
Hybrid Neural Networks to recognize BodyPostures in Human-Computer InteractionAndrea Corradini�, Ulf-Dietrich Braumann,Hans-Joachim Boehme, Horst-Michael GrossTechnical University of Ilmenau, Dept. of NeuroinformaticsD-98684 Ilmenau, Federal Republic of GermanyE-mail: {andreac,ulf}@informatik.tu-ilmenau.deAbstractIn this paper a novel approach to human posture analysis and recogni-tion using standard image processing techniques as well as hybrid neuralinformation processing is presented. We �rst develop a reliable and robustperson localization module via a combination of certain salient cues andthree-dimensional dynamic neural �elds. Then we focus on the view-basedrecognition of the user's static gestural instructions from a prede�ned vo-cabulary based on both a skin color model and statistical normalizedmoment invariants. The segmentation of the postures occurs by means ofthe skin color model based on the Mahalanobis metric. From the resultingbinary image containing only regions which have been classi�ed as skincandidates we extract translation and scale invariant moments.These are used as input for two di�erent neural classi�ers whose resultsare then compared. To train and test the neural classi�ers we gatheredthe data from �ve people performing 18 repetitions of each of �ve pos-tures (our vocabulary): stop, go left, go right, hello left and hello right.The system is currently under development with constant updates andnew developments. It uses input from a color video camera and is user-independent. The aim is to build a real-time system able to deal withdynamic gestures.1 IntroductionHuman beings exploit the functions of the gesture already from the early child-hood. Infants, long before being able to speak, gesticulate to convey their desiresand needs and these abilities in gesticulating continuously improve and becomenatural and intuitive the more the person becomes adult. In processes acting asintermediary agents between humans and computers, people must be allowed toconcentrate their attention and e�orts on the content of the interaction. There-fore the optimal interaction does not require any remembrance and is similar tothat they are familiar, thus the interaction with other people [7].�supported by the European Union: Training and Mobility of Researchers � Marie CurieGrant # ERB FMBI CT 97 2613; any correspondence should be directed to A. Corradini
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For this reason gestures with regard to Human-Computer-Interaction (HCI)purposes have become an intensive �eld of research. Although for many yearsthe dominant input devices to capture gestural information have been intrusivedispositives like the keyboard, mouse or glove, the demand for more natural andbody-centered applications increased the interest for non-intrusive camera-basedinput devices [9]. These methods are user-friendly and do not require the userto wear an additional instrument but su�er both from too high computationalcosts for real-time image processing and the di�culty of extracting informationfrom 2D visual image. To sense gestures with a camera limits the user to faceit and requires highly constrained environments. Taking into account this factwe have developed a robust saliency system for person localization integratingdi�erent visual cues. After the detection of a person aligned in front of thecamera a gesture recognition process is to be carried out to capture the user'smovements.We propose to combine skin color-based image segmentation with shapeanalysis by means of invariant moments as input vector to a hybrid unsupervised-supervised neural network. The results obtained using two di�erent neural clas-si�er paradigms are presented.2 Person Localization2.1 System OverviewWe think that a robust saliency system for person localization is the prerequisitefor a further gesture analysis. Finding persons within cluttered visual scenes isa non-trivial task as long as certain conditions cannot be tightly constrained.However, even under normal indoor conditions, e. g. o�ce or lab rooms or �oors,the variety of possible viewpoints with quite di�erent complexities for the lo-calization task is surprisingly high. Thus, it may not be surprising to take amulti-cue approach as we did in order to widen the basis of feature modalities,and by this, to get a su�cient redundancy. Fig. 1 provides a coarse sketch of
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facial structure and structure of the head-shoulder contour, respectively, operateon all levels of a grayscale pyramid. The cue module for skin color detectionuses the original color image and bases on a statistical parametric color model.The segmentation of the color module result is transformed into a pyramidrepresentation, too, to obtain an uniform data structure for the di�erent cues.The utility of the di�erent parallel processing cue modules is to make thesaliency system robust and independent of the presence of one certain infor-mation source in the images. Hence, we can handle varying environmentalcircumstances much easier, which, for instance, make the skin color detectiondi�cult or almost impossible. Moreover, because of the multi-cue approach thealgorithmical e�ort for one single cue can be kept rather low.The output of the cue modules serves as the input for a 3D dynamic neural�eld. To achieve a good localization we need a selection mechanism to make ade�nite choice. So we actually can localize persons even in di�erent distances,since we use �ve �ne-to-coarse resolutions. Therefore, a neural �eld for selectingthe most salient region should be three-dimensional.2.2 Visual CuesA nice property of persons getting in contact with a machine is their frontalalignment related to the system's camera view, which can be considered assome intuitive behavior if one visibly wants to communicate with another agent.This allows to consider the outer shape of contour of head and shoulders, colorof visible skin (face, hands) and frontal face as reasonable person-speci�c cuecomponents.The �rst component relates to a quite typical invariant of a person. Thefrontal shape of head and shoulders can appear almost independently of thelighting intensity or contrast. A measure to evaluate a part of an image for thepresence of such contour can be determined using a shape-adapted arrangementof oriented �lters in the position space. By each �lter it is determined whetherthe respective dominant local orientation matches with some prototype tem-plate. Steerable �lters turned out to be an elegant implementation of oriented�lters. However, similar results can be obtained by means of Jähne's inertiatensor approach for local orientation estimation [5].Although human skin might appear to have a special color, this color isnot unique! On one hand, this non-uniqueness is the reason why a color cuealone is reasonable only in very special constrained cases. On the other hand,the advantage of a color-based detection is its simplicity, whereas in this workcolor is taken as supplementary cue. For the generation of a skin color modelwe manually segmented a set of images containing skin regions. Because aftersome experiments we noted that the color distribution of human skin can begood approximated by a Gaussian distribution, we use it as parametric model.By this statistical model of the typical subspace of skin color within a colorspace all these regions can be segmented which appear like (caucasian) skin.Due to its simplicity, we adapted that one proposed by Yang andWaibel [10],which uses a projection (R3 !R2) onto a plane through the upmost values ofthe RGBEBU-cube (chromatic projection).Finding faces in images is the most challenging part, since it necessitates�ne resolutional levels requiring high computational e�ort. Since this is no facediscrimination task the algorithms can be kept rather simple which at all allows
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a reasonable implementation of that cue. In search of an algorithm to detectfrontal faces we decided to use a quite simple but robust algorithm based oncosine metrics (normalized scalar product of an `average' face and image tiles).The idea behind multimodality is to have independent components provid-ing su�cient redundancy. Therefore, the fusion of the cue cannot be simply asuperimposition. We propose a fuzzy MIN-MAX-operator which allows to doa compromise between superimposition and a selection of the strongest com-ponent. Note that all cue components are calculated in �ve resolutional levels(pyramid), which provides information to determine the person's distance.Finally in order to have a localization selection mechanism yielding a uniqueclear solution, we extended Amari's dynamic neural �eld [1] towards a three-dimensional topology. That �eld can be described as recurrent nonlinear dy-namic system with a dynamic behavior which leads to one local region of activeneurons successfully competing against the others, i. e. the formation of onesingle blob of active neurons as an equilibrium state of the �eld [1]. A moredetailed description of the whole localization task can be found in [2].3 Posture SegmentationIn our work the segmentation of face and hands as the gesture relevant partsis exclusively based on skin color processing therefore we assume skin color isalways present within an image.After detecting the location of the head as described above, we consider awindow subregion around it which we call head box (Fig. 2,b). Then we char-acterize the distribution of the pixel values inside that subregion by a multidi-mensional Gaussian with centroid location and a covariance matrix describingthe local distribution around the centroid. By doing that we adapt the skincolor model to �t more speci�c for the illumination and the skin type at hand.Therefore the detection of skin colored regions can be improved. We handlemultiple scales by choosing head boxes of di�erent sizes according to the levelin the pyramide.By using the chromatic projection r = RR+G+B and g = GR+G+B of eachpixel inside the head box the actual color model is uniquely determined by themultivariate normal densityp(~x) = e� 12 (~x�~�)T��1(~x�~�)(2�)j�j1=2 (1)where the mean ~� is a two-dimensional vector, � is a 2�2 covariance matrix, andj�j represent its determinant. Using the quantity appearing in the exponent ofequ. 1 (also called Mahalanobis distance from ~x to ~�) each pixel ~x of the image isthen classi�ed to be or not a member of the skin class according to an empiricallydetermined threshold value.Now we apply to the resulting binary image (Fig. 2,c) a winner-take-all(WTA) algorithm [1] to obtain the regions corresponding to the hands andhead (which we assume to be the three greatest regions) and we determine theircenters of gravity (COG). Then we model each of these regions as a circle aroundtheir COGs with constant radius (Fig. 2,d). That avoids problems deriving bythe shape of each region due to the choice of the color threshold.
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Figure 2: From left to right: input image, head localization result with headbox, thresholded skin classi�cation by means of an adapted color model derivedfrom the pixel distribution inside the head box, modelling of the three greatestregions as circle around their centers of mass.4 Posture Recognition4.1 Moment-based Posture DescriptionFrom that binary image, sub-sampled to a dimension of 64� 64 pixels we com-pute a feature vector ~v containing 13 translation and scale invariant elementscharacterizing the shape of the segmented scene.Given a pixel distribution f(x; y) its two-dimensional (p+ q)th order centralmoments are de�ned by �pq =Xx;y xpyqf(x� �x; y � �y) (2)where �x and �y represent, respectively, the x and y coordinate of the image'sCOG. Applying the theory about algebraic invariants by Hu [4], it is straight-forward to show that the values�pq = �pq�(1+ p+q2 )00 (3)known as the scale normalized moments, remain unchanged under image trans-lation and size changes. In our work we take them up to the third order yieldingthe �rst 10 invariant values of our feature vector. The computation of them forbinary image yields theoretically an error-free estimate of the continuous mo-ments which is also independent of illumination as opposed to the value derivingfrom grayvalue images.To compute the remaining 4 feature vector elements we operate as follows.To compensate the shift variation of the person gesticulating in front of thecamera we choose for each image a suitable coordinate system by �xing its originpoint at the current determined head's center of mass. It allows to calculate afeature vector relating to the head position and regardless to the user's positionwithin the image. In this new coordinate system in order to ensure invariancealso with respect to image size change, we use the polar coordinates of bothhands's COG (Fig.3).4.2 The Neural Classi�ersFor the posture recognition we use two di�erent neural classi�ers trained witha data set containing 450 feature vectors. These vectors were computed froma set of 90 examples for each posture performed by �ve di�erent persons. Weused 225 vectors for the training and 225 vectors for the test of the networks.
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aa rr �1 1 22180 Figure 3: The new de�ned coordinate sys-tem with origin centered in the COG of thehead. If (r1; a1) and (r2; a2) represent the po-lar coordinates of the hands's COG as last fea-ture vector elements we take the four values( r1maxfr1;r2g ; a1; r2maxfr1;r2g ; a2).A �rst feedforward network (13 input, 20 hidden, and 5 output nodes) wastrained in the hidden layer with a unsupervised Neural Gas (NG) algorithm byMartinetz and Schulten [6] and in the output weight layer via the standarddelta rule (DR). In its simplest form the NG layer functions in a `winner-take-most' fashion. Unlike to other self-organizing algorithms in the Neural Gas theadaptation steps are not determined by the location of the neural units withina topologically prede�ned lattice, but instead by the relative distances betweenthe neurons in the input space. The adaptation step for an arbitrary weight ~wjoccurs according to the following Hebbian-like rule:~w(t)j = ~w(t�1)j + �e�kj=�(~v � ~w(t�1)j ) (4)The two constants � 2 [0; 1] and � de�ne the overall extend of the weightadaptation and the number of neural units mostly changing at each step theirsynaptic weights respectively. Each time an input signal ~v is presented, theadjustment of the synaptic weight ~wj depends on the position kj of ~v � ~wjwithin the set fk~v � ~wlk 8 unit neuron lg sorted in ascending order.The second network relies on the counterpropagation (CP) network devel-oped by Hecht-Nielsen [3]. The network has the same topology as the pre-vious one. It was trained by a hybrid combination of the unsupervised NGparadigm in the hidden layer and by the supervised Grossberg Outstar (GO)algorithm in the output one. To train an outstar neuron, its synaptic weights areadjusted to be like a desired target vector. The training equation that followsis: ~w(t)j = ~w(t�1)j + �(t)(~yj � ~w(t�1)j ) (5)where � is a training coe�cient starting near 0.1 and gradually reducing to zeroas training progresses and ~yj is the desired output.5 Results and Future WorkTab. 1 summarizes the achieved performance concerning the two networks andtheir pipeline combination. The �rst network yields a robust performance, andthe number of false classi�ed patterns is rather slow, whereas the CP-like net-work su�ers from both a large number of misclassi�cations and a slow recogni-tion rate. Therefore we decided to use the �rst network which converges veryspeedy and further once the convergence is achieved to continue the trainingwith the second slower but more accurate in the results network.Up to now we used a limited posture alphabet but we are currently extendingthe system with the aim to both overcome this limitation and deal with contin-uously dynamic gestures. More precisely, we are describing di�erent space-time
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Test & False classi- Not classi- Recog-Network Topology Training �ed Pat- �ed Pat- nitionPatterns terns in % terns in % Rate in %(a) NG+DR 13-20-5 225 3.3 5.4 91.3(b) NG+GO 13-20-5 225 8.5 10.2 81.3(b) then (a) 13-20-5 225 2.8 4.6 92.6Table 1: Summary of the achieved performances using the NG with two di�erentparadigms for the output layer and a combination of both. Inputs are consideredas not classi�ed if after feeding it into the network in the output layer more thanone neuron shows high activity. See text for details.gestures via the observed trajectory in the moment feature space using HiddenMarkov Models (HMM) [8]. Taking time into account means the introductionof a new degree of freedom. That will permit to extend our vocabulary by-passing many problems deriving from the overlapping of single postures in thetwo-dimensional posture space.References[1] S.-I. Amari, �Dynamics of Pattern Formation in Lateral-Inhibition TypeNeural Fields�, Biological Cybernetics, 27:77�87, 1977.[2] A. Corradini, U.-D. Braumann, H.-J. Boehme, H.-M. Gross, �Contour-basedPerson Localization by 3D Neural Fields and Steerable Filters�, Proc. ofMVA '98, IAPR Workshop on Machine Vision Appl., pp. 93�96, 1998.[3] R. Hecht-Nielsen, �Counterpropagation Networks�, Proc. of the IEEE FirstInt. Conference on Neural Networks, vol. 2, pp. 19�32, 1987.[4] K. Hu, �Visual Pattern Recognition by Moment Invariants�, IRE Transac-tions on Information Theory, pp. 179�187, 1962.[5] B. Jähne, �Practical Handbook on Image Processing for Scienti�c Applica-tions�, CRC Press LLC, Boca Raton, 1997.[6] T. Martinetz, K. Schulten, �A Neural Gas Network Learns Topologies�, Proc.of the 1991 Int. Conf. on Arti�cial Neural Networks, pp. 397�402, 1991.[7] A. Mulder, �Hand Gestures for HCI�, Tech. Rep. NSERC Hand CenteredStudies of Human Movement Project, Simon Fraser Univ., Burnaby, 1996.[8] L. R. Rabiner, �A Tutorial on Hidden Markov Models and Selected Ap-plications in Speech Recognition�, Proceedings of the IEEE, 77(2):257�285,1989.[9] R. Watson, �A Survey of Gesture Recognition Techniques�, Trinity College,Dublin 2, Tech. Rep. TCD-CS-93-11, 1993.[10] J. Yang, A. Waibel �A Real-Time Face Tracker�, Third IEEE Workshopon Applications of Computer Vision (WACV�96), pp. 142�147, 1996.
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