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Abstract

The anticipatory approach to perception and
sensorimotor control presented here is based
on the prediction of sensory consequences of
hypothetically executed actions or action se-
quences. Based on this anticipatory approach,
we present a neural architecture that is able to
anticipate and evaluate hypothetically sensori-
motor sequences and to evolve an initially re-
active behavior into a planning and forecasting
one. We demonstrate the performance of this
kind of generative predictive perception in the
light of a local navigation task of a KHEPE-
RA robot. Results of vision-based sensorimotor
experiments performed with the internally si-
mulating control architecture are presented.

1 Introduction and Basic Idea

With our anticipatory approach to perception and sen-
sorimotor control [8; 9; 10] we want to avoid the com-
mon separation of perception and generation of beha-
vior and fuse both aspects into one neural process.
Therefore, we consider perception, especially percep-
tion of space and shape, as internal simulation of a
number of hypothetical actions (or action sequences)
and anticipation of their sensory consequences. In
this respect, perception is regarded to be an acti-
ve process of generating sensorimotor hypotheses ba-
sed on experienced and learned sensorimotor relations.
This point of view emphasizes the generative and pre-
dictive character of perception considering both senso-
ry and motor aspects of the action-perception-cycle.
On the one hand, all hypothetical actions and their
expected sensory consequences ‘describe’ the current
sensory situation. On the other hand, from this set
of ‘descriptive’ actions those can be selected for exe-
cution in reality which result in a positive effect con-
cerning the goal of the system. From this point of
view, perception of a visual scenery, for example in a
navigation task, can be characterized as follows: an
object 1n a certain distance may entail visual impres-
sions (e.g. the optical flow, see below) that enable
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a prediction of the expected visual and tactile conse-
quences in case of performing typical actions. Based
on the real visual impressions, a number of hypothe-
tical actions are simulated internally (see exemplary
trajectories in Fig. 1 a, b): those actions having a po-
sitive consequence (e.g. a collision-free movement) are
preferred for execution (black trajectories in Fig. 1 a,
b). All simulated actions that entail negative effects
(collision, pain) will not be executed in reality, but,
nevertheless, they contribute to the description of the
present situation, too. So, it is possible to characterize
the visual scenery immediately in categories of beha-
vior, i.e. by a set of actions which describe possible
methods of local navigation.

2 Sensorimotor Control Task

We have investigated the applicability of our anticipa-
tory approach and the developed neural control archi-
tecture (see section 3) in the light of a local navigation
task in order to demonstrate the efficiency and sound-
ness of our concept. In this task, a mobile robot has to
anticipate the sensorimotor consequences of its possi-
ble actions in order to navigate successfully, especially
in critical regions of the environment, for example, in
front of obstacles, on intersections, etc. (see Fig. 1 and
8 - left). Instead of a simulator, we used our mobile
miniature-robot KHEPERA to learn to navigate in a
real-world environment. If a mobile robot is to inter-
act in a useful way with its surroundings, it is essential
that it has sensory systems that are able to determi-
ne the basic 3D structure of the nearby environment
around i1t. A possible way is provided by the optical
flow, especially the optical flow field. An optical flow
field is determined by three things that are of direct
importance for our anticipatory approach: the robot
egomotion, the scene motion, and the 3D structure
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Fig. 2: Time behavior of hypothesis activities genera-
ted in three concatenated Prediction Modules operating
at staggered time-scales of a time hierarchy. Dynamic ap-
proach to a combined depth and width search for the best
evaluated action sequence within the sensorimotor space.

of the scene. In other words, the optical flow field
yields implicit information about spatial distances of
the robot to objects in the environment considering
the actions carried out immediately before. Regard-
less of the typical optical flow problems, DucuoN [3],
KRrO6SE [6], and others could demonstrate practically
that it 1s possible to navigate a mobile robot just using
the optical flow field. To estimate the optical flow, we
utilize the region-based correlation approach by Ca-
MUs [2]. Each movement of our robot KHEPERA is
bipartioned in translatory and rotatory components,
which are executed sequentially. During each trans-
latory movement, a sequence of consecutive images is
taken with the robot’s camera in order to stabilize
the estimation process by averaging of microstep flow

fields.

3 Neural Architecture for Sensorimo-
tor Anticipation

In this section, we present our neural control architec-
ture that learns to predict and evaluate the sensory
consequences of hypothetically executed actions. For
that purpose, the architecture must be able to simula-
te alternative sensorimotor sequences, select the best
evaluated one, and start to execute the sequence in
reality. Thus, it shows planning behavior at the sen-
sorimotor, 1.e. subsymbolic level. Since the intrinsic
dynamics of the internal simulation process is much
faster than the dynamics of the action-perception-
cycle in reality, it is possible to simulate and evaluate
several hypothetical action-perception-cycles before
final selection and execution.

3.1 Parallel-sequential Search in Sensori-
motor Space at Different Time Scales

Sequences of hypothetical actions and correspon-
ding sensory predictions are generated in our archi-
tecture by chaining of several sensorimotor Prediction
Modules (PM) (see Fig. 3) that operate at staggered
time-scales of a time hierarchy (see Fig. 2). The first
Prediction Module (PM1) operates on the real senso-
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Fig. 3: Chaining of PMs (SSMHPs) operating at stag-
gered time-scales for internal simulation of sequences of
hypothetical actions and expected sensory consequences.
The architecture realizes a dynamic search in depth and
width and selects the best evaluated sensorimotor sequence
from all simulated ones. Depth and width of the search are
limited both by resources (number of modules) and time
(available time for relaxation to alternative solutions, and
reaction cycle length of the robot).

ry input, simulates a set of alternative actions, and
predicts hypothetical sensory consequences of these
actions. The second module PM2 just operates on
the predicted sensory consequences of the simulated
PM1I-actions, generates itself a set of alternative acti-
ons, and anticipates their sensory consequences. This
internal simulation and prediction process on hypo-
thetical data is repeated in the subsequent modules.
Because the PMs operate at predefined, staggered ti-
me scales of that time-hierarchy, each of the modules
is only given that limited time to dynamically genera-
te alternative hypotheses during which the output of
its predecessor remains stable (see Fig. 2). To reduce
the complexity of search in the sensorimotor space, we
use a dynamic approach, which only selects the most
promising sensorimotor transitions. For that purpose,
each PM is able to generate a set of evaluated action
hypotheses that are selected in descending sequence
beginning with the best evaluated one. This is a dyna-
mical version of a search in width with the advantage
that the order of search can be continuously reshuffled
due to adaptation of the action values or a global mo-
dulation of all action hypotheses.

Subsequently, we explain the essential neural sub-
systems of our anticipating control architecture and
describe an internal simulation cycle.

3.2 Sensorimotor Prediction Module

Fig. 4 depicts the internal architecture of a single
PM. Fach PM consists of a submodule for generating
topologically coded action sets (action suggestion), a
submodule for sequential selection of single actions
within this map (action selection), a submodule for
prediction of the sensory consequences of the selec-
ted action (optical flow prediction), and an evaluation
module for the selected action (hypothesis evaluati-

on). A real sensory input zF(t) and the last real
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Fig. 4: Architecture of one Prediction Module (PM)

action a"®%(t) caused this input are processed in two
pathways: a) the sensorimotor mapping with the sub-
systems action suggestion, modulation, action selecti-
on, and hypotheses evaluation and b) the motorsen-
sory prediction with the optical flow prediction sub-
system. In these pathways, hypothetical actions and
their expected sensory consequences can be generated
that ‘describe’ the current sensory situation. What
action will be selected from this set of ‘descriptive’ ac-
tions for execution depends on the internal evaluation
of the generated sensorimotor sequences as a whole.

Sensorimotor mapping: In this pathway, a to-
pologically organized motor map that codes a set of
alternative actions is generated in the action suggesti-
on subsystem. A location in this motor map is corre-
sponding to a specific action within a quasi-continuous
action space (e.g. velocity and steering angle of a na-
vigation movement), while the activation of the cor-
responding neuron in the field represents the value
of this action learned in previous “action-perception-
cycles” (see Fig. 8-right). To generate the motor map,
this subsystem is realized as a neural function approxi-
mator (XOF (t) — A(t)) that is based on an adaptive
vector quantization technique combined with a topolo-
gically distributed reinforcement learning mechanism
[4]. The activity distribution in this motor map can be
directly modulated by an external input, e.g. a global
map (see Fig. 4), to influence the subsequent action
selection process. This modulation is a simple control
mechanism that allows it to integrate a single PM into
a multi-modular control architecture (see Fig. 3). To
select alternative actions in the motor map, a neural
field dynamics with sequential selection behavior is
used in the action selection subsystem. The aim of
this dynamics i1s the sequential selection of motor hy-
potheses in form of activity blobs in the motor map.
Since we are interested in alternative motor hypothe-

Fig. 5: Extended AMARI-Dynamics for sequential gene-
ration of motor hypotheses. Starting from an stable input
that codes the evaluated action suggestions for a given
sensory situation (left), the dynamics successively selects
alternative motor hypotheses in the field.

ses, the selected blob needs to be stabilized only for a
certain time. After that time, the selected region has
to be inactivated to give the next hypothesis the chan-
ce to win the competition. Our selection mechanism is
based on a non-linear AMARI-field dynamics [1]. The
field dynamics just selects the local region with the
highest energy within the map and suppresses all other
neurons in the field. So, the localization of the win-
ner blob codes the action hypothesis with the highest
evaluation for the current sensory situation. In order
to generate a sequence of alternative action hypothe-
ses, we extended the AMARI-dynamics by a temporal
self-inhibition of the currently selected winner-blob. A
detailed description of this self-inhibition mechanism
is given in [11]. With this extension, alternative acti-
on hypotheses can be found and selected sequentially
taking their competition energy that corresponds to
the input-specific “value” of the suggested actions in-
to consideration. This way, the field dynamics selects
the most promising action with the highest evaluati-
on first and later less promising ones, if the available
time for relaxation to alternative solutions allows this
(Fig. 5). Result of the sequential search is a spatio-
temporal sequence of temporarily stable action sugge-
stions (see Fig. 2-first row, too) that are fed into the
motorsensory prediction pathway, where they modu-
late the optical flow prediction-subsystem (see below).
Consequently, the parameters for the internal field dy-
namics directly control the breadth of search.

The hypothesis evaluation subsystem computes an
evaluation signal that is based on the selected action
and the action suggestion. This way, the sequenti-
al selection dynamics controls the width of search in
each PM. The maximum depth of search depends on
the number of replicated PMs organized in the time
hierarchy (see section 3.3).

Motorsensory prediction: One of the main ideas
of our anticipatory approach is that the subsequent
flow field just depends on the previous one and the
executed action, if the environment is static. If the ro-
bot is moving forward with a slight turn to the left, for
instance, the flow field shifts to the right and vice ver-
sa. Therefore, it is assumed that the optical flow pre-
diction subsystem can learn to anticipate the sensory
consequences of selected actions. Without a successful
prediction at the sensory level it is impossible to chain
several PMs in order to generate hypothetical sen-
sorimotor sequences. To predict a hypothetical flow
field of a hypothetical action, the prediction network
has to approximate the following mapping, which is
usually non-linear because of the distortions of the
optical system: OF"¢(t) x AMWP(t) — OF"P(t +1).
We assume, that this motor controlled prediction can
be approximated by a piecewise linear function ap-
proximation. We investigated several neural architec-
tures for the sensorimotor based optical flow predic-
tion, among other things a distributed architecture
of action-specific, linear function approximators (see
Fig. 6). This approach realizes a divide-and-conquer
strategy that is somewhat akin to that of the “Adap-
tive Mixtures of Local Experts” of [5]. Our flow pre-
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Fig. 6: Schematic diagram of our modular optical flow
prediction network with n expert networks (linear percep-
trons) and a gating network.

dictors are corresponding to the local experts, and our
action map clusterer to the selector network that assi-
gns tasks of different motor context to the individual
experts. The mapping of the experts is controlled by
a neural vector quantization technique, a Neural Gas
[7], that is gating the different flow predicting per-
ceptrons in dependence on the action selected by the
sensortmotor mapping pathway. The final prediction
of the succeeding flow field 297 (t 4 1) results from
a weighted superposition of the outputs of the local
experts that is controlled by the activation yM of the
gating Neural Gas neurons.
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The index r results from a “neighborhood ranking” of
the reference vectors wM for the current motor input
a(t) (r = 0 stands for the best-matching neuron i
with the lowest Euclidean distance d;), k controls the
influence of the other Neural Gas neurons.

3.3 Maulti-modular Architecture

A single PM can sequentially generate hypotheti-
cal actions and estimate the resulting sensory con-
sequences together with corresponding evaluations.
Sequences of hypothetical actions and corresponding
sensory expectations are generated by chaining of
several PMs operating at staggered time-scales (see
Fig. 2). As mentioned above, the first PM operates
on the real sensory input, the second one on the pre-
diction of the first, and so on (see Fig. 3). The actions
proposed by the PMs and all evaluations of a stable ac-
tion sequence are fed into a short—term memory called
Best Fvaluated Action Memory - BEAM (Figure 3). A
newly hypothesized action sequence overwrites a sto-
red sequence if the cumulative evaluation of the new
one is higher than that of the stored. The BEFAM is
inactivated if the input for the first PM is destabilized,
which means that a new, real sensorimotor situation
has been achieved. This strategy allows the internal
simulation of more than one action sequences, but just

the first action of the action sequence that has been
evaluated best 1s executed in reality. Moreover, the
sequence of hypothetical action maps that is stored
in the short-time memory of BEAM 1s used to prefer
the selected sequence in the next simulation cycle as a
kind of persistence (Fig. 3). This is realized by a spe-
cific delayed feedback of the memorized action maps
to the PMs, where they modulate the subsequent ac-
tion selection processes. Our dynamic hierarchy with
staggered time-scales guarantees that, after a short
setup-time, the internal simulation process can be in-
terrupted at any time. Then, that action sequence
which has been evaluated best up to this moment 1s
selected and executed. This way, it 1s possible to find
an at least good solution at any time. From the robo-
tics, this is well-known as anytime behavior. If there 1s
enough time, our architecture can find the best evalua-
ted action sequence on the basis of those motorsensory
relations that have been experienced, evaluated, and
learned in previous action-perception-cycles.

3.4 Learning

The learning within the PMs is performed after execu-
tion of a real action by comparing the real and the pre-
dicted sensory situation (zOF (¢ + 1), 2°F (¢t + 1)) con-
sidering the reinforcement signals received from the
environment. It is to remark, that the learning oc-
curs independently in both pathways. Hence, a non-
optimal selected action is not a problem for the lear-
ning of the sensory prediction. On the other hand, an
erroneous prediction has no influence on the reinforce-
ment learning in the sensorimotor mapping pathway.

Sensorimotor Mapping: The generation of eva-
luated motor maps that consider all experienced acti-
ons is based on a self-organizing sensorimotor function
approximation on the basis of reinforcement learning
(RL). A detailed explanation of this kind of neural
field based action value learning is presented in [4]. Tn
a first implementation, the action values of the acti-
on suggestion subsystem are adapted by the following
RL-rule:

Awpi(t) =1 y5 (1) - (1) [R — al? (1)]

where r is the position in the motor map, a"¥?(t) is
the suggested set of alternative actions, a"¢? () is the
actually executed action that has been selected by the
neural field dynamics as winner-blob, y7 is the actual
activation of the Neural Gas neurons quantifying the
sensory input zOF (t),  determines the learning rate
and R € [0..1] is the immediate reward for the action
carried out. The reward is based on a predefined re-
ward function that considers the tactile feedback after
execution of a"*%(t).

Motorsensory prediction: In this pathway, the
weights wM of the neurons i in the vector quantizer,
which clusters the action space, are adapted according
to their activation y™ and the executed action a"¢® (t)
by the following equation:

AwM = Moyl e (@) — wM ]

The adaptation of the local experts for optical flow
prediction is started automatically when a relative-
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Fig. 7: Parallel-sequential search in sensorimotor space at different time-scales: generation and evaluation of alternative
sensorimotor sequences in three chained PMs operating at staggered time-scales. The architecture realizes a dynamic
search in depth (x-direction) and width (y-direction) and selects the best evaluated sensorimotor sequence from all
simulated ones. The action selected first of all in PM1 (top row left: r = 0.62) is the best evaluated action, but it does
not consider possible sensorimotor states in the future (reactive behavior). With internal simulation (planning behavior),
the motorsensory sequence simulated last in PM1-PM3 (bottom row) can accumulate an higher expected total reward
(1.76) than the first one (1.54). Therefore, the first action of the last sequence will be executed in reality. This approach

shows anytime behavior.

ly stable clustering of the action space has been re-
ached. To speedup this learning process, the optical
flow mapping is initialized as a noisy identity functi-
on. This way, the mapping network can more rapid-
ly learn the sensory effects of actions considering the
non-linearities of the optical system. The learning of
the perceptrons of our mixtures-of-experts approach is
based on the delta rule that is controlled by the gating
network, the vector quantizer:

AWE = Py [zt + 1) - Wl z(t)] 27 (1)

The quality of optical flow prediction is stored in a po-
sition specific competence signal ¢y that 1s determined
by a leaky integration of the local prediction errors F,,
where r is the position in the flow field z(¢ + 1), and
n® a control parameter:
ep(t+1) =1 =n)-cr(t) +0°-1/(1+ Ey)

This competence signal will only increase if the predic-
tion error decreases. The aim of a competence control-
led prediction is to prevent an ineffective prediction,
because it is not useful to investigate hypothetical si-
tuations if the competence for their prediction is too
low. This allows a very efficient use of limited com-
putational resources, especially of time, for internal
simulation of alternative actions. For example, a se-
lected hypothetical action (winner-blob) is immedia-
tely inhibited in the action selection subsystem, if the
sensory prediction competence for that specific action
18 too low to proceed with this sequence.

4 Results

First of all, some typical sensorimotor situations,
the corresponding optical flow fields, and the sugge-
sted actions for the next action-perception-cycle are
presented in Fig. 8. Figure 7 shows several anticipa-
ted sensorimotor sequences and illustrates the charac-
ter of the internal simulation and selection process. By
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Fig. 8: Results of optical flow estimation and action sug-
gestion: typical sensory situations (left), corresponding,
sparse-coded optical flow fields (middle), and suggested ac-
tion value maps in the action suggestion subsystem (right ).
Positively evaluated actions generate higher, poor evalua-
ted ones lower activities in these maps. Velocity is coded
in y—direction, steering angle in x—direction. In the up-
per situation the robot avoids left turns (because of the
wall), in the middle one it can move straight ahead (free
space). The last situation represents an obstacle in front
of the robot, therefore no “move forward” hypotheses are
generated, merely slow turn left or turn right movements.

means of that, we can demonstrate the differences bet-
ween reactive and planning behavior in our architec-
ture. Characteristically for reactive behavior is that
the action selection only depends on the actual situati-
on and the immediately expected reward. In contrast
to this, our anticipating system can consider the future
rewards of hypothetical sensorimotor situations, too.
By means of internal simulation, it can look ahead



Fig. 9: (Left) Visually guided local navigation as result
of anticipation of sensory consequences. The anticipatory
agent (full line) moves earlier to the left than the reactive
one (dashed line). (Right) The full trajectory shows a lo-
cal navigation maneuver modulated by a global influence
that prefers a movement to the left. This influence can mo-
dulate the local search dynamics only, when the obstacle
on the left disappears from the field of view. Then the
robot moves to the left and follows the global intention.
The dashed trajectory is an example for a local navigati-
on without a global top-down modulation. The robot is
moving straight ahead until an obstacle is blocking its way:.

and select that action sequence, out of all simulated
sequences, which yields the highest total reward in the
future. Exemplarily, we can show that an anticipating
system is able to avoid an obstacle in the environment
earlier than a reactive one (Fig. 9-left). Another im-
portant aspect, the influence of a global modulation
upon the anticipation process, is illustrated in Fig. 9

(right).

5 Outlook

The anticipatory approach presented here leaves room
for further development. Although far from fully eva-
luated yet, it can be considered as an interesting route
for further work towards the synthesis of adaptive be-
havior in truly anticipating neural agents. For this
reason, we will investigate in detail, how our neural
architecture can evolve an initially reactive behavior
into a planning and anticipating one. Basis for this
behavior is the ability of our architecture to compose
and evaluate unknown sensorimotor sequences, which
have never been experienced as a whole before, from
experienced and evaluated subsequences, or transiti-
ons. Based on this ability to link dynamically, it can
be expected, that our control architecture is very flexi-
ble in environments that require flexible system goals.
For example, for a strong reinforcement learning me-
thod, like Q-learning [12], it is very time-expensive to
relearn all action values if the reward function is chan-
ged, since all possible state-action sequences must be
experienced again as whole to determine the new cu-
mulative reinforcements for these sequences. Instead,
our approach has to relearn the immediate reinforce-
ments only, new sensorimotor sequences can be com-
posed from known transitions and subsequences which
can be interpreted as an elementary sensorimotor al-
phabet. Naturally, this alphabet is highly specific for
each agent.

The predictability of sensory consequences of hypo-
thetical actions makes it possible to detect differences
between real and predicted flow fields. This enables it
to direct the internally visual attention to the contra-
dictory regions in the input, for example, to get more
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Fig. 10: Performance of the anticipating architecture
to find dynamic objects in a dynamic environment (left)
by comparing predicted and real optical flow fields. The
detected differences (middle) correspond to the dynamic
obstacle, the moving small robot. The last figure (right)
shows the result of a gating process that transfers the
image regions with a high prediction error to subsequent
processing levels, e.g. to control selective attention.

detailed information to disambiguate the sensory si-
tuation. We use this prediction error for recognition
of dynamic obstacles that actively move in the field of
view. Fig. 10 shows very first results of this approach
to a prediction based control of selective attention.
An outstanding detailed comparison between our
anticipating approach and a model-free, strong rein-
forcement learning, like, for example, the Q-learning
[12], is to demonstrate the superiority of generative
predictive perception for sensorimotor control.

References

[1] S. AMARI. Dynamics of Pattern Formation in Lateral-
Inhibition Type Neural Fields, Biol. Cybern., 27
(1977) 77-87.

[2] T. Camus. Real-Time Optical Flow, PhD thesis,
Brown University, Dept. CS, 1994

[3] A.P. DucHoN, W.H. WARREN & L. Pack KAELB-
LING. Ecological robotics: Controlling behaviour with
optical flow, 1994

[4] H.-M. Gross, V. STEPHAN & M. KRABBES. A
Neural Field Approach to Distributed Reinforcement
Learning in Continuous Action Spaces, to appear in
Proc. IJCNN’98, Anchorage, IEEE Press 1998

[5] R.A. Jacoss, M.I. JorpaN, S.J. NOWLAN, AND
G.E. HINTON. Adaptive Mixtures of Local Experts,
Neural Computation, 8 (1991) 79-87.

[6] B. Kr6se, A. Dev, X. BENAVENT & F. GROEN.
Vehicle Navigation on Optical Flow, Proc. of RWC
Symp. 1997, RWC Tech. Rep., TR - 96001, 89-95

[7] TH. MARTINETZ & K. SCHULTEN. A Neural Gas Net-
work learns Topologies, Proc. [CANN’91,397-402, El-
sevier 1991

[8] R. MOELLER & H.-M. Gross. Perception through
Anticipation, in Proc. PerAc’94,408-411, IEEE Com-
puter Society Press 1994

[9] R. MoErLLER Wahrnehmung durch Vorhersage - Fi-
ne Konzeption der handlungsorientierten Wahrneh-
mung, PhD thesis, TU llmenau, Dept. CS, 1996

[10] T. SEILER, V. STEPHAN, A. HEINZE & H.-M. GROSS.
Handlungsauswahl durch Antizipation sensomotori-
scher Konsequenzen, Proc. SOAVE’97, Fortschritt-
ber. VDI, Reihe 8/663: 109-118, VDI-Verl. 1997

[11] V. STeEPHAN & H.-M. GRoss. Formerhaltende se-
quentielle visuelle Aufmerksamkeit in columnar or-
ganisierten neuronalen Feldern, in: Proc. DAGM’97,
411-418, Informatik aktuell, Springer 1997

[12] C. WATKINS & P. DAYAN. Q-learning, Machine Lear-
ning, 8 (1992) 279-292



