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Abstract

Several systems for automatic gesture recognition have @eecloped using different strategies and approachesidsa
systems the recognition engine is mainly based on threeitigts: dynamic pattern matching, statistical classifioat and
neural networks (NN).

In that paper we present four architectures for gesturedobmteraction between a human being and an autonomous
mobile robot using the above mentioned techniques or a @ytwimbination of them. Each of our gesture recognition
architecture consists of preprocessoand adecoder The preprocessor, which is common to every system, recaive
image as input and produces a continuous feature vector.tdsleof the decoder is to decode a sequence of these vectors
into an estimate of the underlying movement. In the firstetlagstems to determine that estimate, we formally consider
the recognition problem as a statistical classificationkta¥hree different hybrid stochastic/connectionist atetiures are
considered. In the first approach NNs are used for the classifin of single feature vectors while Hidden Markov Models
(HMM) for the modeling of sequences of them. In the seconddd@aRBasis Function (RBF) network is directly used to
compute the HMM state observation probabilities. In thedtisiystem that probabilities is calculated by means of resmuir
neural networks (RNN) in order to take into account the carit6formation from the previously presented feature vecto

In the last system we face the recognition task as a templatehing problem by making use of dynamic programming
techniques. Here the strategy is to find the minimal distdoretereen a continuous input feature sequence and the classes

Preliminary experiments with our baseline systems ackiiewecognition accuracy up to 92%. All systems use input from
a monocular color video camera, are user-independent bé#sthey are not yet real-time.

1 Introduction

Visual-based automatic gesture recognition has receotjyieed much attention. In this context strong efforts haeen
carried out to develop intelligent and natural interfacetsveen users and computer systems based on body movemeats. T
operational area of such intelligent interfaces coversadrange of application fields in which an arbitrary systenoibe
controlled by an external user or in which system and usee @interact immediately [9,10]. These interfaces not only
substitute the common interface devices but also can beisglto extend their functionality. Especially for theardction
between a mobile system and a user the visual communicati@ry important because it gives the system the capalulity t
observe its operational environment in an active manner.

Our superior longterm goal is to develop an intelligenteysfor an autonomous mobile robot able to act in a supermarket
environment. The robot should be capable to get into comt@bta customer, to follow, lead, support and interact with
him/her. Considering now that the customers of the samersigrket can belong to very different cultures and sociattay
the use of few natural and cross-cultural gestures for robwtmand is mandatory. In addition, the optimal interactias
to be familiar and intuitive, just like the interaction bet@n people. The commands to be used have to be highly ing&uct
everybody should be able as well to understand as to perfeem without requiring any remembrance.

One of the crucial problems in automatic gesture recogmigao deal with the varying temporal structure of dynamic
gestures. The difficulty of gesture recognition stems froenhigh variability of each movement associated with a gegtu
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Figure 1. Gesture as hand and head trajectories within the featuoe spdended along the time.

be detect. Gesture’s segments may overlap, have varyigthierand vary across speakers. Even the same user is not ever
able to produce exactly the same movement for the same geMoreover the complexity of the automatic recognitioik tas

is related to robustness to environmental conditions, lvalealy size, number and movement characteristics of usarser
independent recognizers, real-time operational capghitid so on.

This paper is structured as follows. Starting from our sejesystem for person localization [4], in Sec. 2 we provide
an overview of the process which is to be carried out to desdtie user’s postures. Sec. 3 presents the recognitionengi
employed. Finally, the last Section reports the prelimimasults achieved with the systems, and contains as wetlgsions
as suggestions for future work.

Throughout this paper the following definitions are conséde

Definition 1 (Posture/Pose)A posture or pose is a couple determined by the only statid hacations with respect to the
head position. The spatial relation of face and hands deiteemthe behavioral meaning of each posture.

Definition 2 (Gesture) A gesture is a series of postures over a time span connectenbtigns.

2 Feature Extraction

We think that a good person localization task is essentiahffiy further gesture recognition process. In an our previou
work [4] we proposed a multi-cue approach consisting of@tieature modules sensitive $&in color, facial structureand
structure of the head-shoulder-contouespectively. Due to its reliability and robustness agairarying environmental
circumstances, that system represents our starting pmirry further precessing step. After detecting the locatibthe
head and considering a subregion around it, we charactiwézdistribution of the pixel values inside that window by a
multidimensional normal distribution function represagta parametric model for the skin color. Using the Mahakdsio
distance between that distribution and an image pixel/4tisr is classified to be or not a member of the skin class.

From the resulting binary image we determine the centersafity (COG) of the hand and head regions (which we
suppose to be the three greatest ones) and further we martebéthese regions as a circle around their COGs (Fig. 1).
From that binary image we compute a feature vegtoontaining 14 translation and scale invariant elementsacerizing
the shape of the segmented scene. The goal of the postuysiaristhe extraction of local features along the handdtejg,
yielding a sequence of time ordered multi-dimensionalfeavectors. See [5] for more details on the pose segmeniatid
the feature extraction task.

After that we process the whole training set. Because therfeaector components have values which differ by several
orders of magnitude we proceed with a rescaling of them. Wope thewhiteninglinear rescaling [2] with respect to
the test patterns. This procedure does not treat the inpisthles independently but allows for correlations amorigyst
variables. In the transformed coordinates the data setdrasizean and a unit covariance matrix.
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Figure 2. From left to right: the waving-right gesture is divided irtéabeled subregions each covering about 20 grads
of the two-dimensional image surface, and SOM/HMM systeeraew showing how each HMM state is responsible
for one gesture’s subregion.

3 Gesture Recognition Systems
3.1 Hybrid SOM/discrete HMM

Given an input feature sequence the further step is congevitle the quantization of that feature vectors into a seqaef
symbols.

To do that a self-organizing map (SOM) is used to preservioghaogy of the high-dimensional feature space by mapping
the feature vectors to a two-dimensional space. Due to theesgial nature underlying each gesture such a topology-
preserving map can be exploited to constitute trajectaviesre the SOM best-matching neurons are recorded during the
process. The SOM clusters the unlabeled training featwtmrewhich lie near one other in the feature space. As well th
codebook vector most sensitive to the actual training vexddhose in its time-variable neighborhood, are tuned taigiimg
a well-balanced set of weight values with respect to thetidpusity function.

In the training phase the weight adjustment is carried omiguhie Euclidean distance between the actual 14-dimeakion
input vector and the connecting weight vectors, times a-timgendent learning rate. We start the learning processawit
large radius covering all the units in order to prevent thenfation of undesired outliers in the clustering due to thetéd
training data set. During the training we decrease the heidiood radius up to 1 and the learning rate from 0.9 to 0 in
(100 * zsize * ysize) iterations. Our SOM consists of 800 units organized infesdize = 40 x ysize = 20) square array.

In order to utilize the SOM for classification we divide eaastyre of our vocabulary isubgesture¢see e.g. Fig. 2 for
the waving-right movement). We divide the gesture of ouramdary into altogether 32 subgestures/symbols (9 for each
left-,right-waving; 5 for each go left/right; 4 for stop)oFclass discrimination purposes we label each SOM clustérat
labels were assigned to the units according to the subgestindivision (Fig. 2) by using hand-labeled training sasls
input.

The need of a vector quantizer to map the continuous obsenvegctors into discrete codebook symbols arises from
the use of HMMs [7] with discrete observation symbols as gedzer for symbol sequences deriving from time-sequential
images. For each movement to be detected, we create one-légtit discrete HMM with as many states as the subregions
which this gesture is divided in (Fig. 2). In the learning phidhe HMM parameters are optimized in order to model the
training symbol sequences from the corresponding gesfittre.recognition phase consists in comparing a given seguenc
of symbols with each HMM. The gesture associated with the ehathich best matches the observed symbol sequence is
chosen as the recognized movement.

To estimate the parameters of the discrete HMMs we use theB&elch reestimation method [1] which is based on the
maximum likelihood criterion [2], aiming at maximizing tipeobability of the samples given the model at hand.



components of
the input signal
p(flstate 1) p(f|state 2) T p(f|state 9) f L 2
- @ @ @ @ @ @ 0 ©
/C|)\ /CI)\O /:I)\O ® O (5]
Radial Basis @
Function (RBF)
/‘\‘ ~ N e
al2 —~ U 1 U °
@
Hidden Markov ﬂ ﬂ O
Model (HMM) O I O — O @
State 1 State 9 1= @
" L
1 components of 1

the template

Feature vector f

Figure 3. From left to right: HMM/Neural Networks hybrid architecaioverview, and example of DTW time align-
ment and normalization of two pattern sequences of lehgthndL-, respectively.

3.2 Hybrid continuous HMM/RBF

In the second approach we consider the use of RBF networlk$Mid state probability estimation (Fig. 3). In our RBF
network the number of output neuroig, is determined by the number of subgestures and therefoseeiguml as the HMM
state’s number. As basis functions we chodge = 5 x #subgestures Gaussian probability distribution functions each
with own mean vector and different covariance matrix.

Our data set consists of input vectergogether with binary vector targetsvhose j-th element alone is set to 1 according
to the label of the corresponding subgesture (see Sec./Ah$prbing as well the bias parameters as the normalizirtgrfac
of the Gaussian functions into the weights, and remembénmgutput has to represent a probability value, the outfilreo
I-th node is given by

Z;V o Wji exp{ (X - ,LLJ)E 1(X - /j‘J)}
yi(x) = N, Ne 1
Pt j=0 Wju €XP {tHx— NJ)E (x —p5)}

A bias which extra basis function whose activation is set ie thcluded in the hidden layer. The determination of sléa
parameters of the basis functions is accomplished by thaiite k-means clustering algorithm to more accurateleotthe
training data distribution. Obviously the number of clusteorresponds to that of the basis functions.

After determining that parameters for each Gaussian, theelept fixed while the weights of the second layer are found
out by using a gradient descent technique. The RBF netwarttstee corresponding HMM are not trained jointly: we first
train the RBF networks and then we apply the Baum-Welch ireatibn algorithm [1] to determine the HMM parameters.

(1)

3.3 Hybrid continuous HMM/RNN

In that approach we consider the use of a Jordan network wildditional time window in the input layer as in the Time
Delay Neural Network (TDNN) [11] for HMM state probabilitysgémation (Fig. 3). That neural network is structured as
following. The input layer is divided into two parts: the ¢ext units and the actual and IaStinput vectors. The context
units hold a copy of the activations of the output layer fréma previous time step and also from themselves (Fig. 4). That
recurrence permits the network to remember some aspedte ofidst recent past giving the network some memory. At a
given timet the network state depends as well on the current input as aggnegate of past values. Because the feed-back
connections are fixed they do not perceptibly complicaterdiaing which can be easily performed by the backpropagati
algorithm.

Our network consists of as many output neurons as the sulvgestind therefore is as equal as the HMM state’s number.
Each neuron calculate the output probability for the undegl HMM state. We choose a time window of length = 5.
Because the output values are to be interpreted as prdissbiliey must sum to unity and lie in the ran@el). This can
be easily achieved by using the softmax activation fund@nThe hidden neurons simply compute the sigmoid activati
function.
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Figure 4. One state of the HMM/RNN hybrid architecture. The outputlagonsists of only one neuron with softmax
activation function.

The RNN is trained in classification mode. Our data set ctmsissequence of input vectors, together with one binary
vector target whose j-th element alone is set to 1 accordirige label of the expected subgesture (see Sec. 3.1) adter th
given sequence.

As in the previous system the neural networks and the casreipg HMM are not trained jointly: we first train the RNN
networks and then we apply the Baum-Welch reestimatiorriifgo [1] to determine the HMM parameters.

3.4 Template Matching using DTW

Considering a gesture as feature vector sequence one o#trtdhdefine one representative sequence template for every
movement to detect and then find the minimal distance betwesse representants and a new input sequence. The input
signal is further classified as belonging to the class whepeesentant is the nearest to it according to the choiceeof th
distance function.

Some problems arise from such an approach. How many and hewe dboose the class representants ? And how do we
compute the distance between two signals allowing themwe H#dferent length one other ?

Concerning the first question and considering the trainatg df a given gesture, we simply calculate its mean sequence
length and take the average sequence vector over the segugitic length equals to that mean value. We determine gxactl
one template for every movement class. As solution to thersbproblem we turn on to use the DTW algorithm with local
constraints on path specification of Type | [6]. The DTW perfe a time alignment and normalization by computing a
temporal transformation function allowing two signals ®rhatched. Given two signals to compare, if we consider & tabl
having the signals in the first row and column, respectiblyt temporal function can be seen as a path in the table jFig 3
The global path cost (locally accumulated over the timejesgnts the dissimilarity between the signals while theptata
signal with the more little path cost is the closest from tiguit.

4 Preliminary Results and Future Work

To train and test each model we gathered the data from fivel@gmpforming 45 repetitions of each gesture to be
recognized. The categories to be recognized were five.

The performances were captured by a color camera (25 fragwsid) and digitized intb20 x 90 pixel RGB images.
Table 1 summarizes the achieved performance concerningtbgnition task. Associated to each system there is apacce
tance threshold. Considering the hybrid approaches, art inmot classified if after feeding it into each HMM eitheeth
difference between the highest and the second highest tastpot over that heuristically determined threshold ortlad
outputs are under its value. With the template matchingriieete we act in the same way but considering the two minimal
distances from the input signal. The table does not showett@gnition rates concerning the hybrid HMM/RNN because we
are currently testing and improving it.

The performance of the systems depend not only on the nuniilbeiming patterns but also how well that patterns are
representative for each class. It means that the trainitigrpa have to cover the maximum test pattern range as paskib



Recognition % false class.
Gesture rate in % gestures
SOM/HMM [ HMM/RBF | DTW | SOM/HMM | HMM/RBF | DTW

stop 83.6 84.2 76.2 6.4 5.2 6.6
hello right 85.4 88.9 76.2 7.1 4.3 7.4
hello left 85.0 88.5 75.0 7.4 4.7 7.0
go right 85.5 87.2 74.6 6.3 5.0 6.0
go left 84.2 91.2 77.3 7.4 4.4 6.1

Table 1. Recognition results with the different architectures.

spite of our experimental results we do not state that the HRBIF-based systemlwaysoutperforms the other ones. Due
to the limited training data it would be a shaky conclusiagnsgly dependent from the implementation and the few data at
the hand.

Anyway the recognition rate of the hybrid system HMM/RBF,tamow promising, can be improved by using a discrim-
inative training algorithm instead of the Baum-Welch altjon giving arise to a poor discriminative power among diffat
models [3,7]. We think that also a jointly training betweéie HMM and the RBF network can improve the recognition
rate. Regarding the DTW approach we are actually consigdhia case of several class templates, and different lot¢lal pa
constraints [6].

So far, the methods proposed for gesture recognition weteden a small sets of simple gestures and thus have very
limited scope. We are currently extending the systems ierai@overcome these limitations. The aim is to design riead-t
architectures that can work with a larger vocabulary of grest, and remain user independent.
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