed of a single layer of N excitatory neurons of identical type each
corresponding with one single pixel of the image. The neurons are mutually
connected within their neighborhood defined by excitatory synaptic strength
depending on the definition of connected region®. We consider pixels as neigh-
bored if they have a common edge, i.e. we used a 4-neighborhood.

In order to find the actually largest region within the image each neuron
of the correspondent neural field has to collect the excitatory activity of its
neighboring neurons. For the synaptic strength of each neuron we chose a
n X n separable kernel satisfying the property of symmetry, separability and
unimodality. To avoid attenuation or amplification the sum of the elements
of the kernel is required to be 1. Because a 4-neighborhood cannot be defined
through a separable kernel we circumvented this problem with the introduction
of a proper function f(-) of the activity. For a 3 x 3 separable kernel originated
by @ = [a, b, a] and under the condition 4a < b we defined it as follows:

. 0: z(t) <4a®*+ b2
fla(t) = { zi(t):  zi(t) > 4a®+b? (2)

The dynamic of the field can be described by the following equation:

> wji f(zi(t))
G4l = —— ., 3
J( ) max {Zj(t)} J ( )
j € Field
where z;(t) is the inner state of the neuron j at time ¢, I; is the correspondent
initial input value of the BMR image, w;; are the synaptic strengths and f(-) is
a linear function which depends on the choice of the neighborhood. In addition,
each element receives the original binary input I;. It avoids that original cells
without activity can contribute to the activity of the bounded region. The
iterative computation of eq. 3 is stopped as soon as the change of two following

states is below a certain threshold (stopping criterion).

Figure 3: Demonstration of the functioning of the LRWTA. From left to right:
initial and final image of a sequence, BMR image from the sequence, result of
the first step of the competition/cooperation task (largest region was selected,
others are temporary suppressed), time courses of the activities of all neurons
until the selection of the largest region was finished.

Beginning from the winning neuron the underlying region is segmented and
its area is computed. When the measure of this area is less than a fixed per-
centage of the largest hitherto segmented region, it is considered a noisy region
and the selection task is stopped. Otherwise the region is inhibited and a new

3Tn our paper a region is considered connected when we can reach any pixel within it only
by moving to neighboring pixels.



competitive process begins. The selected motion region has to be permanently
inhibited in order to avoid that it is again selected in the next competition task.
Without inhibition the currently selected region would be always selected again
(it is the largest!) and would not permit smaller regions to win the competition.

5 Conclusions and Future Work

Our contour-shape-based approach is one of the saliency components besides
others like facial structure and skin color. In a series of tests under several
conditions (indoor, outdoor) we obtained a quite robust person localization.
For computational reasons, the used image resolution was highly reduced so
that the distances of the persons had to remain rather close.

What does the results of the localization task mean for the development of
a gesture recognition system? In our opinion, the analysis of the motion region
could provide a promising way for the analysis of dynamic gestures. From the
motion template we can first extract a feature vector and then recognize it by
means of a statistical classifier (e.g. NN or HMM). A good head localization
task is therefore essential for a further feature extraction step. It allows to
calculate a feature vector relating to the relative head position and regardless
to the user’s position within the image (translation invariance).
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