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Abstract

In this paper, we present a hybrid neural architecture to predict optical flow fields as consequences of real and
hypothetical actions. In this architecture, we introduce a neural field-based method to fuse sensory bottom-
up and predicted top-down expectations. All subsystems extensively use confidence estimations to reduce
disturbances caused by noise. The facilities of this anticipative preprocessing can be demonstrated by means
of an optical flow field based local navigation behavior of the miniature robot KHEPERA. Our anticipative
preprocessing enables the robot to bridge gaps of sensory dropouts and, in consequence, to avoid collisions
even with very noisy sensory information.
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1 Introduction

Traditional approaches to visual perception are based on the ‘information processing paradigm’ [9], which can
be characterized by a strict separation between sensory perception and generation of behavior (see [11, 10]
for a review). In recent years, the appreciation of visual perception as a generative sensorimotor process
gained increasing acceptance [3, 1]. The generative aspect of perception has been emphasized especially by
[7, 8, 6] who supposed that internal simulation and mental imagery may play an integral role in perception,
helping one not only to recognize objects but also to anticipate the consequences of events. If this holds
true at different levels of complexity and for different modalities, then, there must exist structures that
are capable of predicting the sensory consequences of actions. Such sensory predictors seem to be multi-
functional systems, since they can be used to a) enhance the incoming bottom-up sensory information by a
top-down expectation generated previously b) direct selective attention to those environmental subregions,
which caused a mismatch of top-down expectation and bottom-up sensory information and c¢) internally
simulate the consequences of action sequences in order to find and execute those actions, that entail positive
outcomes for the system [5].

In this paper, we present a hybrid network architecture to predict optical flow fields and demonstrate its
functionality in a KHEPERA-navigation task. This is done by means of a fusion of sensory bottom-up and
expectation-based top-down information. This is a kind of anticipative preprocessing embedded in a cognitive
processing cycle of hypotheses generation and verification [8, 6].

2 Experimental framework

For our experiments, we use the real robot platform KHEPERA, a miniature robot equipped with an omni-
directional color-camera (see Figure 1 left). The system’s goal is a collision-free local navigation only based
on visual information, in this case the optical flow fields. We use the optical flow, because it is largely
independent of specific visual details of the objects in the scene and yields implicit information about spatial
distances to objects.

In the preprocessing we perform a polar transformation of the original omni-camera-image (see Figure 2 left)
to the deskewed form depicted in Figure 2 (right). These transformed images are used directly to estimate
the optical flow fields, because an action of the robot with a rotational part yields a rotation of the omni-
camera-image, but, only a shift in x-direction of the polar transformed image. This is very advantageous,
since the applied correlation based optical flow estimation [2] must not cope with rotated correlation areas,
which would be very time consuming.
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Fig. 1: Used robot platform
KHEPERA equipped with
an omni-directional camera
(left). Top-view of the envi-
ronment with the KHEPERA
in starting position (right).
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Fig. 2: Left: original image of the omni-camera mounted on top of the
KHEPERA obtained in its starting position in the environment (see Figure 1
right). Right: polar transformed image: middle=front, left and right image
borders=back.

3 Architecture

As introduced in section 1, we use a hybrid architecture to predict the optical flow fields as a result of the
last optical flow field and the real or hypothetical action to be executed. To demonstrate the functionality
in a KHEPERA-scenario, we fuse the sensory bottom-up estimation and the top-down expectation in order
to reduce the noise and gain robustness against sensory dropouts (see Figure 3).

A central aspect of our anticipative preprocessing in the bottom-up top-down cycle is the usage of flow vector
specific confidence estimates organized topographically manner corresponding to the flow field.

These confidence-values of each flow vector are based on the optical flow estimation by evaluating the shape
of the correlation function. Sharp and unique minima cause high, whereas flat or ambiguous correlation
functions result in low confidence values.

3.1 Expectation generation

The sensorymotor prediction is of central importance for our approach. In previous approaches [5], we used
standard neural networks, such as multilayer-perceptrons or a mixture of experts consisting of several action-
specific perceptrons. In some cases, these networks had prediction problems, especially if the incoming data
were distributed badly. In our present view, the key problem of the used neural networks was the prohibitively
high dimensionality of sensory input, the whole optical flow field. A succeeding single optical flow vector,
however, depends only on a very small part of the current flow field, but never on the whole field. Hence,
a network with completely connected layers first has to find the respective ’source-region’ and thereafter to
learn to predict the corresponding flow vector for each position of the flow field.
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Fig. 4: The flow vector to be predicted depends only on
those flow vector(s), that point closest to the position for
which the flow vector is to be predicted. That is, because

these vectors describe the velocity of the corresponding
source vector objects in the scene.
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Hence, we developed an alternative approach to overcome this problem. It uses the optical flow inherent
property to represent the movements of objects onto the camera-plane. Consequently, the inverse optical
flow itself points to that part of the image, where movement must be predicted (see Figure 4).

Equation 1 shows the computation rule for a source-vector ijq at position (p, g) within the optical flow field.

This is a superposition of all vectors ﬁg depending on the superposition weight rpgri. Tperi reflects, how

exactly these optical flow vectors point to the current position (p,q)” and is normalized by the sum of all
superposition weights (see equation 5). The search for this source-vector among all flow vectors ffy can be
reduced to a small region around the current position (k, 1), where the size of this search-window corresponds
to the size of the search-window of the optical flow estimation determined by n. The actual predicted vector
ifq is thereafter only a scaling in x and y-direction of the source-vector by the weights w,pq(t) and wyp, ()

(equation 2). The confidences ch depend on the confidence cf;q of the source-vector and on the confidence
of the prediction itself wy, (equation 4).
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The update of the weights depends on the difference between the predicted vector if q(t) and the actually

experienced in the next time step f™ (¢+1) (equation 6). The confidence-weights w¢  are updated according
—Ppq pq

equation 7.
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3.2 Fusion

With regard to Figure 3, in this section we present the fusion between bottom-up and top-down information
(see Figure 5). Each vector of the whole field is represented by a 2-dimensional neural field, where the position
within the neural field codes the x- and y-components of the flow-vector as a blob, and the activation of
the blobs in the neural field is a measure for the corresponding confidence of this local flow vector. Due to
this 2-dimensional representation, it is possible to hold many alternative hypotheses (blobs) for each flow
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Fig. 6: (Left) development of prediction error during training. Arrays of weights of our sensory predictor
for the x (middle) and y-components (right) of the optical flow vector field. For detailed explanations see
text.

vector. Consequently, both the sensory bottom-up and the top-down expectation can add their hypotheses
about the real optical flow vector into the corresponding neural field, whereby similar hypotheses result in
a superposition of the blobs at the same position. The output results from the hypothesis with the highest
confidence (equation 8). For reasons of simulation resources, we split the 2-dimensional neural field into 2
one-dimensional neural vectors representing the x- and y-direction of the flow vector separately (equations
9, 10). Equation 9 shows, that the new state z;, (¢ + 1) is computed by discounting the last state 2, (¢) by
a € (0...1) and the superposition of the sensory bottom-up vector g(fZ (t)) and the top-down expectation
g(fL, () in form of 1 dimensional blobs (equation 11) weighted by their confidences ¢(.)
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Hence, this algorithm selects those of all hypotheses, which support each other. This is reasonable, since
similar information in both streams implies, that this information is reliable and trustworthy.

4 Exemplary results

To train the flow field predictor, we put the robot KHEPERA into its starting position depicted in Figure
1 (right) several times and drove with fixed speed straight forward up to the opposite wall. During this
training period, the KHEPERA experienced several optical flow field configurations with obstacles on the left,
on the right, and, finally, also in front of the robot. Figure 6 shows the decreasing prediction error over
the training period (left) and the learned weight matrices (middle and right). As can be seen, the predictor
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Fig. 7: Navigation based on the estimated
optical flow applying the well known bal-
ancing approach [4]. As can be seen, both
the navigation on the pure estimated opti-
cal flow (top left) and on the expectation
driven preprocessed optical flow (bottom
left) allow a collision-free locomotion of the
robot KHEPERA through the environment.
In contrast, a significant disturbance of
the optical flow estimation by means of
fluctuating ambient light causes a collision
at the end of the plotted trace, where no
anticipative preprocessing is applied (top
right) (bottom right). The anticipative
preprocessing overcomes the problems and
allows a collision-free locomotion (bottom
right)

amplifies the y-components (Figure 6, right) in front (around an x-direction of 15) and in the back (left and
right border in x-direction) of the robot. The x-components (Figure 6, middle) are amplified in the lateral
parts of the polar transformed image (x-directions 5...10 and 20...25).

To demonstrate the facilities of the presented anticipatory preprocessing, we also placed the robot in unknown
environments to navigate without collisions through the narrow passage. For this benchmark , we used the
balancing approach [4], which tries to equalize the optical flow in both hemispheres of the robot, which
results in a collision-free locomotion in the middle of such an hallway. Figure 7 (left column) shows a top
view of this scenario with collision-free traces of our robot. If a perturbation is applied in this experimental
situation, the usage of pure estimated optical flow fields fails, because the very noisy sensory input entails
no information about near obstacles. In contrast, our anticipatory preprocessing allows the system to bridge
the time gap of sensory dropouts with the generated expectation and is therefore able to extract relevant
information in order to avoid the arising obstacles.

At this point, we have to ask the question: would a pure feedback without any sensory prediction (see Figure
3) result in the same behavior? In this case, the fusion of the noisy and very unconfident estimated optical
flow and the relative confident expectation would return the last fusion output. Thus, such an architecture
is nothing but a low-pass filter over time. The advantage of our anticipative preprocessing in contrast to this
approach is depicted in Figure 8. In this case, the robot stood in front of an obstacle at a distance of about
10cm and drove with slight right turns avoiding a collision. As can be seen, the system with anticipative
preprocessing is able to recursively predict the shift of the central large flow vectors representing the close
obstacle to the left, whereby the system without sensory prediction once again can only store the last sensory
situation, which becomes more and more obsolete over time.

5 Conclusions and Outlook

In this paper, we presented a hybrid neural architecture to predict optical flow fields as consequences of
actions. Further, we introduced a neural field-based method to fuse sensory bottom-up estimations and top-
down expectations. All proposed subsystems extensively use confidence measurements in order to prevent
disturbance by noise. The facilities of this anticipative preprocessing could be demonstrated by means of
a local navigation behavior of the real robot platform KHEPERA. The presented sensory prediction can be
very useful for various tasks, such as the dynamic control of visual attention to regions, where a mismatch
of expectation and sensation occurred, or the internal simulation and evaluation of many action sequences
in order to find an optimal action sequence according to the current system state [5].

Future work will address the improvement of the sensory prediction. The current network causes problems
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Fig. 8: Sequences of optical flow fields for a turn to the right: (left) sequence of real flow fields estimated
in 3 subsequent steps of movement; (middle) internally simulated sequence of flow fields starting at the
real flow field in time step 5. Each predicted flow field is the result of a confidence controlled top-down
superposition of the last prediction and the succeeding one. (Right) same as in the middle, except that in
this case the top-down expectation is the last fused optical flow field instead of predicted. As can be seen,
this architecture is unable to generate expectations reflecting the changes of the environment caused by the
executed actions. Hence, the sensory predictor is an essential part of our anticipative preprocessing.

with large steering angles and cannot cope with different speeds of the robot. Moreover, problems emerging
from object occlusions have to be solved, to allow the robust prediction of longer sequences in order to apply
the predictor network to our model for anticipation based on sensory imagery.
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