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Abstract 
The basic idea o f  our anticipatory approach t o  
perception is t o  avoid the common separation 
o f  perception and generation o f  behavior and t o  
fuse both aspects in to  a consistent neural pro- 
cess. Our approach is based on the prediction 
o f  the consequences o f  hypothetically executed 
actions. In this sense, perception o f  space and 
shape is assumed t o  be a generative process o f  
anticipating the course o f  events resulting f rom 
different sequences o f  actions. We present a bi- 
ologically motivated computational model that  
is  able to anticipate and evaluate,hypothetical 
sensorimotor sequences. Our Model for Antici- 
pation based on Cortical Representations (MA- 
COR) allows a completely parallel search at  the 
neocortical level using assemblies o f  rate coded 
neurons for grouping, separation, and selection 
o f  sensorimotor sequences. 

1 Introduction 
Based on findings for the sensorimotor char- 
acter of perception [l, 71, we have developed 
an alternative approach to perception that 
avoids the common separation of perception 
and generation of behavior and fuses both as- 
pects into a consistent neural process [6]. In 
this approach, perception of space and shape 
in the environment is regarded to be an active 
process which anticipates the sensory conse- 
quences of alternative hypothetical interac- 
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tions with the environment, that could be 
performed by the sensorimotor system, start- 
ing from the current sensory situation. This 
point of view emphasizes the generative and 
anticipative character of perception consider- 
ing both sensory and motor aspects of the 
action-perception-c ycle. 

In the following, we turn to the question 
of where in the brain anticipating sensori- 
motor systems may be expected. Based on 
these findings, in Section 3, we present MA- 
COR. This model allows a completely par- 
allel search at the neocortical level using as- 
semblies of rate coded or spiking neurons for 
generation, grouping, separation, and selec- 
tion of sensorimotor sequences. It is intended 
as a general scheme for sensorimotor antici- 
pation in a neural architecture. It does not 
attempt to provide a detailed description of a 
specific cortical or subcortical structure, but 
we try to capture some general properties of 
architecture and processing that are relevant 
to our “perception as anticipation”-approach 
in brain-like systems (for details see [3]). 

2 Biological evidence 
Figure 1 provides an overview of the main 
cortical structures used in our model includ- 
ing the brain regions involved and their con- 
nections. The visual information about an 
actual situation is carried from the retina to 
the cerebral cortex and reaches also the pos- 
terior parietal cortex (PPC). The PPC ef- 
fects the integration of different sensory in- 
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puts, thereby processing' afferent inputs not 
only from visual cortex (V4, V5, etc.), but 
also from the primary somatosensory cortex 
(SI) and limbic cingulate gyrus. This sensory 
inform'ation enables PPC to generate an ac- 
tivity distribution describing the current sta- 
tus of the animal and forming the basis of 
successive motor planning. Such planning of 
motor actions could be shown to take place in 
the secondary motor areas, e.g. the premotor 
cortex (PMC) and the supplementary motor 
area (SMA) (see Figure 1).[9, 101. 

Figure 1: Schematic illustration of the essential 
cortical and subcortical systems that may be in- 
volved in sensorimotor anticipation based on inter- 
nal simulation. 

Thach (1996) found that the premotor 
parts of the brain are active both in plan- 
ning movements to be executed and in think- 
ing about movements that shall not be exe- 
cuted. Thus, these areas may play a role in 
anticipating or rehearsing a movement with- 
out actually performing it. The SMA also ap- 
pears to be crucial in temporal organization 
of movements, especially in sequential perfor- 
mance of multiple movements. The outputs 
of the PMC and SMA are sent to regions of 
the primary motor cortex (MI) that control 
proximal and axial limb movements or body 
movements via the brainstem and the medial 
cerebellum for fine tuning of movements [4]. 

Another subcortical area, the basal gan- 
glia (BG) is of great importance because they 
are implicated in motor habit learning or 
might play a role in interfacing many cerebral 

cortical areas to systems for behavioral out- 
put. Especially the striatum receives inputs 
from all parts of the cerebral cortex, includ- 
ing PMC, MI, SI and has outputs directed 
strongly towards the premotor and prefrontal 
cortex via which they could influence move- 
ment selection and initiation [8]. Besides 
these cortical inputs, the striatum receives af- 
ferent inputs from dopamine neurons in the 
midbrain [l l] .  This way, striatal neurons are 
able to learn an association between the sen- 
sorimotor context and the dopaminergic af- 
ferents, which allows to evaluate sensory sit- 
uations without external reinforcement [ll]. 

3 Model for Anticipation 
Observable behaviors are the only indicators 
to evaluate and compare the perceptual per- 
formance of sensorimotor systems as a whole. 

Therefore, we are investigating our antic- 
ipatory concept within the framework of a 
simple local navigation behavior with the goal 
of obstacle avoidance and fast and straight 
movement. To provide sensory inputs ~ ( t ) ,  
the simulated system was equipped with 8 IR- 
sensors arranged in a circle. The range of the 
IR sensors is the twice as far as the diameter 
of the simulated robot. A motor command 
- m consists of a steering angle q5 E [-45", 45'1 
and a velocity v E [0,1]. The reinforcement is 
chosen depending on the motor command se- 
lected such that a maximum reinforcement r 
of 1.0 is only delivered for q5 = 0, v = 1 with- 
out collisions. The reinforcement decreases 
up to a minimumvalue of T = 0.3, for greater 
steering angles and lower velocities. Colli- 
sions are always punished by r = -1. 

Of great importance for a successful navi- 
gation behavior is the evolution of a general 
understanding of space and shape, indepen- 
dent of specific visual details of the objects in 
the scene. In our view, the evolution of such a 
general understanding must be based on the 
capability to continuously simulate, evaluate, 
and select sensorimotor alternatives. This re- 
quires a generative process of anticipating the 
course of events resulting from different se- 
quences of actions. 
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3.1 Architecture 
In the MACOR-architecture a parallel gener- 
ation of sequences of sensorimotor hypothe- 
ses is assumed. It is realized by a spread of 
activity through corticocortical connections 
within our cortical model that is supposed 
to correspond to SMA/PMC. These connec- 
tions, thus, allow the direct prediction of sub- 
sequent sensorimotor situations as well as an 
evaluation (tur) and competence (tu") for each 
transition. Learning of these action-values 
is thought to proceed involving the value- 
system of the brain, particularly the basal 
ganglia. The values of a sensorimotor transi- 
tions mediated by the basal ganglia are stored 
directly in the synaptic weights of the respec- 
tive corticocortical connections. 

MACOR is composed of sensorimotor as- 
semblies of processing nodes (prediction map, 
see Figure 2). 

sensorimotor sequence 2 
(with low overall evaluation) 

overall evalus 

ith low overall evaluatio 

ition) 

Figure 2: Basic structure of MACOR modeled at 
the level of associative cortices. Each node, called 
a-node, encodes a sensory situation specified by the 
motor context that resulted in the respective sen- 
sory situation. This figure schematically illustrates 
three short sequences. Each of the generated se- 
quences may have a different length and cumulative 
evaluation. The connections between the a-nodes 
encode the motor commands (m) along with their 
evaluations (wr) and competence (wC)for the cor- 
responding sensorimotor transition. Different grey 
levels were used to symbolize different activities of 
sensorimotor nodes. 

The nodes (a-nodes, pyramidal cells) in 
each sensorimotor assembly represent alter- 
native motor commands serving to bring the 
system into the respective sensory situation. 

Thus, initiated by a real sensorimotor situa- 
tion, a certain a-node in our model is acti- 
vated which propagates its activity yy to all 
other a-nodes connected to it by corticocor- 
tical connections w$ (see Equation 1, where 
n is the number of assemblies and m is the 
number of nodes in each assembly). 

y;(t + 1) = max wi"j(t) . yj"(t) (1) 
j ~ [ o , n m - l ]  

The hereby activated a-nodes may in turn 
activate further a-nodes, thus generating 
whole sequences of sensorimotor hypotheses. 
Since the maximal value of the competence 
weights is lower than 1.0 (see Equation 7), a 
subsequent a-node will always be lower acti- 
vated than its predecessor. Also, a node will 
only be activated if its input activity exceeds 
a threshold. This also supplies a stopping cri- 
terion for the propagation of sequences. 

While the parallel generation of sequences 
of sensorimotor hypotheses is achieved by the 
a-nodes, the model assumes that the selection 
of the best evaluated sequence is realized by 
pyramidal cells called P-nodes (see Figure 3) .  

~ 

PPC 
s(t). m(t). 10) 

Figure 3: Backpropagation of local sequence eval- 
uations onto the P-startnode in assembly 1. 

These pyramidal cells exist in cortical 
layer I1 of SMA/PMC with extensive recip- 
rocal projections to both MI and PMC [2]. 
Thus, each P-node is associated with a cor- 
responding a-node in the same cortical col- 
umn. The P-nodes may select a sequence for 
actual execution at  any point in time as the 
local evaluations (tur) for the generated se- 
quences are projected back onto the p-start 
node. The activity of a P-node i is determined 
by the activity of its corresponding a-node 
(yr( t  + l) ,  see Equation l), the evaluation 
weight (wFj(t)) from the preceeding a-node j 

' 
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and added by the output 'activity of the other 
/3-nodes propagated back (only from succes- 
sor in sequence). 

$(t + 1)' = W,Tj(t) . yi"(t + 1) 

Intersections of sequences in the same sensory 
situation as shown in Figure 2 between se- 
quence 1 (solid line) and sequence 2 (dashed 
line) may be partially avoided utilizing the 
motor context to reach this situation. Thus, 
a number of sequences may project onto the 
same assembly, where different nodes will be 
activated due to the disparate motor context 
of the trajectories. 

3.2 Learning within the map 
For learning within the prediction map, spe- 
cial attention must be paid to the structure 
of the sensorimotor situations and the learn- 
ing of the competence and evaluation weights. 
In our model, learning may occur simultane- 
ously or sequentially. In our investigations, 
we first preferred sequential learning and used 
SOFM and Neural Gas [5] for clustering of the 
sensorimotor situation (see Figure 4). 

For the learning of the corticocortical con- 
nections it is essential that all possible transi- 
tions are explored a number of times, as'only 
this will ensure the learning of meaningful 
competences and evaluations as the basis for 
correct predictions. This exploration may be 
realized as random action selection or by opti- 
mistic initialization of the evaluation weights 
and the selection of the maximally evaluated 
transition (see Equations 3, 4, where P,,, is 
the maximally achievable reinforcement). 

(3) 
1 '  . w$(t = 0)' = - n . m  

(4) 

High optimistic evaluation weigths wij yield 
rather high sequence evaluations at the be- 
ginning of training. For actually experienced 
transitions, the competence weights are in- 
creased (see Equation 5), yet their evaluation 
weight must be decreased from the optimistic 
initial value (see Equation 8). The selection 
of the sequence with the highest cumulative 

evaluation thus results in a choice biased to- 
wards sequences featuring transitions not yet 
explored. Only after a transition has been 
experienced a number of times (high compe- 
tence weight), the transition can achieve a 
higher local sequence evaluation than not yet 
explored transitions. This serves to realize 
an exploration of the environment depending 
on the knowledge already gained about sen- 
sorimotor transitions. During the exploration 
only actually executed transitions cause an 
adaptation of the competence and evalua- 
tion weights. As a result of the adaptation, 
the competence weights for actually expe- 
rienced transitions are increased (see Equa- 
tion 5) and decreased for wrongly predicted 
ones (see Equation 6). After the adaptation 
of the weights all efferent competence weights 
of node j are normalized to the value 1 (see 
Equation 7). This allows the determination 
of the probability of a transition into a subse- 
quent situation. The adaptation of the evalu- 
ation weights wfj computes a moving average 
over all (z) experienced reinforcements r (see 
Equation 8). 

w&(t+l) = w$(t). 1.5 

wiCj(t+l) = wiCj(t) ' 0.99 

kE[O,n.m-l] " 

r - w,Tj(t) 
W&(t+l) = wij.(t) + (8) Z 

3.3 Results 
An essential goal of our first investigations 
was to demonstrate that the anticipative sys- 
tem leads to a better local navigation than a 
reactive one. Only the anticipative system is 
able to predict badly evaluated system states, 
yet it can also handle with such states to pur- 
sue an overall better evaluated sequence. The 
basis for the results to follow is the predic- 
tion map shown in figure 4. The clustering of 
the sensorimotor situations and the learning 
of the corticocortical connections proceeded 
sequentially. 

To generate the prediction map shown in 
figure 4, a random action selection within the 
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first 2.500 time steps was used to structure 
the clusterers of the prediction map. Af- 
ter that, further 60.000 time steps of ran- 
dom and reactive action selection were used 
to explore the sensorimotor transitions dur- 
ing which only 18% of the connections were 
explored (the main part of the unexplored 
connections will remain so due to the given 
range of motor commands). After learning, 
the Euclidean distance between the predicted 
and the actually experienced sensory situ- 
ation was computed as a prediction error, 
which has the averaged value of 23% of a max- 
imum value. The reason for this high value 
might be a too small prediction map. In small 
maps only typical situations are represented. 
Situations, in which a motor command estab- 
lishs a strong change of the sensory situation, 
are not represented. 

I L2' -1. 
- 

: 

' ' ' ' 

Figure 4: To 
structure the pre- 
diction map, the 
sensory situations 
were clustered by a 
Neural Gas. Each 
neuron of the clus- 
terer contains 5 
neurons t o  code 
the motor context. 
The sensory situa- 
tion represented 

of MACOR with a 
comparision of  the 
reactiv vs. the an- 

by a neuron is depicted by an octagon, where the 
distance of each vertex from the middle corre- 
sponds t o  the reading of an IR-sensor (top two 
vertices correspond t o  the forward sensors). Mo- 
tor actions are shown as l itt le squares. The 
greater their distance t o  the horizontal line, the 
greater the velocity a neuron represents. Their 
position with regard to  the vertical line charac- 
terizes their steering angle, which produces turns 
t o  the left up t o  -45"(left of the vertical) or 45". 

To provide an example for the parallel hy- 
pothesis generation, figure 5, shows all steps 
for the anticipation of a resulting sequence. 
The activities of the P-nodes during their 
propagation are depicted in the gray values 
arranged in vertical bars (black is high activ- 
ity, time runs from left, t=O to right, t=7).  As 
hypothesis generation progresses, P-nodes are 
activated stronger, indicating an increasing 
number of generated sequences with highly 

evaluated transitions: The P-startnode is 
marked by a big square in all hypothesis 
steps. Figure 5 shows all trajectories, that 
were best in the several hypothesis steps. 

anticipation horkon (depth) * 

I 0657 0.657 1,410 4410 1.W 2821 2 . a  

bacllpmpagated overall eYBIw1Bw onto p.tartnods 

Figure 5: Generation of alternative sensb, imotor 
sequencs of hypotheses, which can change over 
the time scope of prediction. 

The sequence evaluations backpropagated 
to the P-startnode in the single steps are 
given below the respective bar. The final re- 
sulting trajectory is drawn as a solid line, 
all others as dotted lines. At t = l ,  the dif- 
ference in the action chosen between a reac- 
tive and an anticipative system is observable: 
the reactively chosen transition initially has a 
higher overall sequence evaluation, but with 
ongoing planing results in a lower one. 

Investigations regarding a comparison be- 
tween anticipative and reactive systems are 
shown in figure 6. 
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Beginning from typical scenario positions 
in front of a wall, at  an angle to the wall, 
or in a’ hallway, the trials ended by a colli- 
sion or after 300 steps. Especially in situa- 
tions in front of an obstacle the reactive sys- 
tem went some steps straight ahead before 
it had a collision. In contrast, the anticipa- 
tion based system had both higher mean trial 
lengths (2nd and 4th row left, Figure 6) and 
higher mean reinforcements (1st and 3rd row 
left, Figure 6), especially in the scenario A 
(more possible straight movements). In sce- 
nario B the mean reinforcements are similar, 
but the anticipation based system had more 
collision-free steps (trial length). 

. 4 Discussion and Outlook 
A critical point of this architecture is its weak 
biological correspondence, especially with re- 
spect to the evaluation of sequences and back- 
propagation of the start node. Further, due 
to the activation functions used, no recurrent 
loops can be used to form sequences. To solve 
the binding problem, how a node can encode 
to which sequence it belongs and thus, to 
which predecessor it must backpropagate its 
sequence evaluations, an alternative approach 
tries to realize MACOR with spiking neurons. 
The advantage when using spiking neurons 
rests with the utilization of time as another 
criterion of sequence constituency. As this 
feature is already encoded in the phase, a 
neuron does not need to be told explicitly to 
which sequence it belongs. First success with 
Integrate-and-Fire neurons could be achieved 
synchronizing the spiking phase of all neurons 
in one sequence while the neurons of other se- 
quences fire out of phase. This neurons also 
allow to encode the sequence evaluation in the 
spiking rate, such that the highest frequency 
marks the best sequence, whose sum of indi- 
vidual evaluations is highest. 

Additional research is necessary regarding 
the presently chosen form of cortical represen- 
tation of sensorimotor states in sensorimotor 
assemblies consisting of motor context-nodes. 
Although the representation of a sensory sit- 
uation together with its motor context some- 
what defuses the superposition problem of hy- 
potheses sequences at  the same sensory situ- 

ation, it also requires the generation of an 
entire motor map as motor context for each 
sensory situation. The number of necessary 
nodes for a multitude of situations may thus 
exceed the available resources especially with 
respect to a biological realization. A separate 
representation of sensory situations and mo- 
tor commands, would be comparatively more 
plausible in biological terms. The binding of 
sensory and motor assemblies could also be 
realized by a temporal coding using synchro- 
nization between nodes in sensory and motor 
assemblies belonging together. Considering 
these problems, we are aware that much work 
remains to be done to complete this computa- 
tional model of sensorimotor anticipation as 
a base for action selection. 
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