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ABSTRACT

Several systems for automatic gesture recognition have been
developed using different strategies and approaches. In
these systems the recognition engine is mainly based on
three algorithms: dynamic pattern matching, statistical clas-
sification, and neural networks (NN).

In that paper three architectures for the recognition of
dynamic gestures using the above mentioned techniques or
a hybrid combination of them are presented and compared.
For all architectures a common preprocessor receives as in-
put a sequence of color images, and produces as output a
sequence of feature vectors of continuous parameters.

The first two systems are hybrid architectures consist-
ing of a combination of neural networks and hidden Markov
models (HMM). NNs are used for the classification of single
feature vectors while HMMs for the modeling of sequences
of them with the aim to exploit the properties of both these
tools. More precisely, in the first system a Kohonen feature
map (SOM) clusters the input space. Further, each code-
book is transformed into a symbol from a discrete alphabet
and fed into a discrete HMM for classification. In the sec-
ond approach a Radial Basis Function (RBF) network is
directly used to compute the HMM state observation prob-
abilities. In the last system only dynamic programming
techniques are employed. An input sequence of feature vec-
tors is matched by some predefined templates by using the
dynamic time warping (DTW) algorithm.

Preliminary experiments with our baseline systems achie-
ved a recognition accuracy up to 92%. All systems use input
from a monocular color video camera, are user-independent
but so far, they are not yet real-time.

1. INTRODUCTION

Recently, there have been strong efforts to develop intelli-
gent, natural interfaces between users and systems based
on gesture recognition. The optimal interaction has to be
natural, intuitive, not require any remembrance and is sim-
ilar to that we are familiar, thus the interaction with other
people. The operational area of such intelligent interfaces
covers a broad range of application fields in which an arbi-
trary system is to be controlled by an external user or in
which system and user have to interact immediately [6][8].
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One of the crucial problems in automatic gesture recog-
nition is to deal with the varying temporal structure of dy-
namic gestures. The difficulty of gesture recognition stems
from the high variability of each movement associated with
a gesture to be detect. Gesture’s segments may overlap,
have varying lengths, and vary across speakers. Even the
same user is not ever able to produce exactly the same
movement for the same gesture. Moreover the complexity
of the automatic recognition task is related to robustness
to environmental conditions, vocabulary size, number and
movement characteristics of users in user independent rec-
ognizers, and so on.

Fach of our gesture recognition architecture consists of
a preprocessor and a decoder. The preprocessor, which is
common to every system, receives an image as input con-
taining the actual user’s posture, and it produces a contin-
uous feature vector. The task of the decoder is to decode
a sequence of these vectors into an estimate of the underly-
ing movement. In the first two systems to determine that
estimate, we formally consider the recognition problem as a
statistical classification task. Given as many gesture classes
C; | 7 = 1..C as the movements to detect, and a paramet-
ric representation of the movement as sequence of feature
vectors Xy = {z1,..,zn} we face the classification problem
from a statistical point of view using the maximum a pos-
teriori (MAP) criterion. By means of the Bayes’ rule this
latter can be formulated as finding the class for which the
posterior probability P(C;|Xy) is maximized. To calcu-
late this probability we make use of a class of probabilistic
models describing the user’s movements and variations: the

hidden Markov models.

In the third system we face the recognition task as a
template matching problem. Therefore we make use of dy-
namic programming techniques in order to find the minimal
distance between an input sequence and the (previous de-
fined representants of the) classes.

This paper is structured as follows. In the next section
we give the definitions of gesture which we base on, and we
briefly review previous studies in this field. Starting from
our saliency system for person localization [4], in Sec. 3 we
provide an overview of the process which is to be carried out
to describe the user’s postures. Sec. 4 presents the recogni-
tion engines employed. Finally, the last section reports the
preliminary results achieved with the systems, and contains
as well conclusions as suggestions for future work.
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2. RELATED WORK AND DEFINITIONS

Different attempts at gesture recognition have appeared in
the literature over the past years. Most of them deal with
the two-dimensional set of movement patterns. An early
effort by Rubine [13] used mathematical functions as rec-
ognizer for the 2D trajectory patterns of mouse gestures.
Due to the extraction of some low-level features from the
raw data, the choice of the proper feature set is very im-
portant. Howell and Buxton [7] presented experiments us-
ing a radial basis function variant of the time-delay neural
network able to learn simple gestures. The movement con-
sidered were simple pointing and waving gestures. Yam-
ato [15] used discrete HMMs to recognize image sequence
of six tennis strokes with respectable accuracy. Another
papers exploiting HMMs for continuous gesture recogni-
tion based on time-sequential camera images was proposed
in [14]. In [10] some three-dimensional hand movements
were modeled as a sequence of movement primes as the unit
of recognition. A recent work of Davids and Bobick [16] ex-
ploits the view-based representation of motion over time
from different points of view. They basically construct a
vector template image which has to be matched against
stored representation of the actions to detect. That system
is able to recognize 18 aerobic exercises in real-time.

Throughout this paper the following definitions are con-
sidered.

Definition 1 (Posture/Pose) A posture or pose is a cou-
ple determined by the only static hand locations with respect
to the head position. The spatial relation of face and hands
determines the behavioral meaning of each posture.

Definition 2 (Gesture) A gesture is a series of postures
over a time span connected by motions.

3. VIEW-BASED POSTURE DESCRIPTION

We think that a good person localization task is essen-
tial for any further gesture recognition process. In an our
previous work [4] we proposed a multi-cue approach con-
sisting of three feature modules sensitive to skin color, fa-
cial structure and structure of the head-shoulder-contour,
respectively. Due to its reliability and robustness against
varying environmental circumstances, that system repre-
sents our starting point for any further precessing step.
After detecting the location of the head and considering
a subregion around it, we characterize the distribution of
the pixel values inside that window by a multidimensional
normal distribution function. This function represents a
parametric model for the skin color and is unequivocally
described by a mean vector p and a covariance matrix X
(the parameters). Using the Mahalanobis distance between
the mean vector and an image pixel, this latter is classi-
fied to be or not a member of the skin class according to a
threshold value.

From the resulting binary image we determine the cen-
ters of gravity (COG) of the hand and head regions (which
we suppose to be the three greatest ones). Then to avoid
problems deriving by the shape of each region due to the
choice of the color threshold, we model each of these regions
as a circle around their COGs (Fig. 1,b). From that binary

image we compute a feature vector ¥ containing 14 transla-
tion and scale invariant elements characterizing the shape
of the segmented scene. As first ten feature vector elements
we calculate the so-called scale normalized moments [9] up
to the third order. They remain unchanged under transla-
tion and size change.

In addition, to compensate the shift variation of the
person gesticulating in front of the camera we choose for
each image a suitable coordinate system by fixing its ori-
gin point at the current determined head’s center of mass
(Fig.1,c). It allows to calculate the remaining four feature
vector elements relating to the head position and regardless
to the user’s position within the image. In this new coordi-
nate system in order to ensure invariance also with respect
to image size change, we use the polar coordinates of both
hands’s COG. The goal of the posture analysis is the ex-
traction of local features along the hand trajectory, yielding
a sequence of time ordered multi-dimensional feature vec-
tors (Fig. 1,d). For more details on the pose segmentation
and the feature extraction task see [5].
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Figure 1: From above to below and left to right: input
image, hand and head regions modeling, new defined co-
ordinate system, and finally gesture as hand and head tra-
Jectories within the feature space extended along the time.

Finally, we process the whole training set. Because the
feature vector components have values which differ by sev-
eral orders of magnitude we proceed with a rescaling of
them. We perform the whitening linear rescaling [2] with
respect to the test patterns. This procedure does not treat
the input variables independently but allows for correlations
amongst the variables. In the transformed coordinates the
data set has zero mean and a unit covariance matrix.

4. GESTURE RECOGNITION SYSTEMS
4.1. Hybrid SOM /discrete HMM

Given an input feature sequence the further step is con-
cerned with the quantization of that feature vectors into a
sequence of symbols.

To do that a SOM is used to preserve the topology of
the high-dimensional feature space by mapping the feature
vectors to a two-dimensional space. Due to the sequential



nature underlying each gesture such a topology-preserving
map can be exploited to constitute trajectories where the
SOM best-matching neurons are recorded during the pro-
cess. The SOM clusters the unlabeled training feature vec-
tors which lie near one other in the feature space. As well
the codebook vector most sensitive to the actual training
vector as those in its time-variable neighborhood, are tuned
maintaining a well-balanced set of weight values with re-
spect to the input density function.

In the training phase the weight adjustment is carried
out using the Euclidean distance between the actual 14-
dimensional input vector and the connecting weight vectors,
times a time-dependent learning rate. We start the learning
process with a large radius covering all the units in order to
prevent the formation of undesired outliers in the clustering
due to the limited training data set. During the training we
decrease the neighborhood radius up to 1 and the learning
rate from 0.9 to 0 in (100 x wsize * ysize) iterations. Our
SOM consists of 800 units organized into a (zsize = 40 x
ysize = 20) square array.

In order to utilize the SOM for classification we divide
each gesture of our vocabulary in subgestures (see e.g. Fig. 2
for the waving-right movement). We divide the gesture of
our vocabulary into altogether 32 subgestures/symbols (9
for each left-,right-waving; 5 for each go left/right; 4 for
stop). For class discrimination purposes we label each SOM
clusters. That labels were assigned to the units according
to the subgesture subdivision (Fig. 2) by using hand-labeled
training samples as input.

The need of a vector quantizer to map the continuous
observation vectors into discrete codebook symbols arises
from the use of HMMs [12] with discrete observation sym-
bols as recognizer for symbol sequences deriving from time-
sequential images. For each movement to be detected, we
create one left-to-right discrete HMM with as many states
as the subregions which this gesture is divided in (Fig. 2).
In the learning phase the HMM parameters are optimized
in order to model the training symbol sequences from the
corresponding gesture. The recognition phase consists in
comparing a given sequence of symbols with each HMM.
The gesture associated with the model which best matches
the observed symbol sequence is chosen as the recognized
movement.

To estimate the parameters of the discrete HMMs we
use the Baum-Welch reestimation method [1] which is based
on the maximum likelihood criterion [2], aiming at maxi-
mizing the probability of the samples given the model at
hand.

4.2. Hybrid continuous HMM /RBF

In the second approach we consider the use of RBF net-
works for HMM state probability estimation (Fig. 3). In
our RBF network the number of output neurons N is de-
termined by the number of subgestures and therefore is as
equal as the HMM state’s number. As basis functions we
choose N = 5 X #subgestures Gaussian probability distri-
butions functions each with own mean vector and different
covariance matrix.

Our data set consists of input vectors v, together with
binary vector targets t whose j-th element alone is set to 1
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Figure 2: From left to right: the waving-right gesture
is divided into 9 labeled subregions each covering ex-
actly 20 grads of the two-dimensional image surface, and
SOM/HMM system overview showing how each HMM

state is responsible for one gesture’s subregion.

according to the label of the corresponding subgesture (see
Sec. 4.1). Absorbing as well the bias parameters as the nor-
malizing factors of the Gaussian functions into the weights,
and remembering the output represents a probability value,
the output of the I-th node is given by

_ e wjrexp {*(x — 1) ST (x — )}
S0 e wj exp {H(x — py) By (x — )}

A bias which extra basis function whose activation is set
to 1, is included in the hidden layer. The determination of
suitable parameters of the basis functions is accomplished
by the iterative k-means clustering algorithm to more accu-
rately reflect the training data distribution. Obviously the
number of clusters corresponds to that of the basis func-
tions.

After determining the parameters mean vector p and
covariance matrix % for each Gaussian, they are kept fixed
while the weights of the second layer are found out by using
a gradient descent technique. The RBF networks and the
corresponding HMM are not trained jointly: we first train
the RBF networks and then we apply the Baum-Welch rees-
timation algorithm [1] to determine the HMM parameters.
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Figure 3: From left to right: HMM/RBF hybrid architec-
ture overview, and example of DTW time alignment and
normalization of two pattern sequences of length L and
L2, respectively.

4.3. Template Matching using DTW

Considering a gesture as feature vector sequence one can
think to define one representative sequence template for ev-
ery movement to detect and then find the minimal distance



between these representants and a new input sequence. The
input signal is further classified as belonging to the class
whose representant is the nearest to it according to the
choice of the distance function.

Some problems arise from such an approach. How many
and how do we choose the class representants 7 And how
do we compute the distance between two signals allowing
them to have different length one other 7

Concerning the first question and considering the train-
ing data of a given gesture, we simply calculate its mean
sequence length and take the average sequence vector over
the sequences with length equals to that mean value. We
determine exactly one template for every movement class.
As solution to the second problem we turn on to use the
DTW algorithm with local constraints on path specifica-
tion of Type I [11]. The DTW performs a time alignment
and normalization by computing a temporal transformation
function allowing two signals to be matched. Given two sig-
nals to compare, if we consider a table having the signals in
the first row and column, respectively, that temporal func-
tion can be seen as a path in the table (Fig 3). The global
path cost (locally accumulated over the time) represents the
dissimilarity between the signals while the template signal
with the more little path cost is the closest from the input.

5. PRELIMINARY RESULTS AND FUTURE
WORK

To train and test each model we gathered the data from
five people performing 45 repetitions of each gesture to be
recognized. The categories to be recognized were five.

Recognition % false class.

Gest. rate in % gestures

SOM [ RBF [ DTW | SOM | RBF | DTW
stop | 836 | 842 | 762 | 64 | 52 | 66
hir. | 85.4 | 880 | 762 | 7.1 | 43 | 7.4
hil. | 85.0 | 885 | 750 | 74 | 47 | 7.0
gor. | 855 | 87.2 | 746 | 63 | 5.0 | 6.0
gol. | 842 | 912 | 773 | 74 | 44 | 6.1

Table 1: Recognition results with the different architec-
tures. The abbreviations r. and 1. mean right and left,
respectively.

The performances were captured by a color camera (25
frames/second) and digitized into 120 x 90 pixel RGB im-
ages. Table 1 summarizes the achieved performance con-
cerning the recognition task. Associated to each system
there is an acceptance threshold. Considering the hybrid
approaches, an input is not classified if after feeding it into
each HMM either the difference between the highest and
the second highest output is not over that heuristically de-
termined threshold or all the outputs are under its value.
With the template matching technique we act in the same
way but considering the two minimal distances from the
input signal.

The performance of the systems depend not only on
the number of training patterns but also how well that pat-
terns are representative for each class. It means that the
training patterns have to cover the maximum test pattern

range as possible. In spite of our experimental results we
do not state that the HMM /RBF-based system always out-
performs the other ones. Due to the limited training data
it would be a shaky conclusion strongly dependent from the
implementation and the few data at the hand.

Anyway the recognition rate of the hybrid systems, up
to now promising, can be improved by using a discrimi-
native training algorithm instead of the Baum-Welch algo-
rithm giving arise to a poor discriminative power among
different models [3][12]. We think that also a jointly train-
ing between the HMM and the RBF network can improve
the recognition rate. Regarding the DTW approach we are
actually considering the case of several class templates, and
different local path constraints [11].

So far, the methods proposed for gesture recognition
were tested on a small sets of simple gestures and thus have
very limited scope. We are currently extending the sys-
tems in order to overcome these limitations. The aim is to
design real-time architectures that can work with a larger
vocabulary of gestures, and remain user independent.
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