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Abstract

The paper describes the general idea, the application sce-
nario, and selected methodological approaches of our long-
term research project PERSES (PERsonal SErvice System).
The aim of the project consists in the development of an
interactive mobile shopping assistant that allows a con-
tinuous and intuitively understandable interaction with a
customer in a home improvement store. Typical tasks we
have to tackle are to detect and contact potential users
in the operation area, to guide them to desired areas or
articles within the store or to follow them as a mobile infor-
mation kiosk while continuously observing their behavior.
Due to the specificity of the interaction-oriented scenario
and the characteristics of the operation area, we have fo-
cused on vision-based methods for both human-robot inter-
action and robot navigation. Besides some methodological
approaches, we present preliminary results of experiments
achieved with our mobile robot PERSES in the store with
an emphasis on vision-based methods for user localization,
map building and self-localization.

1 Introduction

The project PERSES (PERsonal SErvice System) aims
to develop an interactive mobile shopping assistant that
allows a continuous and intuitively understandable inter-
action with a human user (customer). Such a shopping
assistant must be able to actively observe its operation
area, to detect, localize, and contact potential users, to
interact with them continuously, and to adequately offer

dialogue

contact

guidance

Figure 1: Necessary skills and typical service tasks of a user-
oriented, interactive mobile shopping assistant.

http://cortex.informatik.tu-ilmenau.de

Figure 2: Our experimental platform PERSES operating in
a home improvement store, a cluttered and un-engineered
environment with numerous critical obstacle configurations.

its specific services (Fig. 1). Service tasks we want to
tackle are to guide the user to desired areas or articles
within the store (guidance function) or to follow him as
a user-specific mobile information kiosk while continu-
ously observing the user and his behavior (companion
funection). Tntuitively understandable human-robot in-
teraction should at least entail visual and acoustic com-
ponents. In the context of our application scenario as
mobile shopping assistant, we defined the following in-
teraction and navigation tasks, presented as a mix re-
sulting from the interaction sequence and, more general,
functional necessities: (a) visual localization of a poten-
tial user within a pre-defined operation area, (b) acous-
tic localization of a potential user clapping his hands or
shouting a command to attract attention, (c) fast learn-
ing of an initial visual model of the current user and
online adaptation of that model due to the varying ap-
pearance of the user in the course of the shopping pro-
cess, (d) robust vision-based user tracking both while
standing still and during self-movement of the robot, (e)
robust avoidance of static and dynamic obstacles during
navigation, (f) continuous self-localization of the robot in
the operation area, (g) navigation to desired places, arti-
cles, or market areas acting as a guide, (h) recognition of
simple spoken commands, and, for the future, (i) recog-
nition of gesticulated user instructions. This spectrum
of tasks necessitates adaptive methods at all processing
levels using (i) neural networks for visual and acoustic
scene analysis and sensorimotor control, (ii) probabilistic
methods for map building, robust self-localization, local
and global navigation, and mission planning and rea-
soning, and (iii) concepts from Machine Learning and
Control Theory for dynamic coordination of the subsys-
tems responsible for the several interaction and naviga-



tion tasks. To master the specificity of this interaction-
oriented scenario and the characteristics of the opera-
tion area, a home improvement store, we have focused
on vision-based methods for both the interaction and the
navigation process. The operation area is characterized
by many similar long hallways of equal width and a great
number of critical obstacle configurations, for example,
objects hanging down from the ceiling or jutting out of
shelves, lost shopping carts in the hallways, etc. Many of
these obstacles cannot be perceived reliably by distance
sensors (Sonar, Laser) which operate in certain planes
in 3D space. By contrast, vision-based approaches do
not show these limitations, they supply a much greater
wealth of information about the structure of the local
surroundings. The examples in Fig. 2 are to illustrate
some of the challenges of the application scenario. The
robot PERSES we use as experimental platform in our
experiments in the store 1s a standard B21 robot ad-
ditionally equipped with sensor systems for interaction
and navigation (Fig. 3).
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Figure 3: Experimental platform PERSES, an extended ver-
sion of a standard mobile robot B21 by RWI. In addition
to the standard equipment of two sonar and one IR-layers,
PERSES is equipped with (i) an omnidirectional color cam-
era with a 360° panoramic view used for user localization and
tracking, self localization and local navigation, (ii) a binoc-
ular 6 DoF' active-vision head with 2 frontally aligned color
cameras used for user verification and tracking, odometry cor-
rection and obstacle avoidance, and (iii) a binaural auditory
system for acoustic user localization and tracking.

2 Overview of the system

Because of the complexity of the ”shopping-task” as a
whole, we use a behavior-based approach which allows us
to decompose the problem into separate behavior mod-
ules responsible for several subtasks of the interaction
and navigation cycle. As formal framework for behavior
coordination, we chose the so-called dynamic approach
to robotics [10]. The PERSES-architecture consists of
three main subsystems: User Localization, User Logln
and Interactive Tour (Fig. 4).

User Localization: This subsystem is responsible for
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Figure 4: PERSES system architecture.

the robust localization of a potential user in the sur-
roundings. At present, we use a multimodal approach
that integrates both visual and acoustic stimuli. The
submodule Visual User Localization performs a motion-
based foreground-background segmentation in the image
sequence provided by the omnidirectional camera (Fig. 4
- middle left), and returns the angle to the center of grav-
ity of the largest moving region. While standing still,
the motion-based segmentation calculates some candi-
date regions that indicate if and where potential users
could be. Our implemented method is similar to that
suggested in the Pfinder system [13]. The integration of
auditory saliency makes it easy for the user to attract
the attention of the robot and to speed up the localiza-
tion process. For the acoustic localization of a customer
clapping his hands or shouting a command, we developed
a biologically inspired binaural 360° sound localization
system that considers essential functional aspects of the
processing in the auditory brainstem and midbrain. This
subsystem realizes (i) the detection of the sound direc-
tion in the horizontal half-planes by processing of the
interaural time-delays (ITD) and (ii) a simple but effec-
tive front-behind discrimination on the basis of the dif-
ferences in the spectral shapes of the left and right sound
stream supplied by the microphones mounted on top of
PERSES (Fig. 3). Details of this model and localization
results are presented in [9].

Both submodules Visual User Localization and Acoustic
User Localization make use of the same actuator, namely,
they try to turn the robot towards the detected poten-
tial user in order to verify the localization hypotheses by
means of the frontal cameras (Fig. 4-top left). Due to
the turn of the robot, the potential user should be local-
ized in front of the robot allowing the frontal cameras



to observe him and to evaluate if he could be willing to
interact with the shopping assistant. As a very simple
criterion, we assume that a customer may be consid-
ered to be a user possibly willing to interact if his face
and his upper part of the body are oriented towards the
robot. To realize a robust verification of a user localiza-
tion hypothesis, we use a task-specific multi-cue saliency
system that integrates different visual cues: skin color,
head-shoulder contour, and facial structure. This way,
the system becomes more robust, can handle varying
environmental conditions and is less dependent on the
presence of any specific feature. Some details of this
subsystem are presented in Section 3.1.

User Login: When a potential user has been found
and confirmed, and the user has started to interact (by
speech and/or touch screen), a visual model of the user
is learned, which can be used in the course of the interac-
tive tour to track the current user and to distinguish him
from other customers, if he was lost from view. Addi-
tionally, this subsystem has to ask the user for the article
or area he is looking for. This is also realized by a simple
interactive dialog by touch screen. Since development of
most parts of this subsystem has only begun, we will not
present any experimental results for them.

Interactive Tour: This subsystem is initiated when the
User Logln subsystem provides the position of a desired
area or article in the store. In this case the internal
module User Guidance has to plan a route to the de-
sired position. For map building, self-localization, and
global navigation, we use very efficient statistical and
probabilistic techniques [8, 11, 4, 6, 7]. We currently ex-
tend them to the specific visual inputs provided by the
on-board cameras (see Section 3.2 and 3.3). In case a
user is present, the internal User Tracking module is ac-
tive, too. This module’s goal is to realize the companion
function by keeping the user within the omnidirectional
view. When the user falls behind or moves in another
direction, this module takes over control by inhibiting
the User Guidance module in order to follow the user.
Another task of the User Tracking module is the on-
line adaptation of the visual user model in order to cope
with the varying appearance of the user in the course
of the shopping process. Both the User Guidance and
the User Tracking modules compute motor commands
for navigation. Before execution, they are passed to an
Obstacle avoidance module which suppresses those com-
mands impossible according to the current obstacles in
front of the robot. The need for supplemental vision-
based methods for obstacle avoidance arises from the
circumstances mentioned earlier that numerous obsta-
cles cannot be perceived reliably by 2D distance sensors
(sonar, laser) because of their specific form, size or height
(e.g., boards or pipes jutting out of shelves). Tn this con-
text, local navigation methods from ecological robotics
[6] based on optical flow and inverse perspective map-

pings of the panoramic image are currently investigated
in our lab.

3 Selected methods and results

Of the tasks listed earlier, we consider those of user and
robot localization to be of central importance. There-
fore, we present methods and results for robust finding
of a user in spite of crowded environments containing
background disturbances, as well as for vision-based map
building, self-localization and position tracking of the
robot in the operation area. Detailed emphasis is placed
on the latter two aspects.

3.1 Visual user localization/verification
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Figure 5: Multiple-cue approach for user verification.

To realize the verification of a motion- or acoustic-
based user localization hypothesis we use a task-specific
saliency system that integrates different visual cues:
facial structure, head-shoulder-contour and skin color.
This subsystem should highlight all regions that most
likely cover the upper part of a person. Figure 5 pro-
vides a coarse sketch of our multiple-cue approach. A
multiresolution pyramid transforms the images acquired
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Figure 6: Overview of the cues used for user localization
and verification. (Top-from left to right:) two samples from
the data set used for learning the silhouette; binary contour;
orientation contour. Local orientation angles are coded by
gray values (0°: black; 90°: medium gray; 180°: white).



by one of the front-cameras into a multiscale represen-
tation. Because we want to localize people at different
distances from the robot, we use a number of resolu-
tion levels. The cue modules sensitive to facial struc-
ture and head-shoulder contour operate at all levels of
the grayscale pyramid, while the cue module for skin
color detection uses the original color image. The out-
put of the cue modules serves as input for the pyramid
of saliency maps. To achieve a stable localization result,
we utilize dynamic neural fields [1] for selection between
alternative hypotheses within the saliency pyramid. To
work with the multi-scale representation, we extended
the original 2D neural field approach of AMARI to a 3D
neural field for selection of the most salient region in
depth. Fig. 7 presents typical localization results ob-
tained in the highly structured environment of the home
improvement store. More details of our multi-cue ap-
proach for user verification can be found in [3].
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Figure 7: Results of user localization with the multi-cue
approach. Localization hypotheses at different levels of scale
space are marked by white frames.
corresponds to the respective level of the scale space, small
frames correspond to levels of high-resolution and vice versa.
Final localization results, are marked as black frames. In the
right figure showing a crowded area in the store, the child
is selected as final localization result because it is the only
subject that fulfills all 3 criteria of our multi-cue approach:
face and upper part of the body are oriented frontally towards
the robot, skin color can be detected clearly.

The size of the frames

3.2 Visually-controlled map building

To navigate reliably in indoor environments, a robot
must know where it 1s. This includes both the abil-
ity of globally localizing the robot from scratch, as
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Figure 8: General idea of our vision-based odometry cor-
rection considering a specific feature of the market floor: a)
image of the floor in front of the robot, b) local orientation
tensors (orientations are coded as gray values), c) confidences
of local orientations (low-black, high-white), d) histogram of
confidence-weighted local orientations, the dominant orienta-
tion (center of gravity) is a significant measure for the accu-
rate orientation of the robot in the interval 0° — 90°

well as tracking the robot’s position once its location is
known. In PERSES, we use two types of maps for self-
localization and navigation: (i) grid-based occupancy
maps and (ii) a grid of panoramic views of local sur-
roundings (see Section 3.3). The maps are learned from
sensor data (sonar, images, odometry) collected when
manually joy-sticking the robot through the store or au-
tonomously exploring the operation area. One major
problem using odometry data is their increasing error
over time, especially concerning the rotation angle. To
attenuate this effect, we utilize a specific feature of all
home improvement stores. Typically, their floor shows a
rectangular structure caused by tiles which are uniquely
oriented across the whole store. The idea is quite ob-
vious: a further top-down oriented on-board camera ac-
quires images of the floor in front of the robot (Figure 8).
By continuously estimating the dominant orientations
within these images, we can calculate the accurate ori-
entation of the robot and, therefore, substitute the rota-
tion angle supplied by odometry by the orientation de-
termined visually. Hence, it is possible to eliminate the
orientation error, and subsequently, the position error.
If the initial position and orientation of the robot are
known, this method allows an accurate, iterative posi-
tion tracking as required for map building. Figure 9 ex-
emplarily illustrates the efficiency of this specific method
for vision-based odometry correction for map building.
Of course, the proposed approach does not hold in a
more general framework, but is very well suited for our
specific environment.

Figure 9: Sonar-based occupancy maps of a store section
(60 by 20 meters; total path length: 250 m). Gray-values
code occupancy probabilities: white - occupied (obstacle),
gray - free-space, black - unexplored. (Left) without vision-
based odometry correction: the closed-loop course cannot be
closed, because the error of the odometry-based estimation of
the rotation angle finally amounts to 90°. The result is an un-
usable map. (Right) with vison-based odometry correction,
now the closed-loop course can be closed exactly.

3.3 Visual Monte Carlo Localization

The topology of the store area is characterized by many
similar, long hallways of equal width. For this reason,
self-localization methods based on distance sensors can
produce numerous ambiguities preventing a quick self-
localization and relocalization in case of a complete loss
of positioning. Because the visual input from the omni-
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Figure 10: General idea of our view-based MCL.

directional color camera supplies a much greater wealth
of information about the structure of the local surround-
ings, we expect to defuse that problem and to accelerate
relocalization significantly. Therefore, we currently de-
velop an approach for vision-based self-localization that
combines panoramic views of the omni-camera with the
Monte Carlo Localization (MCL) developed by Fox [7].

MCL is a new algorithm for robust and efficient self-
localization of mobile robots. It is a version of Markov
localization [11, 6], a family of probabilistic approaches
for approximating a multi-modal probability distribu-
tion coding the robot’s belief Bel(l) for being at posi-
tion [ = (z,y, ¢) in the state space of the robot. # and
y are the robot’s coordinates in a world-centered Carte-
sian reference frame, and ¢ is the robot’s orientation.
MCL applies sampling techniques to represent the pos-
terior belief Bel(l) for being at position [ by a set of N
weighted, random samples S. Samples in MCL are of the
type ({x,y, ), p), where p > 0 is a numerical weighting
factor, analogous to a discrete probability. Because the
sample set constitutes a discrete approximation of the
continuous probability distribution, the MCL approach
1s computationally efficient, 1t places computation just
“where needed”. Additionally, it is more accurate than
Markov localization with a fixed cell size, as state repre-
sented in samples is not discretized [7]. This allows a self-
localization with sub-grid accuracy. In analogy with the
MCL algorithm presented in [7], our view-based MCL
(Fig. 10) proceeds in two phases:

Prediction phase (robot motion): In this phase, the
sample set computed in the previous iteration (or dur-
ing initialization) is moved according to the last motion
of the robot. This way, MCL generates N new sam-
ples that approximate the predictive probability density
of the robot’s position after the motor command. In
our approach, we use a discrete representation of the
operation area by a coarse grid of visual reference vec-
tors 7#(x,y,0°) extracted from the respective panoramic
view at this position in the reference orientation ¢ = 0
(Fig. 10). Because of the discrete grid representation,

our approach requires interpolations both in state and
feature space to determine the unknown feature vectors
f(l’)) of the moved samples in the new positions I’ within
the grid. First, we interpolate linearly between the three
reference vectors 7(x, y, 0%) closest to the sample position
. After this, this new vector is rotated according to the
orientation ¢ of the sample. This is possible, since the vi-
sual features are extracted from annulus segments of the
omnidirectional image (see Fig. 10-top left). A rotation
of this image corresponding to a turn of the robot simply
results in a circular shift of the components of the fea-
ture vector. Since the feature vector only has a discrete
number of components, for continuous rotation angles,
we additionally use a linear interpolation between the
features of neighbored segments. This way, we obtain
a set of N interpolation-based feature vectors f(x, Y, )
describing the moved samples at the new positions I’.

Update phase: In this phase, the panoramic view at
the new robot’s position has to be taken into account in
order to re-weight the sample set. For this, the weight-
ing factor p; of each sample s; describing the probability
that the robot is located at the position of the sample
s; 18 computed. We determine the similarity £; between
the current input feature vector j?;nput extracted from
the panoramic view at the current robot’s position and
the interpolation-based feature vector ﬁ(x, y, ) of each
sample s; simply by computing the angle between both
normalized vectors. Now p; = 1 — alf; can be deter-
mined, where ar1s a normalization constant that enforces
ZnN:1 pn = 1. The new sample set S for the next iter-
ation is obtained by resampling from this weighted set.
The resampling selects with higher probability samples
that have a high likelihood (weighting factor) associated
with them. Samples with low weighting factors p; are re-
moved and randomly placed in the state-neighborhood
of samples with high weighting factors.

Subsequently, we present first promising experimental
results of this approach, also considering the specificity
of the environment in the market. Fig. 11 and 12 illus-
trate empirical results of experiments recently executed
in a section of the store. Despite the uniformity of the
two hallways and the coarse grid-space of 90 cm, the
view-based MCL yields accurate localization results al-
ready after a few movements of the robot. In the nor-
mal case (no occlusions), this approach allows a correct
localization with sub-grid accuracy. At the end of the
sequence shown in Fig. 12, four people were standing
around the robot in a very low distance and occluded
large regions of the panoramic image (40-50%). Despite
this occlusion, the MCL still generates good localization
results. In this critical situation, the difference between
estimated and correct position is not larger than the grid
space. The empirical experiments confirm the robustness
of this vision-based localization and tracking method:
the influence of lighting, changes within the operation



Figure 11: View-based self-localization and tracking exper-
iment realized in a section of the store (6 x 15m?, grid space
90 c¢m). Series of 2D sample sets using panoramic views as
sensory input for MCL. Sequence depicts the temporal con-
densation dynamics of the samples - as result of local robot
movements and the sampling/importance re-sampling cycle.
In the beginning, the robot is globally uncertain, the samples
are spread uniformly throughout the free space. Already after
five movements, MCL has disambiguated the robot’s position
- the majority of samples is now centered tightly around the
correct position.

Figure 12: Complete sequence of a self-localization and
tracking experiment illustrated in Fig. 11. The correct posi-
tions of the robot are marked by dotted white circles ©® and
the estimated positions (centers of gravity of the samples with
highest weighting factors) by white circles.

area and local occlusions caused by customers or other
objects is of low significance. The view-based MCL ap-
proach presented here turned out to be a robust online,
any-time algorithm which can generate an answer at any
time, but the quality of solution increases over time.

4 Conclusions and Outlook

The PERSES project contains a collection of new and
known approaches, addressing challenges arising from
the characteristics of the scenario and the environment,
and from the need to continuously interact with cus-

tomers. In the paper, special emphasis has been placed
on vision-based methods for user localization, map build-
ing and self-localization to accommodate the challenges
that arise from the scenario. The overall system pre-
sented here should be understood as work in progress,
undergoing continuous changes. Therefore, so far, we
can only present preliminary results demonstrating the
function of principle of selected subsystems of the overall
architecture. Besides the implementation of vision-based
methods allowing a robust self-localization and naviga-
tion in larger areas of the whole store (80 x 100m?), the
continuous vision-based interaction between robot and
user still remains a challenge to realize a user-friendly
guidance and companion function as mobile shopping
assistant.
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