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Abstract— We present a neural field approach to distri-
buted Q-learning in continuous state and action spaces
that is based on action coding and selection in dynamic
neural fields. It is, to the best of our knowledge, one
of the first attempts that combines the advantages of a
topological action coding with a distributed action-value
learning in one neural architecture. This combination,
supplemented by a neural vector quantization technique
for state space clustering, is the basis for a control archi-
tecture and learning scheme that meet the demands of
reinforcement learning for real-world problems. The ex-
perimental results in learning a vision-based docking be-
havior, a hard delayed reinforcement learning problem,
show that the learning process can be successfully ac-
celerated and made robust by this kind of distributed
reinforcement learning.

I. INTRODUCTION

A wide class of sequential decision-making problems are
those in which the states and actions of a dynamic
system must be described using real-valued variables.
Common examples of these class of problems are found
in robotics where agents are required to move manipu-
lators, grasp tools or objects, or navigate to targets or
around obstacles. Reinforcement learning (RL) can be
used to solve such sequential decision-making problems.
The main idea of RL consists in using experiences to
progressively learn the optimal value function, which is
the function that predicts the best long-term outcome an
agent could receive from a given state when it applies a
specific action and follows the optimal policy thereaf-
ter [9] [10]. The agent can use a RL-algorithm such as
SuTTON’s T'D(A) algorithm [9], or WATKINS® Q-learning
algorithm [11] to improve the long-term estimate of the
value function associated with the current state and the
selected action. However, in systems having continuous
state and action spaces, the value function must ope-
rate with real-valued variables representing states and
actions. Therefore, the value functions are typically re-
presented by function approzimators, which use finite re-
sources to represent the value of continuous state-action
pairs. Function approximators are useful because they
can generalize the expected return of state-action pairs
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the agent actually experiences to other regions of the
state-action-space. In this way, the agent can estimate
the expected return of state-action pairs that it has ne-
ver experienced before. There have been presented many
classes of function approximators, each with advantages
and disadvantages. The choice of a function approxima-
tor depends mainly on how accurate it is in generalizing
the values for unexplored state-action pairs, how expen-
sive 1t is to store in memory, and how well 1t supports
the computation of the one-step search and learning by
TD(A) updates [10]. In this paper, we present a novel
approach to a state-action function approximator that
combines a neural vector quantization technique (Neural
Gas [7]) for optimal clustering of a high-dimensional,
continuous input space [5] with a neural field approach
to topological action coding in continuous action spaces,
and a neural implementation of a topologically distribu-
ted Q-learning.

Fig. 1. Left: Topographically organized action hypothesesin a 2D
neural field that is coding a 2D continuous action space, e.g.
for steering angle ¢ (x-dir.) and speed v (y-dir.) Right: Expe-
rimental platform: mobile miniature-robot KHEPERA equipped
with an on-board color camera (500(H) x 582(V) pixels).

II. THE NEURAL FIELD APPROACH TO ACTION
CODING AND SELECTION

Dynamic neural fields have been developed as a theoreti-
cal concept in computational neuroscience for models of
map formation, saccadic motor programming [6], depth
perception, etc. This paper proposes the application of
the neural field framework to topological action coding,
dynamic action selection, and topologically distributed
and controlled RL in a two- or higher-dimensional con-
tinuous action space (see Fig. 1-left). A neural field can



be viewed as a recurrent neural network that receives
topographically organized information. The neurons of
the field are laterally connected in a way to produce
localized clusters of activity (so-called blobs) [1]. To-
pographically organized action fields are qualified to co-
de alternative action hypotheses simultaneously. This
is possible because of the underlying coding principle
that transfers the different action hypotheses into spati-
ally coded and separated activity blobs within a two- or
higher-dimensional action field. The value and certain-
ty of the action hypotheses are coded in the height and
variance of the activity blobs. Figure 1 (left) shows a ty-
pical two-dimensional action field that is simultaneously
coding three alternative action hypotheses varying in va-
lue and certainty. They are localized within the field, for
example, by their real-valued steering angle ¢ and speed
v, as Gaussian activity blobs. The neural field used in
our model consists of a two-dimensional layer of leaky
integrator neurons, whose activations z are changed ac-
cording to the following differential equation [1]:

—z(r,t) — h(t) + z(x, 1)

—|—/Rw(£—£/) S(z(g’,t))dz v (1)

r—z(r,t) =

dt

The change of the activation of a neuron at positi-
on r in the field is a function of its state z(r,t), the
global inhibition A(t), the input activity z(r,t), and
the spatially integrated activity of the neurons in the
neighborhood R weighted by the neighborhood function
w(r—y') = wy ~exp(—%) — Hy, that is moved in —y
direction by a global inhibition Hy. In the following, the
main characteristics of neural fields that are of relevance
for a topological action coding and selection in RL are
summarized:

i) The dimensionality of the field is determined by the
dimensionality of the action space. Because of the to-
pological coding and selection principle, it is possible to
code any real-valued action in the neural field with just
a small number of neurons per dimension. In the same
way, the real-valued actions, to carry out, can be easi-
ly determined from the center of gravity of the winner-
blob. i) Action suggestions, for example, from higher
processing levels or from other agents at the same le-
vel, can actively modulate the activity distribution of
the neural field and influence the action selection dy-
namics. This is a simple, but very effective method to
superimpose the action spaces of several agents in order
to coordinate their action selection in a dynamical way.
In our implementation, we use an additive superposition
of action-value based action suggestions and randomly
localized activity blobs to realize a neural field approach
to a random exploration strategy.

IIT. SCENARIO, PREPROCESSING, REWARD FUNCTION
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Fig. 2.
neural field based reinforcement learning (RL) in the context
of a hard delayed RL-problem, a vision-based approaching

Real-world scenario to investigate the efficiency of our

of the mobile robot KHEPERA to a target object. Top: Va-
rious situations with different initial positions and the expec-
ted docking trajectories. Bottom: corresponding views of the
target area with the docking station that has a green striped
side-wall on the left, a red striped side-wall on the right, and
a black front to simplify the image processing.

To investigate the learning dynamics and the efficiency
of our neural field based reinforcement learning scheme,
we have studied this approach in the context of a de-
layed RL-problem, a vision-based approaching behavior
of a mobile robot to a target object called “docking”
station. This is really a hard RL-problem: at the begin-
ning, the robot cannot imagine in which direction and
how far the target is, because, a positive reward is recei-
ved only after the last movement, if the robot achieved
the docking area successfully. We defined a demanding
scenario that requires fine-tuned continuous actions to
get to the goal correctly. In this scenario, the robot has
to solve two contradictory navigation tasks: on the one
hand, it has to move to the docking station as fast as
possible, because it passively loses its energy due to a si-
mulated perforation of its “energy tank”. On the other
hand, it has to carry out a soft docking maneuver to
receive a final reward taking into consideration that the
docking must occur in the front area of the docking sta-
tion with a docking angle smaller than ¢,,;,. Figure 2
(at the top) shows an illustration of the environment
and the expected optimum docking trajectories, Figu-
re 4 presents some correct docking positions that would
receive a final reward. The experimental environment of
the robot is a rectangular arena of 60 x 30 cm surrounded
by walls. During the learning experiments, the docking
station can be moved to any position in the arena (see
Fig. 7). By that, we want to avoid that the robot acqui-
res global knowledge about the location of the docking
station in the arena that could be used to simplify the
learning problem.
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Fig. 3. Visual processing of the RGB-images captured by the
on-board camera.

Visual processing: Figure 2 (bottom) presents some
typical views of the target area with the docking station
captured by the on-board camera. In order to simplify
and speed up the image processing, we used opponent
colors to mark the front and the side-walls of the docking
station in order to make them very easy distinguishable.
The input image is first converted into a special neuro-
physiologically motivated opponent color space [8] that
is formed by a Red-Green(RG)-, Yellow-Blue(YB)-, and
Black-White(BW)-dimension (Fig. 3) in order to make
the extraction of the target area easy. Then, the image
size 1s reduced to further speed up the image processing.
After that, different threshold-operations are applied to
the RG- and BW-map of the color space to mark intere-
sting regions in the image. It should be emphasized, that
we do not make use of explicit description methods for
the position coding of the docking station in the target
area, like angle and distance to the target, size of the tar-
get, etc. Instead, we use an implicit coding on the basis
of receptive fields with characteristic convolution kernels
operating globally on the preprocessed maps in the color
space (Fig. 3). This way, we achieve a distributed fuzzy
coding of the input scene, that provides implicit infor-
mation about the presence, location, distance, and view
of the docking station within the scene. The fit values
resulting from these receptive field operations constitute
a real-valued input space R (see Fig. 3). Together with
the actual amount of energy E, an 8-dimensional conti-
nuous input space has to be analyzed in order to learn
the desired docking behavior.

Scenario-specific reward function: In our scena-
rio, the robot self-evaluates its actions and determines
the following internal rewards, merely on the basis of
the fit-values of the visual processing and its present
amount of energy: r(t) = +1.0 (if the robot achieved the
docking area successfully: (be > 0y,) A (max (v, vr, g1, 9r)

< B) A (E > 0)); r(t) = 0.0 (if the robot lost the target
from view or lost its energy completely: (maxz (b, be, by)
< Op,) V(E = 0)); r(t) = +0.1 (otherwise). Tt is to
remark, that our reward function does not consider any
additional information during the approaching maneu-
ver, like the distance to the goal or the expected docking
angle, to speed up the learning process. So, our robot
has undoubtedly to solve a delayed RL-problem.
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IV. ARCHITECTURE AND LEARNING ALGORITHM
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Fig. 5. Neural control architecture for topologically distributed
Q-learning embedded in an “Action-Perception-Cycle”.

Based on the original Q-learning algorithm [11] and an
earlier neural implementation [5], we developed a neural
field approach to distributed Q-learning in continuous
state and action spaces that is based on action coding
and selection in dynamic neural fields. The neural con-
trol architecture (Fig. 5) consists of several neural sub-
systems for the different subtasks of the RL-based state-
action mapping: a double-layered State Map (SM) that
clusters the n-dimensional continuous Input Space (IS)
and a double-layered Motor Map (MM) that decides,
what action 1s to be selected in this state, and controls
the topological RIL between SM and MM. A more de-
tailed explanation of the internal processing and lear-
ning steps is given by the following algorithm:

1. Initialize the weights W) between the State Map
(SM) and the Input Space (IS) and W) between
the Motor Map (MM) and SM.



2. Perceive the current sensory situation x(t).

3. Determine the current state by computing the acti-
vity ™1 (t) € y*™!(t) of the neurons s in the first
layer of the State Map (SM1), a “Neural Gas" vec-
tor quantizer [7], according to a specific neighborhood
function that considers similarities in the input space:

1) = ) )

k; results of a “neighborhood ranking” of the reference
vectors ﬂgl) for the current input x(¢); o (¢) is a time-
dependent adaptation range.

4. Compute the activity yi™?(t) € y*™%(t) of the neu-
rons s in SM2 that project the action-values (Q-
values) to the static layer of the Motor Map (sMM).
Best results have been achieved by the following in-
terpolating activation that considers the responsibility
of all SM1I-neurons for the current input x():

. 1/ (It = i (1))
v ) = = (3)
Siesan 1/ (Ix(0) = w0l

5. Compute the activity y”"™ (¢) of the neurons r in the
static layer of the Motor Map (sMM) on the basis of
the interpolated Q-value mapping from SM2 to sMM.

" ( Z wgy (6) -y (1) (4)

6. Add a randomly positioned Gaussian activity blob
vyt to the activity distribution in sMM. This corre-
sponds to a neural field implementation of a random
exploration strategy (Boltzmann exploration):

y () =T () -yt (L=T()) -y (1) (5)
T is a control parameter that can be decreased over
time to decrease the exploration rate (T € [0.0, 1.0]).

7. Compute the neural field dynamics in the dynamic
layer of the Motor Map (dMM) and find the winner-
blob in y® ™ (¢) (Fig. 6-right, explanation below).

8. Select the corresponding action a(t) = f(y dmm ()
by determination of the center of gravity within dMM.

9. Execute the chosen action a(t), this yields a new si-
tuation x(¢t + 1)

10. Evaluate the applied action with the immediate re-
ward (¢ + 1) (see last section).

11. Compute the activity y:™!(t+1) of the neurons s in
SM1 for the new sensory situation x(¢ + 1) according
to equation (2).

12. Compute the activity ys™?(t + 1) of the neurons s
in SM2 according to equation (3).

13. Compute the activity y3™™ (t + 1) of the neurons r
in sMM according to equation (4).

14. Update the weights W(l) of all neurons s in SM1
controlled by the activation y:™!(¢):

wil(t+1) = wil(t)+Awl)()
Aw(B) = g™ @0)(x(0) - w)(0)(6)

15. Update the weights w® (Q-values) between the
neurons r of the dMM-winner-blob and s in SM2:

w (t+1) = wd) (1) + Al (1) (7)
Awglt) = g (e [r(t+1) +

'ympaxysgmm (t+1) - w(f;)(t)}

y ™™ () and y*™%(t) serve as gating functions that
control the topological action-value learning between
the neurons of the dMM-winner-blob and the neigh-
boring SM2-neurons representing similar states. « is
a constant learning rate (no “freezing”) because the
agent has to retain its plasticity to cope with a chan-
ging environment; v is the factor discounting future
reinforcements ([11]).

16. Switch between time levels:

x(t) = x(t+1); y* () =yt + 1)
yst(t) — yst(t + 1) ysmm (t) — ysmm(t + 1)
17. If x(t) is a final state then terminate else go to 7.

Action selection by neural field dynamics: For si-
mulation, the differential equation (1) was approximated
by the following difference equation:

k1) = <1—a>zﬂmm<k>+a(w’y;mm<t>

—wphy (k) + ws Z wyy yﬁf’”m (k')) (8)

dmm(/f +1) = 1/ (1 + TPl (k1) —0.5))
hipp(k+1) = (1=ay)hia(k) + a1y vr™ (k)
I‘I

In our model, we use different time-scales for the lear-
ning process (¢) and the relaxation dynamics (k). TIn
this sense, we consider the dynamics in dMM to be a
sub-dynamics of the learning dynamics on a much faster
time-scale. The results of this sub-dynamics are only
then transferred to the learning dynamics, if a stable so-
lution has evolved in dMM (equation 9). To detect this
stable solution, we defined the following simple, but ve-
ry robust end-detection that is based on the dynamics of
two spatially integrating neurons hy(k) and hs(k) ope-
rating with different time-constants oy and «s:

dmm () — { v (k) |Ri(k) = ha(k)] < 04

r 0.0, otherwise

()



Figure 6 demonstrates the selective effect of the neural
field dynamics in dMM. On the basis of a reliable selec-
tion of a winner-blob, a corresponding motor command
can be generated by determination of the center of gra-
vity of the activity distribution within the neural field.

Fig. 6. Left: Initial activity distribution in dMM as a result of su-
perimposed action-value mappings from SM2 to sMM. Right:
winner-blob selected by the neural field dynamics within
dMM: z-direction codes steering angle ¢ € [—dmaz, +Pmaz],
y-direction codes speed v € [0, vmaz]-

V. RESULTS OF THE LEARNING EXPERIMENTS

Our approach has been verified by numerous experi-
ments on our mobile robot KHEPERA in a real-world
environment. The experimental results in learning a
vision-based approaching and docking behavior are very
encouraging. Figure 7 shows typical approaching ma-
neuvers as result of a successful Q-learning. The robot
was started at random positions far from the target are-
as, then it moved directly to the docking station, alt-
hough, the target was positioned arbitrarily in the are-
na. The results of the learning dynamics (Fig. 8 - solid
line) demonstrate that it is possible to learn such a de-
layed RL-problem with a number of learning trials that
is comparatively small. For example, we did not need
more than 500 docking trials with a mean number of 15
steps per trial to learn the docking behavior. Because of
the simulated energy loss, the maximum number of steps
per trial was set to 20. This small number of real-world

Fig. 7. Temporal traces of successful docking maneuvers to the
target located at various positions in the arena (1.-5.) compa-
red to a non-successful docking approach based on a random
action selection (bottom right).

Fig. 8. Temporal evolution of the average reinforcement (left) and
the mean number of action steps per trial required to achie-
ve the target or done until truncation (right) for the neural
field based Q-learning (solid line) and the Q-learning model
with a discrete action space (dashed line). The diagrams show
the mean values of seven independent Q-learning experiments,
each of them consists of 35 docking trials.

trials that are necessary to learn the docking behavior is
really an encouraging result, since this type of sequential
decision-making problems theoretically has exponential
time-complexity [2]. Therefore, it is a common practice
to modify the learning scheme in such a way that the ro-
bot is started in very easy initial situations close to the
goal. Later on, the initial situations are shifted into mo-
re and more difficult ones. AsSADA called this simplifying
scheme Learning from Easy Missions (LEM) [2]. For a
couple of reasons (e.g. real-world applicability), we did
not apply this kind of biased Q-learning in our experi-
ments. That we nevertheless could achieve such lear-
ning results can be just explained by the generalization
ability of our topological Q-learning. This learning is
localized and controlled by two essential aspects: ) the
distributed activity coding in the topology preserving
State Map that is based on the interpolation between
the neurons most responsible for the actual input, and
i7) the topologically organized Motor Map, where the
“winner-blobs” localize and distribute the learning in a
local neighborhood. This way, the action value learning
within the state-action maps is extended to neighboring
regions of the continuous state-action-space. This is not

Starting pos. A Starting pos. B Starting pos. C

Action 7t successf. trials | # failed trials
pos. | selection | / mean steps / mean steps
A field 82.6 % / 13.5 174 % / 13.1
B field 973% / 9.8 27% / 6.0
C field 65.9 % / 14.3 341 % / 18.3
A discrete | 65.9 % / 12.0 34.1 % / 12.2
B discrete | 96.0 % / 10.2 4.0% /12.1
C discrete | 51.1 % / 14.0 48.9 % / 14.9

| B | random | 1.9% / 9.7 | 981% / 5.2 ]

Fig. 9. Statistical comparison of 1) average number of successful
docking trials after learning and ¢:) mean trial length until
success or truncation due to energy loss or target loss for our
neural field based Q-learning, an approach on the basis of a
discrete action space (see below), and experiments with ran-
dom action selection. A, B, C are different starting points.



only of importance for the generalization ability of the
function approximator, but it also speeds up the lear-
ning significantly. In order to analyze this aspect mo-
re in detail, we implemented and investigated a second
model with a non-topologically organized, discrete acti-
on space (5 different steering angles x 5 different speed
levels). Figure 9 compares the results of the neural field
based Q-learning with those ones of the non-topological
Q-learning. It compares the success rates of both ap-
proaches in the light of differently complex docking ma-
neuvers starting from several initial positions. Because
of the generalizing character of the neural field based
Q-learning, the success rates of this approach are higher
than those ones of the model with the discrete action
space. Another point of interest i1s the learning dyna-
mics of both approaches. Figure 8 shows the evolution
of the average reinforcement and the mean number of ac-
tion steps per trial. The mean trial length of our neural
field approach increases faster, since inexpedient acti-
ons are avoided earlier because of the generalizing effect
of the topological learning in the state-action space. In
contrast, the discrete approach cannot extrapolate from
single experiences, therefore it must try out much more
inexpedient actions in order to learn their consequences.
The evolution of the mean reinforcement presents similar
results (Fig. 8-left): already after 30 docking trials, our
neural field approach shows an obviously higher mean
reinforcement. This is a result of a higher rate of suc-
cessful docking maneuvers. Fig. 10 illustrates the tempo-
ral evolution of the action-value maps of three exemplary
SM-neurons during learning. The corresponding views
of the target area are shown at the top of the columns.
Finally, it should be emphasized that we have made the
robot learn to solve its task without the need of a simu-
lation based initialization of its action-value maps, as it
is a common method to speed up the learning.

VI. CoNcLUSION AND OUTLOOK

We presented a neural field based approach to distri-
buted RL in continuous state and action spaces. It
combines the advantages of a topological action coding
and selection in dynamic neural fields with a distribu-
ted Q-learning in one neural architecture. The experi-
mental results in learning a vision-based docking behavi-
or, a hard delayed reinforcement learning problem, show
that the performance of the learning process can be suc-
cessfully accelerated and made robust by this kind of to-
pological reinforcement learning. A problem that we ha-
ve not yet considered is the “state-action deviation pro-
blem” [2]. To investigate this problem in the context of
our neural field based Q-learning and to analyze the lear-
ning dynamics, we plan to adapt our learning procedure
according to that of [2]. In this approach, Q-learning
occurs only, if the last action caused a state-change.
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Fig. 10. Temporal evolution of the action-value maps (Q-values)
of three exemplarily selected neurons as result of the neural
field based distributed Q-learning: (2. row) random map-
initialization at an optimum ground level, (5. row) maps after
20 docking trials, (bottom row) final maps that allow a suc-
cessful docking behavior. (1. row) Exemplary views of the
target area in different distances to the robot that can opti-
mally activate the selected neurons and their learned action-
value maps.

Beyond that, we are planning to extend our neural con-
trol architecture by combining incremental vector quan-
tization networks, like the “Growing Neural Gas” [4] or
the “Dynamical Cell Structures” [3], with our topologi-
cal action-value learning. This seems to be a promising
approach to a more purposive and task-oriented cluste-
ring of the state-action-space.
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