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Abstract The development of a hybrid system for (mainly) gesture-
based human-robot interaction is presented, thereby describing the
progress in comparison to the work shown at the last gesture workshop
(see [2]). The system makes use of standard image processing techniques
as well as of neural information processing. The performance of our ar-
chitecture includes the detection of a person as a potential user in an
indoor environment, followed by the recognition of her gestural instruc-
tions. In this paper, we concentrate on two major mechanisms: (i), the
contour-based person localization via a combination of steerable filters
and three-dimensional dynamic neural fields, and (ii), our first experi-
ences concerning the recognition of different instructional postures via a
combination of statistical moments and neural classifiers.
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1 Introduction

Machines able to see and hear offer a much broader range for natural human-
machine interaction than common input devices like keyboard, mouse or data
glove can. Our group is especially interested in novel techniques for interaction
with mobile service systems in indoor environments. Such service systems should
be able to observe their operation area in an active manner, to localize and con-
tact a potential user, to interact with their users immediately and continuously,
and to offer their services (transport, information presentation, or simply en-
tertainment) in the context of the actual situation. Our robot platform MILVA
(Multisensoric Intelligent Learning Vehicle in a neural Architecture) serves as
the testbed for natural human-robot interaction. A two-camera system with 7
degrees of freedom (for each camera pan, tilt and zoom, additional pan for both
cameras) will both capture the robot’s environment and all interactional details
expressed by persons. An additional camera in the front of the robot provides
the visual information for navigation.
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Several systems for gesture-based human-machine interaction have been de-
veloped recently (e.g. see [6,16,17,13,19,7]). A comprehensive collection of
video-based gesture recognition systems can be found in [14]. Most of these
approaches require certain constraints concerning the environmental conditions
(lighting, distance between camera and person, etc.). During interaction with
a mobile service system operating in an unconstrained indoor area one cannot
assume such predefined circumstances. Therefore, the service system has to deal
with highly varying environmental conditions which can neither be estimated nor
influenced. Taking into account this fact, we developed a robust saliency system
for person localization (sec. 2). This saliency system integrates different visual
cues into the localization process. Furthermore, acoustic information (estimation
of source direction) is used to support the visual detection (sec. 2.3).

After the detection of a person which is aligned towards the robot, a gesture
recognition process must be carried out to transmit the behavioral instructions
from the user to the robot (sec. 3). Currently, we use a posture alphabet (see
fig. 1), i.e. we recognize a set of gestural symbols. In our future work we want
to overcome this limitation and develop a system capable of continuously recog-
nizing dynamic gestures.

Figure 1. Gestures (postures) to be recognized; from left to right they carry the
following meanings for the robot: come to me, stop, move left, move right

2 Saliency System for Person Localization

Fig. 2 provides a coarse sketch of the saliency system for user localization. Ini-
tially, both cameras of the two-camera system operate in wide-angle mode in
order to cover the greatest possible area of the environment. Multiresolution
pyramids transform the images into a multiscale representation. Two cue mod-
ules sensitive to facial structure and structure of a head-shoulder contour, respec-
tively, operate at all levels of a grayscale pyramid. The cue module for skin color
detection uses the original color image. Its segmentation result is transformed
into a pyramid representation, too, to obtain an uniform data structure for the
different cues. The utility of the different parallel processing cue modules is to
make the saliency system robust and independent of the presence of one certain
information source in the images. Hence, we can handle varying environmental



circumstances much easier, which, for instance, make the skin color detection
difficult or almost impossible. Furthermore, high expense for the development of
the cue modules can be avoided (see [4, 3], too).

Figure 2. Components
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each other (see [1, 15]). In the saliency maps all those regions shall become promi-
nent that most likely cover the upper part of a person.

2.1 Cues for Person Specific Saliency

In our previous work (see [2]) the three cues were assumed to be of equal im-
portance. After a period of practical experiences we had to face that the shape-
based approach provides much more reliable contributions to the localization
process compared to the skin color and facial structure cues. The reasons are
quite obvious: Skin color detection 1s highly influenced by illumination. Although
we use an additional color adaptation method (see [18]) to yield constant color
sensation, robust skin color detection cannot ensured in general. Further, solving
the localization problem becomes more interesting the farther away the person
1s. Necessarily, relevant features should appear even on rather coarse resolutional
scales so that details, as facial structures, are less prominent. Facial structure
can be detected confidently only if the distance between person and camera is
not too large. Otherwise, the region covered by the face becomes to small to be
localized.

Against this background, the method for head-shoulder contour detection
was improved significantly. The actual method is described in more detail in the
following subsection. Since the other cues can only support the person localiza-
tion, but cannot ensure the localization alone, their methods were reduced to
rather simple, but computationally efficient algorithms.

Head-Shoulder Contour The contour which we refer to is that of the upper
body of frontally aligned persons. Our simple contour shape prototype model



consists of an arrangement of oriented filters doing a piecewise approximation
of the upper shape (head, shoulder) of a frontally aligned person. The arrange-
ment itself was learned based on a set of training images. Applying such a filter
arrangement in a multi-resolutional manner, this leads to a robust localization
of frontally aligned persons even in depth.

Arrangements of Steerable Filters — Motwation and Related Work: The idea of
this method refers just to a description of the outer shape of head and shoulders
and is based both on some physiological considerations as well as on psychophys-
ical effects.

The visual cortex consists in several parts of cells with oriented receptive
fields. A lot of investigations have shown that the profile of receptive fields of
simple cells in the mammalian primary visual cortex can be modeled by some
two-dimensional mathematical functions. Gaborian [11] and Gaussian functions
(incl. low order derivatives) [12] appear to provide the typical profiles for vi-
sual receptive fields. So, local operations decompose the visual information with
respect to the frequency space.

Psychophysical aspects for the contour-shape based approach, e. g., good con-
tinuation or symmetry (both belonging to the Gestalt laws), obviously describe
effects which necessitate grouping mechanisms. Against this background, we con-
ceptualized the approach of an arrangement of oriented filters.

Because each section of the contour should be approximated by a special
oriented filter, localizing a person would require possibly as many differently
oriented filters as orientations belong to the arrangement. Since that would be
computationally very costly we turn to steerable filters.

Determining the Course of Contour: Steerable filters have the nice property that
an a-priori limited number of convolutions is sufficient to derive any orientation
information within an image. Thus, their use provides an extended set of orien-
tations, avoids the necessity of numerous additional filters, and enables a more
accurate computation of the course of contour.

Our complete data set consists of images showing ten persons in front of a ho-
mogeneous background under three different viewing angles (0°,4+10° and —10°,
where 0° corresponds to an exactly frontally aligned body). All these images have
been recorded under identic conditions (position, illumination, distance). Addi-
tionally, in order to achieve a symmetrical contour model the whole data set
was vertically mirrored extending the data set to 60 images. Subsequently, the
256 x 256-images (grayscale) were low-pass filtered and scaled down to 16 x 16.
Then, we applied a Sobel operator to the images enhancing the edges of each im-
age. Next, all of those edge-marked intermediate images were averaged, since the
contour to be determined on average should match the real outer contour. After
this we thresholded to find that edge representing the typical contour shape.

Now, we have the course of the contour of interest resulting in a 16 X 16 binary
matrix where the elements along the contour are set to 1, the others remain 0.
We refer to this contour matrix, our template, as A*. The local orientation of
each contour element is determined by means of the steerable filters (see below).



These are applied to the binary contour shape so that for each element of A* an
angle of orientation can be determined resulting in a matrix A (see fig. 3).

r Figure 3. The determined shape of contour A: orientation angles
.r coded by gray values (0°: black; 90°: medium gray; 180°: white).

J Note that around the forehead transitions from 180° to 0° occur. The
contour shape is symmetric since the original data set was mirrored.

Applying Steerable Filters: After determining the binary contour, we measure
the local orientation by means of a set of filters which are oriented in every direc-
tion. We take the powerful approach of steerable filters (see [8]) for orientation
estimation. It provides an efficient filtering output by applying a few basis filters
corresponding to a few angles and then interpolating the basis filter responses in
the desired direction. Steerable filters are computationally efficient and do not
suffer from the orientation selection problem.

In general, a function f(-) is considered to be steerable if the following two
conditions are satisfied. First, its basis filter set 1s made up of M rotated copies of
the function f*'(-)...f*¥(-) on any certain angles a; ...aps. Second, a rotated
copy f?(-) of it on some angle ¥ has to be obtained by a superposition of its
basis set multiplied by the interpolation functions k;(+¥) as in

0= Y k)7 () (1

In our work we take a quadrature pair by using the second derivative of a
Gaussian and an approximation of its Hilbert transform by a third-order poly-
nomial modulating a Gaussian. From the steering theorem [8] these functions
are steerable and need M = 7 basis functions. To measure the orientation along
the contour, we use the phase independent squared sum of the output of the
quadrature pair. This squared response as a function of the filter orientation 9
at a point (z,y) represents an oriented energy E®¥)(0). Because of the sym-
metry of the functions, the energy at every pixel is periodic with period w. To
accurately estimate the dominant local orientation one could pointwise maximize

the orientation energy by taking 795\?3))( = argmax{E@Y)(9) | ¥ € [0, 7)}. How-

ever, to find this maximum value we do not search degree-wise for the maximum
because there already exists an analytical solution for the maximization [8]. We
further refer to the matrix of all these angular values ﬁg\?j/)x corresponding to
the image as @. Furthermore, there exists a separable basis set in Cartesian

coordinates which considerably lowers the computational costs.

Computing the Neural Field Input: The previous section described the theory
and use of steerable filters. By means of those filters we calculate both the matrix
A describing a typical course of the head-shoulder-portrait and the matrix @
(computed from the image wherein a person is to be found) containing the
dominant local orientation values.



Subsequently, we search for the presence of the wisual cue head-shoulder-
portrait, represented by the kernel A, within the matrix @. To do this, we
utilize a matching technique based on a similarity measure m®¥). Due to the
m-periodicity of the outcome of the steerable filters and in order to properly
describe the likeness between two elements of A and @, the similarity function
requires the same periodicity.
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Herein, A; ; refers to the element of A at position (4, j) and V5 to

the one of @ at (z + ¢ — 2,y 4+ - —) I = J = 16 represent the dimensions
of the matrix A. The normalization to the cardinality of the support of A (the
support of a matrix considers only nonzero elements) ensures m(*Y) ¢ [0, 1] for
the further processing. Fig. 4 summarizes the processing steps.
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Figure 4. Starting from a multi-resolution representation of the image, each level is
treated by steerable filters. Applying the filter arrangement we determine a distance
measure which is taken as input to a three-dimensional field of dynamic neurons. The
resulting blob (locally delimited pattern of active neurons) is used to localize a person.

Skin Color For the generation of a skin color training data set, portrait images
of different persons (of our lab) were segmented manually. The images were
acquired under appropriate lighting conditions (typical for our lab environment).
The skin color detection uses the original color image. In order to obtain almost
constant color sensation, we first map the RGB color space into a fundamental
color space and employ a color adaptation method (see [18]). Then, we return into
the RGB color space, use the chromatic projection r = ﬁ and g = ﬁ,
and define a bimodal Gaussian function via calculation of the mean and the
covariance of that skin color data set to roughly model the obtained skin color
distribution. Furthermore, after a person (face region) could be localized, a new
Gaussian model is created, more specific for the illumination and the skin type
at hand. Via this model the detection of skin colored regions, especially hands,



can be improved. This is of special importance because the hand regions cannot
be segmented by structural information (see [10], and sec. 3.1). A Mahalanobis-
based distance measure is employed to compute the similarity between the color
value of each pixel and the color model. To achieve an appropriate input for the
3D dynamic neural field, the resulting similarity map is recoded into an activity
map, where the highest activity stands for the highest similarity. A more detailed
description of our skin color investigations can be found in [2].

Facial Structure We assume that a person can considered to be a user if her
face is oriented towards the robot.

In our previous work, the detection of facial structure employed eigenfaces (see [2,
4]). The disadvantage of that method is their computational complexity, result-
ing in time consuming calculations. Due to real-time constraints a new, simi-
lar method was implemented. First, a prototype (mean) pattern of a frontally
aligned face (15 x 15 pixels) was created by means of the images contained
in the ORL data set (http://www.cam-orl.co.uk/facedatabase.html). Then
we calculate the similarity between each image region and the prototype pattern
via normalized convolution. The higher the convolution result, the higher the
similarity, and the convolution result can be used directly as the input for the
saliency pyramid.

2.2 The Saliency Pyramid as a 3D Nonlinear Dynamic Field

To achieve a good localization, a selection mechanism is needed to make a defi-
nite choice among those regions within the pyramid where rather high similarity
measures concerning the different cues are concentrated. Since dynamic neural
fields are powerful for dynamic selection and pattern formation using simple ho-
mogeneous internal interaction rules, we adapted them to our purposes. Because
we use five fine-to-coarse resolutions in our scale space (see fig. 2), we can ac-
tually localize persons even at different distances. Therefore, a neural field for
selecting the most salient region should be three-dimensional. That field F' can
be described as a recurrent nonlinear dynamic system. Regarding the selection
task, we need a dynamic behavior which leads to one local region of active neu-
rons successfully competing against the others; i.e. the formation of one single
blob of active neurons as an equilibrium state of the field. The following equation
describes the system:

T%Z(’f’,t) =—z(r,t) —cph(t) + ca(r,t) + ¢ /N wir — Yyl Hd3’ (3)

Herein = denotes the three-dimensional coordinate of a neuron position in the
field, z(r,t) is the activation of a neuron r at time ¢, y(r,t) is the output activ-
ity of this neuron computed as a sigmoidal function of # alone, z(r,?) denotes
the external inputs (corresponding to the re-coded similarity measures for the
different cues, combined by a Min-Max fuzzy operator), h(t) is the global in-
hibition at time ¢ gathering the activity from each neuron over the entire field
F C R?. w(r — +') denotes the Mexican-hat-like function of lateral activation



of neuron r from the surrounding neighborhood N C IR®. For one , N is sym-
bolically marked as dark regions in fig. 4 (right). The constants ¢, ¢; and ¢;
represent parameters of the system.

As also illustrated in fig. 4, to use a three-dimensional neural field, we have
to consider the local correspondences between the resolution levels. Therefore,
we apply a re-coding into a cuboid structure. One side effect is that the coarser
a pyramid level is the less we can locate something by means of the similarity
measure. However, without particularly treating this effect we just noticed that
those levels z of the neural field activated from the rather coarse pyramid levels
take little a few more steps to develop a blob (or a part of a blob, respectively).

Results for Person Localization The results of the saliency system are qual-
itatively illustrated in fig. 5.

-y . -
i
b R )
wip
g " :‘:‘L
i LI .

i r

—

4
e
+
,

Y

u'l
- g -
Figure 5. Localization results in an indoor environment (middle three layers of the
multiscale representation): The localization of a person occurs not sharply at one of
the pyramidal planes, the originating spatial blob (rightmost column) is most strongly
developed on the central of the five planes. Each row contains the results of one of
the five (distance 1/\/5) computed resolution steps. The seven columns depict the
following: input, results of the orientation filtering for selected angles 0°, 45°, 90° and

135°, the result of the filtering with the filter arrangement and finally the result of the
selection within a three-dimensional field of dynamic neurons.
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The images of the rightmost column show the state of three layers of the
dynamic neural field in a snapshot at that moment when the activity change of
the most active neuron became less than 1%. On average, the system takes 11
iteration steps using a time-discrete Fuler method. The range of the blob is not
restricted to one plane. To get a more precise specification of the distance of a
person one could interpolate the z-coordinate of the blob center within the field.

Our presented results are exemplary, the usage of the shape of contour and
the additional cues skin color and facial structure provide a robust solution for
the person localization problem, even under quite different conditions. Unfortu-
nately, other results cannot be shown here due to space limits. The novel ap-
proach with a three-dimensional dynamic neural field can be assessed as robust
method for the selection process.



2.3 Auditory Saliency

Additionally to the visually-based saliency system a model for selective auditory
attention was developed in our department (see [20]). This model was already
implemented on MILVA and is to support the user localization. For example,
the user can attract MILVA’s attention by clapping her hands, i.e. MILVA will
align her active-vision system towards that direction in which an auditory signal
source was recognized.

3 Posture Recognition

In this section we describe the processing steps to be carried out to recognize the
postures shown in fig. 1. The first step consists of a camera control procedure.
The second camera of the active vision head is aligned towards the selected
person and acquires the “posture images”. An additional zoom control ensures
that the person emerges in an approximately constant, predefined scale.

3.1 Posture Segmentation

The segmentation of face and hands as the gesture relevant parts is exclusively
based on skin color processing. From the face region we take color values to
construct a specific color model for the skin type and the illumination at hand.

Figure 6. Skin color segmented “posture

h images”

" ; ‘ Via a simple distance measure (Maha-

lanobis based) each pixel is classified to
!' !" be a member of the skin class or not
(see fig. 6) to obtain a binarized image.

3.2 Moment-based Posture Description

From the skin color segmented posture image, sub-sampled to a size of 64 x 64
pixels, we compute a feature vector v containing 9 statistical moments (normal-
ized central moments). For these moments the corresponding equation is given
by equ. 4.

ppg =Y (x =2 - (y—5)7 - f(z,) (4)

@,y

Herein 1,4 denotes the moment, z and y are the image coordinates, z and ¥
describe the center of gravity, and f(x,y) is the binary value at position (z,y).



Before classifying the feature vectors into the four posture classes, in the
next step we investigated the alteration of the feature vectors when the person
(the posture, respectively) is slightly shifted. The result for one posture image
is shown 1n fig. 7.
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Figure 7. Fluctuation of the feature vector v depending on the
deviation of the same posture. We can see, that the Euclidean
distance between the reference feature vector vret, obtained at
the central position, and the feature vectors calculated under
deviations up to 5 pixels, grows smoothly. The shown distance
values up to 200 are small in relation to the number of 9 mo-

ments and their value intervals.

3.3 Posture Recognition with Neural Classifiers

For the training of the neural classifiers we used a data set containing 360 feature
vectors. These vectors were computed from the four postures, 90 examples of
each. We used 180 vectors for the training and 180 vectors for the test of the
networks.

First, we used a Radial Basis Function (RBF) network containing 9 input
nodes, 20 hidden (RBF) nodes, and 4 output nodes. The RBF layer was trained
first with a Neural Gas algorithm to approximate the input data distribution.
Then, the second weight layer was trained via the standard delta rule.

Second, a modified Counterpropagation (CP) network was employed for pos-
ture recognition. The network had the same topology as the RBF network. The
hidden layer was trained first with a Neural Gas algorithm, too. Then, the sec-
ond weight layer was trained by a learning rule similar to Grossberg’s outstar

model (see [9]).

Network|Topology|# of Trai-|# of Test-|# of false|# of un—|Rec0g—

ningspat- | patterns | classified classiﬁed| nition

terns patterns patterns| Rate

RBF 9-20-4 180 180 6 10 91.2 %
CP 9-20-4 180 180 40 48 75.6 %

The table summarizes the performance achieved by the two networks. The RBF
network yielded robust performance, and the number of false classified patterns
was rather low, whereas the CP network suffers from a large number of mis-
classifications and additionally from a lower recognition rate. Concluding these
results, we are currently implementing the RBF based approach on our mobile
robot.



4 Overall Performance, Conclusions, and Outlook

Besides the performance concerning posture recognition, the person localization
is the most crucial but absolutely necessary prerequistite for the function of the
whole system. The use of multiple cues and their integration into a selection
process via 3D dynamic neural fields led to a satisfying person specific saliency
system. Using a CHUGAT BOYEKI CD 08 video camera with maximum wide
angle mode, the multiscale representation covers a distance from 0.5 to about
2.5 meters. Within this interval, the localization is very robust against slight
rotations (up to 15°), scene content, and illumination. Furthermore, the integra-
tion of auditory saliency makes it easy for the user to attract the attention of
the robot and to speed up the localization process significantly.

The work for posture and gesture recognition is still ongoing. Therefore, the
presented approach is just the begin of the investigations. Nevertheless, the al-
ready implemented method is appropriate to transmit several gesticulated com-
mands to the robot, but is, of coarse, still far away from really natural human-
robot interaction. Our future work will concern a dynamic approach for con-
tinuous gesture recognition. More precisely, we try to describe different space-
time gestures via the observed trajectory in the moment feature space. The more
crucial problem consists in the “behavioral grounding” of such dynamic gestures,
whereas the correspondence between the postures used in our example and the
behavioral meanings for the robot is rather simple. One possible way could be
the parallel utilization of speech and gesture to find out coherences between
these two information channels in order to teach the robot to use gesticulated
or spoken commands alternatively. In the present state, the recognition of the
postural commands is mostly dedicated to close the perception-action cycle in
an exemplary way.

For a more detailled description of the overall application scenario the pre-
sented system is embedded in we refer to [5], where aspects such as navigation
behavior and behavioral organisation are pointed out, too.
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