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Abstract

In this paper, we present a control scheme
based on reinforcement-learning for a hard-coal
combustion process in a power plant. Because
of great demands on environmental protection,
the plant operator is interested in a minimiza-
tion of the nitrogen oxides emission on one
hand, while other process parameters have to
be kept within predefined limits. On the other
hand, an increased efficiency factor is also de-
sired. In order to meet these requirements, we
extract visual features of the flame in addition
to conventionally measured process data, and
apply a reinforcement-based control scheme.
Keywords: Reinforcement-Learning, combus-
tion process, visual flame observation

1 Introduction

Since the immediate object of a power plant is the
production of energy, the plant operator is trying to
maximize the efficiency factor. In parallel, both the
system-constraints and great demands on environmen-
tal protection limit the workspace. Because of time
varying plant properties caused by pollution, fair wear
and tear, changing coal qualities, etc., a control sys-
tem is sought, which autonomously tries to minimize
a predefined cost function.

Reinforcement learning (RL) can be used to solve
such problems. The main idea of RL consists in us-
ing experiences obtained through interaction with the
process to progressively learn an optimal value func-
tion. This function predicts the best long-term out-
come an agent can receive from a given state when
it applies a specific action and follows the optimal
policy thereafter [Sutton, 1988]. The agent can use
a RL-algorithm such as SUTTON’s TD()) algorithm
[Sutton, 1988], or WATKINS’ Q-learning algorithm
[Watkins and Dayan, 1992] to improve the long-term
estimate of the value function associated with the cur-
rent state and the selected action. However, in sys-
tems having continuous state and action spaces, the
value function must operate with real-valued variables
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representing states and actions. Therefore, the value
functions are typically represented by function approx-
imators, which use finite resources to represent the
value of continuous state-action pairs. Function ap-
proximators are useful because they can generalize the
expected return of state-action pairs the agent actu-
ally experiences to other regions of the state-action-
space. Thus, the agent can estimate the expected re-
turn of state-action pairs that it has never experienced
before. Many classes of function approximators have
been presented, each with advantages and disadvan-
tages. The choice of a function approximator depends
mainly on how accurate it is in generalizing the values
for unexplored state-action pairs, and how expensive
it is to store in memory.

To the best of our knowledge, this paper is first
to present a reinforcement-learning approach to con-
trol the combustion process of a power plant. There
exist alternative approaches to control such complex
combustion processes, which extensively use process
models [Baldini et al., 1999]. But these systems cru-
cially require detailed information about the plant to
build the model. Therefore, the quality of the process
model limits the quality of the control-strategy and
decreases the portability to other plants.

Finally let us shortly introduce the power plant
”Tiefstack” we used for our experiments. It is owned
by the ”Hamburgische Elektrizaetswerke” (HEW) and
is situated in the south of Hamburg. The subsystem to
be controlled consists of 6 burners aligned in 2 columns
at 3 levels and has a maximal output of 252MW (see
figure 1). The burners at each level are supplied with
coal by one coal mill. Although the distribution of
inlet coal should be equal for each of the two supplied
burners, due to varying flow dynamics or pollution
this equilibrium is shifted to the benefit of one burner.
Unfortunately, the exact amount of inlet coal can not
be measured for each burner separately. In order to
detect such asymmetries, we observe all 6 flames by
camera systems and use this information to control
the combustion process.

2 Architecture

Before describing our architecture, we first discuss the
interface to the process: the reinforcement function,
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Figure 1: Schematical view of the combustion cham-
ber with coal and air supply.

the controls, and last but not least, the measured val-
ues describing the combustion process.

2.1 Reinforcement-function

The reinforcement-function is the central part of any
RL-system, since it defines the goal of the control sys-
tem. It was defined in accordance with the plant op-
erator as follows:

e the temperature of the steam entering the turbine
must not fall below 540° C

e the waste gas temperature must not fall below of
340° C

e the nitrogen oxides (NO,) concentration in ex-
haust fumes must not exceed 1200mg/m3 and has
to be minimized

e the concentration of unused carbon must not ex-
ceed 5%

e the O- concentration in waste gas must not fall
below 3%

e minimize the complete inlet air multitude of the
combustion process in order to increase the effi-
ciency factor

Equation 1 shows the mathematical description of
the requirements stated above. The terms Kyo, and
K allow to balance the importance of the NO, con-
centration and the efficiency value. We used for our
experiments Kyo, = Ky = 0.5.

{ 0 : any threshold violated (1)
r = .

1 - Ky — Kno, * NO, : else

r :  scalar reinforcement signal

air’ :  normalized air consumption

coal’ normalized coal consumption

NO, normalized NO, concentration
in exhaust fumes
Kno, importance of NO, concentration

Ky : importance of efficiency factor
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Figure 2: Reinforcement-function, if none of the
thresholds described above is violated.

Figure 2 depicts the reinforcement-function in case
none of the formulated thresholds is violated. As can
be seen, the maximum reinforcement of 1.0 is only
given, if both the air consumption and the NO, con-
centration are minimal.

2.2 Controls

The plant operator has given us direct access to the
following controls:

control meaning

primary air distribution of the primary air

trim at level multitude on the lower burner

10 level between the left and right
burner

primary air distribution of the primary air

trim at level multitude on the middle burner

20 level between the left and right

burner

distribution of the primary air

multitude on the upper burner

primary air
trim at level

30 level between the left and right
burner

air multitude air multitude on the lower burner
at level 10 level

air multitude air multitude on the middle
at level 20 burner level

air multitude air multitude on the upper
at level 30 burner level

Please hold in mind, that these controls (see also figure
1) only influence the air multitude and the distribution
of air between these 6 burners, but neither multitude
nor distribution of inlet hard-coal! To reduce the im-
mense action space we use relative instead of absolute
controls. That means, we define for each control only
three actions: increase by 1%, remain unchanged or
decrease by 1% (the use of absolute controls in 1%
steps would take 21 actions, if we assume a control-
range of 40% ...60%, for instance for the primary air
trims). Because all 6 controls are independent of each
other, our control system has to cope with 3¢ = 729
different actions.
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Figure 3: Neural control architecture for reinforce-
ment-learning. The input-vector unifies process data
and flame-describing features obtained from the cam-
era systems observing the 6 flames of the combustion
process. The neural clusterer maps the continuous and
high dimensional input-space onto a discrete state-
space, whereupon the Q-values of all executable ac-
tions are estimated.

2.3 Process describing data

After describing the reinforcement-function and the
controls we have to select a subset from all measured
values of the combustion process to describe the cur-
rent process situation. This selection is very difficult,
because to much information can be as paralyzing as
insufficient information about the current process sit-
uation. If the control system has not enough informa-
tion about the combustion process, the process is not
sufficiently observable (POMDP) and therefore no sta-
ble outcomes of state-action pairs could be observed.

First of all, the control system needs all
reinforcement-relevant process data. Furthermore in-
formation about the coal distribution between the 6
burners is essential, since our controls only distribute
the air multitudes between these burners. Hence,
the input-feature-space is determined by the follow-
ing process data:

e currently inlet coal and air multitudes

e temperature of the steam entering the turbine

e waste gas temperature

e NO, concentration in waste gas

e O, concentration in waste gas

e concentration of unused carbon

e mean flame intensity of all 6 burners
These process data constitute the input-vector con-
sisting of 13 real-valued components.
2.4 Neural function approximator

As mentioned in section 1, our architecture has to
select an action for each process situation, that is
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we present a very first and simple approach to a state-
action function approximator that combines a neu-
ral vector quantization technique (Neural Gas [Mar-
tinetz and Schulten, 1991]) for optimal clustering of a
high-dimensional, continuous input space [Gross et al.,
1998] (equation 2) with a subsequent associative mem-
ory, to estimate the values of all 729 executable actions
(see figure 3). Equation 2 shows the neural-gas weight
w;,(t) updating rule for the neuron i, where 7™V (t) is
a learning rate, s(¢) is the index of neuron i in the list
sorted by distance to the input z(t) and h(t) is the
learning radius.
5(i)

Aw;(t) = nVt) e m - [z(t) —w;(H)] (2)

For action-value approximation, we utilize the
Q-learning [Watkins and Dayan, 1992] variant of
reinforcement-learning (equation 4).
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AQ(st,at) = n{rt + V(s = Qs',a") } (3)
with
V(sH) = maxQ(s' et (@)

For our experiments we have 75 states (NG-neurons),
a discount factor for the value of the subsequent state
v = 0.5, and a Q-learning-rate of n = 0.2.

3 Results

One of the most important properties of reinforce-
ment-learning techniques is their ability to extract
the necessary information about the consequences of
their actions through interaction with the process it-
self. Neither detailed and system-specific information
nor an accurate model of the underlying process are
required. Nevertheless, we used a system, that we
pretrained on past process data, to reduce the explo-
ration time and space of the system. This explorative
behavior is realized by addition of a noise term n! to
the estimated Q-values Q(st,at) and the subsequent
selection of the action al with the highest value (equa-
tion 5).
al = argmaz, [Q(s',a’) +nl] (5)
Figure 4 depicts very first results of our
reinforcement-based control architecture, obtained
during the online exploration phase in the power plant
" Tiefstack” Hamburg. The performance of the RL-
system is reflected by the obtained reinforcement. The
defined reinforcement function, described in section
2.1, rewards both low air consumptions and low NO,
emissions. As can be seen, our reinforcement-control-
system is able to reduce the NO, concentrations in
the range of higher coal multitude compared to the
control scheme applied up to now (figure 4, top). The
previous control system defined the amount of inlet
air by a characteristic curve depending on the inlet
coal amount, where a fixed symmetrical distribution
between the left and right burner was applied. Fur-
thermore, also the air consumption could be reduced
by the RL-system (figure 4, bottom). This is a very
promising result.
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Figure 4: top: Comparison of nitrogen oxides emis-
sion for previously applied control scheme (circles)
and RL-control system (crosses) over 6 days. bot-
tom: Comparison of air consumption for previously
applied control scheme (circles) and RL-control sys-
tem (crosses) over 6 days.

4 Conclusions and Outlook

In this paper we presented a control scheme based
on reinforcement-learning for a hard-coal combustion
process in a power plant. The presented first ap-
proach uses a neural vector quantization technique
to map the high-dimensional input space onto a dis-
crete state space, whereupon a classical Q-learning
approach estimates the values of the actions. This
reinforcement-based control approach requires neither
detailed informations about the plant nor an exact
process model. The ability to explore autonomously
the consequences of its own actions guarantees on one
hand the plasticity under changing system properties,
but on the other hand the system is forced to perform
non-optimal actions. Nevertheless, the presented first
results are very encouraging and demonstrate, that
reinforcement-learning is also capable to cope with
complex industrial control problems.

Further work should address a decomposition of the
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Figure 5: Decomposition of the control task into 4
agents with their inputs and their corresponding con-
trols. Each agent observes the relevant part of the
situation space and has access to an assigned subset
of controls.

presented monolithic architecture into several agents
controlling only a subset of all control variables. This
will simplify the function-approximation-task, since
each agent has to observe only a small part of the
present high-dimensional input space. A first sug-
gestion for this decomposition is shown in figure 5.
Thus, AGENTL10, AGENTL20, and AGENTL30, con-
trol the air distribution at each case of one burner
level. AGENTOZ2 controls the total amount of air con-
sumption for each burner level. Unlike the monolithic
approach with 3¢ = 729 different actions the multi-
agent-approach requires only 3 + 3 + 3 + 27 = 36 ac-
tions! Hence, the number of possible control actions
can be reduced substantially.
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