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Abstract 

In this paper an architecture for the recognition of d)i- 
namic gestures is described. The system implemented is de- 
signed to take a sequence of images and to assign it to one 
of a number of discrete classes where each of them corre- 
sponds to a gesture from a predefined vocabulary. 

The classijication task is broken down into an initial pre- 
processing stage following by a mapping from the prepro- 
cessed input variables to an output variable representing 
the class label. The preprocessing stage consists in the 
extraction of one translation and scale invariant feature 
vector from each image of the sequence. Further we uti- 
lize a hybrid combination of Kohonen Self Organizing Map 
(SOM)  and discrete Hidden Markov Models (DHMM) for 
mapping an ordered sequence of feature vectors to one ges- 
ture category. We create one DHMM for each movement to 
be detected. 

In the learning phase the SOM is used to cluster the fea- 
ture vector space. After the self- organizing process each 
codebook is quantized into a symbol. Every symbol se- 
quence underlying a given movement is finally used to train 
the corresponding Markov model by means of the non dis- 
criminative Baum- Welch algorithm, aiming at maximizing 
the probability of the samples given the model at hand. 

In the recognition phase the SOM transforms any input 
image sequence into one symbol sequence which is subse- 
quently fed into a system of DHMMs. The gesture associ- 
ated with the model which best matches the observed sym- 
bol sequence is chosen as the recognized movement. 

Preliminary experiments with our baseline system 
achieved a recognition accuracy of about 82%. The data 
was gathered from four people pelforming five repetitions 
of each of five gestures from a predefined vocabulary. The 
system uses input from a monocular color video camera, is 
user-independent but not real-time. 

1. Introduction 

Gestures are part of everyday natural human communi- 
cation. They are used as an accompaniment to spoken lan- 
guage and as an expressive medium in their own right. Re- 
cently, there have been strong efforts to develop intelligent, 
natural interfaces between users and systems based on ges- 
ture recognition. The optimal interaction has to be natural, 
intuitive, not require any remembrance and is similar to that 
we are familiar, thus the interaction with other people. The 
operational area of such intelligent interfaces covers a broad 
range of application fields in which an arbitrary system is to 
be controlled by an external user or in which system and 
user have to interact immediately [lo, 13, 151. 

One of the crucial problems in recognition of gestures 
is to deal with the varying temporal and spatial structure 
of dynamic gestures. The difficulty of gesture recognition 
stems from the high variability of each movement associ- 
ated with a gesture to be detect. Gesture’s segments may 
overlap, have varying lengths, and vary across speakers. 
Even the same user is not ever able to produce exactly the 
same movement for the same gesture. Moreover the com- 
plexity of the automatic recognition task is related to robust- 
ness to environmental conditions, vocabulary size, number 
and movement characteristics of users in user independent 
recognizers, and so on. 

Throughout this paper the following definitions are con- 
sidered. 

Definition 1 (Posture/Pose) A posture or pose is a couple 
determined by the only static hand locations with respect to 
the head position. The spatial relation of face and hands 
determines the behavioral meaning of each posture. 

Definition 2 (Gesture) A gesture is a series of postures 
over a time span connected by motions. 

This paper is structured as follows. Starting from our 
saliency system for person localization [9], in the next sec- 
tion we provide an overview of the process which is to be 
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carried out to describe the user's postures. We propose to 
combine skin color-based image segmentation with shape 
analysis by means of invariant moments. Section 3 men- 
tions some basic ideas of the theory of SOM and DHMM 
and how we exploit these tools to gesture recognition while 
in Section 4 an alternative stochastic architecture is sug- 
gested. Finally, a description of the preliminary results and 
some final considerations can be found in Section 5 and 
Section 6, respectively. 

2 View-based Posture Description 

2.1. Posture Segmentation 

We think that a good person localization task is essen- 
tial for any further gesture recognition process. In [5, 81 we 
proposed a multi-cue approach consisting of three feature 
modules sensitive to skin color, facial structure and struc- 
ture of the head-shoulder-contour respectively. 

In the above mentioned work the three cues were as- 
sumed to be of equal importance. After a period of practical 
experiences we had to face that the shape-based approach 
supplies contribution to the localization process much more 
confident in contrast to the skin color and facial structure 
cues. The reasons are quite obvious: skin color detection 
is highly influenced by illumination and therefore its robust 
detection cannot be ensured in general. Further, solving a 
localization problem is particularly of interest if a person is 
rather distant. Necessarily, relevant features should appear 
even on rather coarse resolutional scales so that details, as 
facial structures, are less appropriate. Facial structure can 
be detected confidently only if the distance between person 
and camera is not too large. Otherwise, the region covered 
by the face becomes to small to be localized. 

Against this background, the method for head-shoulder 
contour detection was improved significantly. Since the 
other cues can only support the person localization, but can- 
not ensure the localization alone, their methods were re- 
duced to rather simple, but computationally efficient algo- 
rithms. 

The utility of the different parallel processing cue mod- 
ules is to make the saliency system robust and indepen- 
dent of the presence of one certain information source in 
the images. Hence, we can handle varying environmental 
circumstances much easier, which, for instance, make the 
skin color detection difficult or almost impossible. Due to 
its reliability and robustness against varying environmental 
conditions, that system represent the starting point for any 
further precessing step. 

After detecting the location of the head and considering 
a subregion around it (Fig. l,a), we characterize the dis- 
tribution of the pixel values inside that window by a mul- 
tidimensional normal distribution function. This function 

represents a parametric model for the skin color and is un- 
equivocally described by a mean vector ,u and a covariance 
matrix (the parameters). Using the Mahalanobis distance 
between the mean vector and an image pixel, this latter is 
classified to be or not a member of the skin class according 
to a threshold value. 

From the resulting binary image (Fig. 1 ,b) we determine 
the centers of gravity (COG) of the hand and head regions 
(which we suppose to be the three greatest ones). Then to 
avoid problems deriving by the shape of each region due to 
the choice of the color threshold, we model each of these 
regions as a circle around their COG (Fig. 1,c). 

Figure 1. From left to right and from up to down: 
head localization result, thresholded skin clas- 
sification by means of an adapted color model 
derived from the pixel distribution around the 
head location, modeling of the hand and head 
regions as circle around their centers of mass, 
and finally the new defined coordinate system 
with origin centered at the center of gravity of 
the head. 

2.2. Feature Extraction 

Because the decision on whether to classify an image 
sequence should not depend on where and how far in the 
image the user performing a gesture is located, our system 
is expected to exhibit as well translation as scale invariance. 
Therefore from that binary image (Fig. 1,c) we compute a 
feature vector v'containing 13 translation and scale invariant 
elements characterizing the shape of the segmented scene. 
As first 9 feature vector elements we calculate the so-called 
scale normalized moments up to the third order. They re- 
main unchanged under translation and size change. 
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Given the ( p  + q)th order central moment p p q ,  the scale 
normalized moment of the same order is defined as 

(1) P P P  vpq = ~ 

(I++) 
Po0 

The computation of them for binary image yields theo- 
retically an error-free estimate of the continuous moments 
which is also independent of illumination as opposed to the 
value deriving from greyvalue images. 

Further, to compensate the shift variation of the person 
gesticulating in front of the camera we choose for each im- 
age a suitable coordinate system by fixing its origin point at 
the current determined head’s center of mass. It allows to 
calculate the remaining four feature vector elements relat- 
ing to the head position and regardless to the user’s position 
within the image. In this new coordinate system in order to 
ensure invariance also with respect to image size change, we 
use the polar coordinates of both hands’s COG. If ( T I ,  a l )  
and ( ~ 2 ,  a2) represent the polar coordinates of the hands’s 
COG (Fig.l,d) as last feature vector elements we take the 

Finally, because the feature vector components have val- 
ues which differ by several orders of magnitude we proceed 
with a rescaling of them. We perform the whitening lin- 
ear rescaling [4] with respect to the 225 test patterns. This 
procedure do not treat the input variables independently but 
allow for correlations amongst the variables. In the trans- 
formed coordinates the data set has zero mean and a unit 
covariance matrix. In addition the input normalization en- 
sures that all the feature vector elements are of order unity. 
In this case we can give to the network weights (Sec. 3) a 
suitable random initialization before training the network. 

four values ( r n a x & , T z } ~ a 1 ~  rnax(:1,rz}’a2). 

3 Hybrid SOM/DHMMs for Gesture Recog- 
nition 

3.1 Self-organizing Maps for Symbol Production 

The goal of the posture analysis is the extraction of lo- 
cal features along the hand trajectory, yielding a sequence 
of time ordered multi-dimensional feature vectors. The fur- 
ther step is concerned with the quantization of that feature 
vectors into a sequence of symbols. 

A Self Organizing Map (SOM) [I41 is used to pre- 
serve the topology of the high-dimensional feature space 
by mapping the feature vectors to a two-dimensional space. 
Due to the sequential nature underlying each gesture such 
a topology-preserving map can be exploited to consti- 
tute trajectories where the SOM best-matching neurons are 
recorded during the process. The SOM clusters the unla- 
beled training feature vectors which lie near one other in the 
feature space. During the training phase as well the code- 
book vector most sensitive to the actual training vector as 

those in its (variable) neighborhood, are tuned maintaining 
a well-balanced set of weight values with respect to the in- 
put density function. 

The weight adjustment is carried out using the Euclidean 
distance between the actual multi dimensional input vector 
and the connecting weight vectors, times a time-dependent 
learning rate, and times a neighborhood function that de- 
cay like the Gaussian probability density function when the 
topological distance between the best-matching unit and the 
actual vector increases. 

We start the learning process with a large radius cover- 
ing all the units in order to prevent the formation of un- 
desired outliers in the clustering due to the limited train- 
ing data set. Our SOM has 800 units organized into a 
( zs i ze  = 40 x ysize = 20) square array. The feature 
vectors are 13-dimensional and the SOM is trained by de- 
creasing the neighborhood radius from 6 to l and the learn- 
ing rate from the value 0.9 to 0 in (100 * zs i ze  * ysize) 
iterations. 

After the clustering process each neuron of the network 
correspond to a cluster in the input feature space. Proceed- 
ing from the self-organizing process we tune the weight 
vectors using the unsupervised Learning Vector Quantiza- 
tion (LVQ) method causing the weights to approach the de- 
cision boundaries [ 141. 

In order to utilize the SOM for classification we divide 
each gesture of our vocabulary in subgestures or posture 
classes and we label each of them with a different symbol 
(see Fig.2 for the hand-waving-right movement). We divide 
the gestures of our vocabulary into altogether 32 subges- 
tures (9 for each left-,right-waving; 5 for each go lefdright; 
4 for stop). For class discrimination purposes we hand-label 
each SOM cluster. That labels were assigned to the units ac- 
cording to the subgesture subdivision (Fig. 2) by using the 
recorded training samples as input. 

3 ’2 :’, \\ 
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Figure 2. Waving-right gesture hand-labeling. 
That movement is divided in 9 subregions each 
covering exactly 20 grad of the two-dimensional 
plane surface which the gesture is projected on. 
Each subregion is labeled by one symbol. 
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3.2 Stochastic Recognition with HMMs 

Hidden Markov Models [3, 171 are probabilistic finite 
state machines well-suited in dealing with the statistical and 
sequential nature of time-varying input patterns. They are 
the basis for a lot of applications especially in the field 
of speech recognition [ 1 ,  2, 61, and hand-writing recogni- 
tion [7, 161. 

A HMM consists of a finite number of states connected 
one other by directed arcs according to a predefined topol- 
ogy. Each arc is associated with one probability value that 
is called state transition probability. At regular time inter- 
vals the model undergoes a change of state according to the 
set of transition probabilities. Also a change back to the 
same state is possible. Each state compute the estimation 
of the likelihood for a certain input observation vector by 
means of a probability density distribution function which 
can be discrete or continuous. After defining also an initial 
state distribution, the HMM can be used as generator of se- 
quence of observations or as model for how an observation 
sequence is generated by it. 

There are two concurrent stochastic processes associated 
with each HMM: a set of state output processes that model 
the local stationary character of the observation at each time 
step, and the state sequence that models the temporal struc- 
ture of the signal being modeled. Because this latter state 
sequence is not directly observable the Markov model is 
called 'hidden'. 

In our work we used as many Hidden Markov Models 
as the number of gesture to be detected. The training and 
decoding of the models are based on the posterior probabil- 
ity P(MIXA)  that the feature vector sequence X i  has been 
produced by the model M .  In the learning phase the set of 
parameters maximizing that probability are sought for ev- 
ery sequence XA associated with the model M .  This strat- 
egy is referred to as the Maximum a Posteriori (MAP) crite- 
rion [4]. During the recognition stage, given an observation 
sequence Xb and a fixed set of parameters the goal is to find 
out among many models the one model M that maximizes 

Unfortunately, the learning process generally does not 
consent to expressly characterize P(MIXk)  but permits 
the characterization of the probability P(X6  IM) that a 
given model generates certain feature sequences. Using 
the Bayes' rule one can express P(MIX6)  in terms of 
P ( X i I M )  as 

P(MIX3. 

where P ( M )  is the prior probability of the model, 
P ( X )  is the prior probability of the vector sequence, and 
P ( X k ( M )  is referred to as the likelihood of the data given 

the model. Because P ( M )  can be calculated without us- 
ing the feature vector sequences, and P(X) can be assumed 
constant since it does not depend on the models, the estima- 
tion of equation 2 amounts to calculating the only likelihood 
P ( X i ( M ) .  In that case, when the training criterion aims at 
the maximization of the quantity P(XkIM) ,  it is referred to 
as Maximum Likelihood (ML) criterion [4]. This is exactly 
the learning criterion we adopted. 

3.3 Using Discrete HMMs for Classification 

In subsection 3.1 we assigned each feature vector to a 
symbol which corresponds to a codeword in the codebook 
created by LVQ. The feature vectors of the data set for train- 
ing were vector quantized. The need of a vector quantizer to 
map the continuous observation vectors into discrete sym- 
bols arises from the choice to use discrete Hidden Markov 
Models (DHMM) as recognizer. 

For the choice of the model topology there is no theoret- 
ically way to rely on. The choices we made depend on the 
gesture being modeled. For each movement to be detected, 
we create one left-to-right DHMM (Fig. 3) with as many 
states as the subregions which this gesture is divided in. In 
such a model each DHMM state is associated with a single 
movement's subgesture (Fig. 2). 

Figure 3. Left-to-right discrete Hidden Markov 
model. This model is called left-to-right or 
Baskis model because it has the property that as 
time increases the state changes proceed from 
left to right. The dashed arrows depict the tran- 
sition probabilities among the states. Here only 
transition from a state to the next one or to itself 
are allowed. The probability distribution func- 
tions assume discrete values. 

In the learning phase the parameters of each DHMM are 
optimized so as to model the training symbol sequences 
from the corresponding gesture. More precisely, the pa- 
rameter of each model are estimated with symbol sequences 
oi  the according gesture samples applying the Baum-Welch 
training algorithm [3]. This latter is an iterative procedure 
based on the Maximum Likelihood criterion aiming at max- 

339 

in: Proc. of the IEEE International Conference on Intelligence, Information and Systems (ICIIS'99), Washington 1999, pp. 336-341, IEEE Press



imizing the probability of the samples given the model at 
hand and can be considered as a form of the Expectation- 
Maximization (EM) algorithm [ 1 13. 

Because we consider a gesture as a sequence of subges- 
ture the recognition process consists in comparing a given 
sequence of symbols with each DHMM. The gesture as- 
sociated with the model which best matches the observed 
symbol sequence is chosen as the recognized movement. 

% of not 
Gesture classified 

patterns 
StOD 9.2 

4 Continuous HMMs for Automatic Gesture 
Recognition 

% of false Recognition 
classified rate in % 
patterns 

13.2 77.6 

Up to this point, we have considered the case when the 
observations were characterized as discrete symbols from 
a finite alphabet. In this situation we could use only dis- 
crete probability density functions within each model state. 
The main problem with this approach is the need to quan- 
tize the continuous feature vectors via codebooks. Because 
that quantization process might be accompanied by distor- 
tion or loss of information, it could be advantageous to uti- 
lize the HMMs with continuous observation density func- 
tions. In this case the model probability density functions 
are some parametric pdfs or mixture of them. The most 
common parametric pdf used is the mixture of Gaussian 
density which can be expressed for a generic state i as 

% of not % of false 
Gesture classified classified 

patterns patterns 
StOD 10.4 10.0 

M 

P i ( X )  = G m N ( X ,  pim, X i m )  (3) 
m=l  

where M is the number of mixtures ( M  = 3 in our ex- 
periments), X is the vector being modeled, cim is the mix- 
ture coefficient for the mth mixture in state i and N is any 
strictly log-concave or elliptically symmetric density func- 
tion with covariance matrix Xim and mean vector pim in 
state i for the mth mixture. 

With D-dimensional data (here D = 13 is the dimension 
of the observation vectors) and using the Gaussian function 
as parametric pdf, the function N ( X ,  pirn, Xirn) in equa- 
tion 3 can be expressed as Recognition 

rate in % 

79.6 

As the dimension of the feature vectors increases as well 
the length of the mean vectors as the size of the covariance 
matrices becomes greater. But while the increase in size 

- 1  

waving right 
waving left 

In addition with insufficient training data some of these pa- 
rameters to estimate will assume more or less arbitrary val- 
ues. A good way to avoid a huge number of parameters and, 
at the same time to have representative models, consists in 
approximating the covariance matrices by diagonal matri- 
ces. Under that simplification the model parameters can be 
estimated faster maximizing the likelihood of the data using 
another time the Baum-Welch learning algorithm [3]. 

7.3 10.3 82.4 
8.8 8.5 82.7 

5 Preliminary Results 

Y 

go right 
go left 

7.4 7.8 84.8 
8.1 8 .o 83.9 

go right 81.8 
go left 10.2 9.6 80.2 

Table 1. Recognition results using discrete 
Hidden Markov Models. 

of the mean vectors is proportional to the one of the ob- 
servation vector, the enlargement in size of the covariance 
matrices is even square proportional to the vector dimen- 
sion. Hence, with multi-dimensional observation vectors 
the number of parameters of the mixture of Gaussian is very 
large and its estimation becomes computationally excessive. 

Table 2. Recognition results using continu- 
ous Hidden Markov Models. 

We consider an input as not classified if after feeding it 
into each HMM either the difference between the highest 
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and the second highest output is not over an heuristically 
determined threshold or all the outputs are under a given 
threshold. 

From a direct comparison of the recognition rates we can 
see how the CHMM-based system leads better results than 
the hybrid SOMDHMM-based one. We think that this is 
mainly due to the continuous inherent character of the fea- 
ture vectors. The conversion of them into discrete symbols 
via vector quantization can namely worsen the recognition 
task. 

6 Conclusions 

So far, both methods proposed for gesture recognition 
were tested on a small set of simple gestures and thus have 
very limited scope. We are currently extending both sys- 
tems in order to overcome this limitation. The aim is to 
design a system that can work with a large “vocabulary” of 
gestures, and remain user independent. The performances 
of the two architectures depend strongly on the number of 
training pattern and also how well that patterns are repre- 
sentative for each class. It means that the training patterns 
have to cover the maximum test pattern range as possible. 

If one the one hand HMMs provide a good representa- 
tion of the sequential nature of the human movements, on 
the other they suffer from several limitations and drawbacks 
because of the assumptions exploited for the implementa- 
tion of their learning and decoding algorithms [6] .  We re- 
ifer, for example, to the strong statistical assumption that the 
probability density functions associated with the states can 
be described by a fixed parametric function. Again, it is 
supposed every state change to depend only on the current 
and previous state and not on all the predecessor ones (first- 
order HMM).  Also the likelihood of an observation vector 
is assumed not to depend on the previous observations but 
only on the current state (context-independent assumption). 

In addition, HMMs consider the sequence of feature vec- 
tors as a piecewise stationary process. Hence, even though 
gesticulating is a non-stationary process we have to assume 
that over a short period of time the statistics of the move- 
ment underlying the gesture do not differ from sample to 
sample neglecting the correlations between successive fea- 
ture vectors (statistical time-independence of the observa- 
tion vectors). HMMs trained with the non-discriminative 
Baum-Welch algorithm show also poor discriminative capa- 
bility among different models. Namely, by maximizing the 
Maximum Likelihood instead of the Maximum a Posteriori 
the HMMs are trained only to generate high probabilities 
for its own class and not to discriminate against models. 

Due to their inherently discriminant nature and lack of 
distributional assumptions it is our intention to further use 
Neural Networks as emission probability for HMM states. 
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