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Abstract
The paper describes a multimodal scheme for human-
robot interaction suited for a wide range of intel-
ligent service robot applications. Operating in un-
engineered, cluttered, and crowded environments,
such robots have to be able to actively contact po-
tential users in their surroundings and to o�er their
services in an appropriate manner. Starting from
a real application scenario, the usage of a robot as
mobile information kiosk in a home store, some reli-
able methods for vision-based interaction, noise anal-
ysis and speech output have been developed. These
methods are integrated into a prototypical interac-
tion cycle that can be assumed as a general approach
to human-machine interaction. Experimental results
demonstrate the strengths and weaknesses of the pro-
posed methods.

1. Introduction
Intelligent service robots, a research �eld that be-
came more and more popular over the last years,
cover a wide range of application scenarios, from
robotic assistance for disabled or elderly people up
to climbing machines for cleaning large storefronts.
Our speci�c scenario is aimed at the development of
an intelligent interactive shopping assistent, working
as a mobile information kiosk in a home store (see
�g. 1). In contrast to the application of personal-

Figure 1: Our experimental platform Perses oper-
ating in a home store, a cluttered and un-engineered
environment.

ized robots, where robot and user can adopt to each

other, such a robot has to be able to interact with
anybody. Furthermore, these people typically know
neither the scope of the robot nor its functional capa-
bilities. People have no idea of how the robot works,
if it has a name by which it may be called, or if
it understands speech at all. In general, for robots
working in public places, an intuitive interactive be-
havior is a necessary prerequisite for the acceptance
of such robots by their potential users. When looking
at stationary information terminals often placed in
shopping centres, these terminals are almost always
an eyesore. One major reason for that fact is that
these terminals are not interactive in a natural sense.
They cannot detect if there is anybody interested in
the information provided, but repeat their informa-
tion repertoire endlessly. To preserve service robots
from the same fate, we suppose that a natural, intu-
itively understandable interaction scheme is urgently
needed. Such an interaction scheme should contain
components everybody is familiar with, during ev-
eryday human-to-human interaction. Consequently,
vision and acoustics should play the major role.
During the past decade, a variety of approaches to
intelligent human-robot interfaces has been proposed
([2, 14, 6]). Most of them argue, as we do, that
the combined utilization of speech and vision channel
seems the most appropriate way for building such
interfaces.
As stated above, we are particularly interested in a
more general framework, whereas most of the previ-
ous approaches are very speci�c for a certain domain.
Fig. 2 summarizes typical service tasks and behav-
ioral skills of an interactive service robot. The sketch
takes into account the necessities of our application
scenario, but the mentioned skills are valid for ser-
vice robot applications in general. The system has to
contact potential users in its surroundings, to verify
if the person is interested, to o�er its services, and



Figure 2: Nec-
essary skills
and typical
service tasks of
an interactive
mobile robot
(shopping
assistent).

�nally to keep continuous contact during the whole
interaction process.
In our proposed interaction scheme, the �rst step
contains the generation of hypotheses concerning
people in the surroundings of the robot. Here, a
vision-based movement detection and an analysis of
acoustic signals are combined into an attentional pro-
cess, that results in a turning of the robot towards
the most salient direction. Then, a person veri�ca-
tion procedure rechecks if there really is a person
and if the person could be interested in using the
robot. For the case that an interested person ap-
proaches the robot, the robot welcomes and o�ers
its services. This is realized by means of situation
dependent speech output and a gra�cal user inter-
face running on a touch-screen. As long as the cur-
rent user remains in the (visible) surroundings of the
robot, the robot tries to keep continuous contact to
its user via person tracking.
The remainder of the paper is structured as follows.
After introducing the robot and its technical setup,
section 2 describes the developed methods in detail.
In section 3, experimental results are given and an
examplary interaction process is demonstrated. Sec-
tion 4 contains ongoing and complementary work as
well as some summarizing conclusions.

2. Methods for Multimodal Human-Robot In-
teraction

2.1 The Robot Perses
Fig. 3 shows the robot Perses, an extended ver-
sion of a standard mobile robot B21 by RWI (IS
Robotics). In addition to the standard equipment
of two sonar and one IR-layers, Perses is equipped
with (i) an omnidirectional color camera with a
360o panoramic view used for user localization and
tracking, self localization and local navigation, (ii) a
binocular 6 DoF active-vision head with 2 frontally
aligned color cameras used for user veri�cation and
tracking, odometry correction and obstacle avoid-
ance, (iii) a binaural auditory system for acoustic
user localization and tracking, and (iv) a touch-
screen for immediate user-robot interaction.

Figure 3: Experimental platform Perses.

2.2 Movement Detection within the Omnidi-
rectional Images
For every mobile service robot, one major prob-
lem consists in the robust localization of a poten-
tial user in its operation area. Our vision-based user
localization performs a motion-based foreground-
background segmentation in the input images pro-
vided by the omnidirectional camera. In the waiting
position or while standing still, the motion-based seg-
mentation provides some candidate regions that indi-
cate if and where people could be in the surroundings
of the robot (see �g. 4). The implemented method is

Figure 4: Motion-based segmentation of potential
users in the image sequence of the omnidirectional
camera. (Left) original image. (Right) segmented
image, the two regions correspond with two people
at di�erent distances to the robot.

similar to that suggested in the P�nder system [19],
but di�ers in the following aspects: (i) the statistical
models for foreground and background pixels were
simpli�ed to boxes, and (ii) the foreground and back-
ground models are continuously adjusted. The model
simpli�cation led to a lower computational load re-
sulting in a performance speed-up, surprisingly al-



most without any lost in sensitivity. By adaptation
of the foreground and background models, we take
into account that the robot cruises its surroundings
which makes it impossible to use only one stationary
background model. After the alignment of all im-
age pixels to the foreground and background model,
respectively, some appropriate heuristics are used to
assess the motion for every circular direction. These
heuristics are needed to determine what direction the
most attractive one could be. The concerning assess-
ment parameter relies on three di�erent aspects: (i)
The direction of motion indicates, if the person is
moving towards the robot or not, and a person mov-
ing away from the robot is probably no candidate
for interaction. (ii) The size of the moving regions
gives information concerning the distance of that ob-
ject (person) to the robot. The lower the size of the
moving region the larger the distance between object
and robot can be assumed. (iii) The angle di�erence
between the robot's current orientation and the di-
rection(s) where motion ist detected gives a measure
how long the turn to that direction the robot will
take. For the case that several people surrond the
robot, this distance should be rather small, leading
to fast turns to the nearest standing (moving) per-
son. The implementation of those heuristics leads
to the following behavior: the robot preferably turns
towards people that are moving towards the robot
and that are relatively close to the robot.

2.3 Sound Localization
For the acoustic localization of a potential user clap-
ping her hands or shouting a command, we developed
a biologically inspired model of binaural sound local-
ization using interaural time di�erences and spikes
as temporal coding principle [12]. This subsystem
realizes (i) the detection of the sound direction in
the horizontal half-planes by processing the interau-
ral time-delays and (ii) a simple but e�ective front-
behind discrimination on the basis of the di�erences
in the spectral shapes of the left and right sound
stream supplied by the microphones mounted on top
of Perses (Fig. 1). It detects pitch onsets in the
signals and calculates the angle to the sound source
from the phase shift between the binaural signals.
Details of this model and localization results are pre-
sented in [15].

2.4 Fusion of Motion Detection and Sound Lo-
calization
The integration of auditory saliency makes it easy
for the user to attract the attention of the robot to
accelerate the localization process signi�cantly. Both
methods supply an angle by which the robot has to
be turned. In case both angles drive the robot to the
same direction, that direction is strongly supported.
Otherwise, motion detection and sound localization

work independent of one another. Consequently, a
potential user can attract robot's attention via ego-
motion or, alternatively, by emitting a sound.

2.5 Person Veri�cation
To evaluate if there really is a person and if she could
be willing to interact with the robot, we developed
a veri�cation system that integrates di�erent visual
cues. This system should highlight that regions most
likely cover the upper part of a person. Concentrat-
ing on the upper part of a person has thenfollowing
reasons: One has less di�culties concerning (partly)
occlusions, and the features described below are very
person-speci�c as well as indicate if the person is
roughly aligned towards the robot. Execution of
person veri�cation is triggered, when the robot was
turned by the localization module. Fig. 5 gives an
overview over the corresponding architecture. Due to
the turn of the robot, the potential customer should
be localized in front of the robot, allowing to ob-
serve her by the frontally aligned cameras as well as
by the omnidirectional camera. Because we want to
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Figure 5: Multiple-cue approach to user veri�cation.

localize people even at di�erent distances from the
robot, a multiresolution pyramid (scale space with
�ve �ne-to-coarse resolutions) transforms the images
into a multiscale representation. Two cue modules
sensitive to facial structure and structure of a head-
shoulder contour, respectively, operate at all levels
of the grayscale pyramid. The cue module for skin
color detection uses the original color image. Af-
ter superposition of the corresponding feature maps,
a 3D-Winner-Take-All process within the saliency
pyramid selects that region most likely covering the
upper part of a person.
The utility of the di�erent parallel processing cue
modules is to make the veri�cation system robust
and independent of the presence of one certain in-
formation source in the images. Hence, we can han-
dle varying environmental circumstances much eas-
ier, which, for instance, make the skin color detection



di�cult or almost impossible.
For person veri�cation and the subsequent tracking
process, both camera systems (omnidirectional as
well as frontally aligned stereo system) are utilized.
For simplicity reasons, with the exception of move-
ment detection, the examples in this paper contain
only images acquired by one of the frontally aligned
cameras.
Contour Modelling: The contour which we
refer to is that of the upper body of a frontally
aligned person. First, we generated a statistically
determined average head-shoulder contour by col-
lecting views of di�erent people (see �g. 6). The
arrangement itself was learned based on this set of
training images. Our simple contour shape proto-
type model consists of an arrangement of oriented
�lters realizing a piecewise approximation of the
upper shape of a person (head, shoulder). Applying
such a �lter arrangement in a multi-resolutional
manner leads to a robust localization of frontally
aligned people even in depth. For computing the

Figure 6: Illustration of the statisti-
cally determined contour model by
the binary contour shape (top) and
the local orientation values along
the contour (bottom). Orientation
angles are coded by gray values (0o:
black; 90o: medium gray; 180o:
white).

orientation along the contour, a method proposed
in [10] was implemented. Compared to classical
orientation-speci�c �ltering with Gabor wavelets
[11] or steerable �lters [8], this method is faster by
orders of magnitude. Orientation �ltering provides
a tuple containing the dominant orientation angle
and the strength of the contour at that point. The
bandpass dimension determines the extent of the
local area where the orientation is calculated. By
varying the dimension of the applied bandpass �lters
it is possible to create a feature jet for each pixel.
The components (tupels) of such a jet code di�erent
dominant orientations, dependent on the applied
bandpass �lter. For contour detection, we utilize
a speci�c distance measure taking into account
the di�erence between extracted and expected
orientation value at every contour point as well
as the contribution of each contour point to the
whole contour model. Distance measure and jet
representation allow a two-step coarse-to-�ne search
in orientation space. First, a preselection is done
via a coarse distance threshold and the orientation
values obtained with one bandpass dimension (two-
dimensional manifold of orientation space) resulting
in a few candidate contour locations. Then, these
preselected candidates are �nally checked using the

whole orientation space. This procedure is much
less time consuming compared to applying the
�ne search for every image location. Results for
head-shoulder contour detection are shown in �g. 14.

Skin Color Detection: Skin color is a typical fea-
ture for person detection and person tracking. Usu-
ally, a color space where color and intensity informa-
tion are uncorrelated is employed. A widely used skin
color modeling procedure was suggested in [20] and
is also applied in our system. A set of skin colored
pixels was generated by acquiring images of di�erent
people (skin types) under varying lighting conditions
(illumination colors). This data collection is trans-
formed from the RGB color space into the dichro-
matic r-g color space and subsequently modeled by
a bivariate normal distribution (�g. 7).

Figure 7: Skin color distri-
bution in r-g color space.
For skin color detection,
the Mahalanobis-distance
between the color values of
a pixel and this model dis-

tribution gives us the likelihood for being skin col-
ored (see the raw skin color classi�cation in �g. 8).
To get closed skin colored regions, a median �lter is
applied at every resolution level of the scale space,
followed by a segmentation algorithm.
Unfortunately, skin is not the only skin colored ob-
ject. Therefore, some heuristics have been developed
to improve the separation between real skin color
and other skin colored image regions. For every res-
olution level the size of the skin colored regions as
well as their width(x)-height(y) relation is checked
according to the expected face region. Subsequently,
regions that do not �t the applied criteria can be re-
jected. Fig. 8 depicts an example for the described
skin-color processing regime.
Face Detection: Several approaches to face detec-
tion have been described, ranging from using Eigen-
faces [18], feature based [21, 5] and neural network
based methods [13]. The advantages of applying neu-
ral networks for the face detection task are quite
obvious: The facial image is characterized directly
in terms of pixel intensities, and according to the
two-class problem at hand (face, no face) a train-
ing pattern set can be used to adjust the parameters
of the classi�er. But, training a neural network for
face detection is challenging because of the di�culty
in characterizing prototypical "non-face" images. As
suggested in [13], one can avoid this problem by us-
ing a bootstrap algorithm that adds automatically
false positive classi�ed image regions to the train-
ing pattern set as the training process progresses.



Figure 8: Processing steps for skin color detection:
a) original image, b) raw skin color classi�cation, c)
smoothing by applying of a median �lter for all reso-
lution levels, d) result of the segmentation algorithm,
and e) �nal detection result according to the choosen
heuristics for every resolution level.

The module for face detection is implemented as a
Cascade-Correlation Neural Network (CCNW, [4]).
The reason for using that kind of neural network
lies in its cabability to produce a network topology
that �ts optimally with the complexity of the map-
ping problem. In contrast to the standard Multi-
layer Perceptron, where the network topology has
to be choosen in advance, the CCNW optimizes the
network parameters along with its topology during
the same training process. Starting with a minimal
topology (direct linear input-output mapping), new
hidden nodes are trained to maximally reduce the
networks output error, as long as a choosen termi-
nation criterion is ful�lled. Fig. 9 depicts the �nally
obtained topology for the CCNW.
To generate a training pattern set for face im-
ages, a public data base provided by AT&T
Laboratories Cambridge (http://www.cam-
orl.co.uk/facetatabase.html) was utilized. From
these images, 15 × 20 pixel sized regions covering
only the face were manually extracted. Initially,
the nonface pattern set contains a collection of
randomly chosen images, and is extended during
bootstrapping. An exemplary result obtained with
the CCNW-face detector is shown in �g. 10, further
examples can be found in �g. 14. Surprisingly,
the face detector performs quite well even on the
polar-cartesian transformed omnidirectional images,
were in contrast to the training patterns local
distortions of the face region occur.
Cue Fusion and Final Selection: The �nal step
for obtaining the image region(s) that most likely
cover the upper part of frontally aligned people con-

Figure 9: Topology of the CCNW used for face de-
tection.

Figure 10: Exemplary results for face detection with
the Cascade-Correlation Neural Network, infront of
highly cluttered background. From left to right: two
images containing correct and false positive detec-
tions, an image with only correct detection, and an
image where the face detection failed (only false pos-
itive detections).

tains a simple fusion method and a subsequent selec-
tion mechanism. Only those image locations where
at least two out of the three cues supply a detection
result, are allowed to contribute to the �nal selec-
tion process (see �g. 11). To ensure that all cues are
equally weighted during the selection process, a uni-
form Gauss-shaped activity blob is used to encode
every detection result (image location).
The �nal selection process is realized by means of a
dynamic neural �eld. Since dynamic neural �elds are
powerful tools for dynamic selection using simple ho-
mogeneous internal interaction rules [1], we adapted
them for our purposes. Because we use �ve �ne-
to-coarse resolutions in our scale space (see �g. 5),
we can actually localize people even at di�erent dis-
tances. Therefore, a neural �eld for selecting the
most salient region should be three-dimensional. The
�eld is described as a recurrent nonlinear dynamic
system. Regarding the selection task, we need a dy-
namic behavior which leads to one local region of ac-
tive neurons successfully competing against the oth-
ers, i. e. the formation of one single blob of active
neurons as an equilibrium state of the �eld (for a
detailed description see [3]).
By using a three-dimensional neural �eld, we are able
to consider the local correspondences within as well



Figure 11: One example for fusing the di�erent cues
for person veri�cation. According to the fusion rule,
only those locations of the scale space are fed into
the �nal selection process were at least two cues sup-
ply a detection result. (From left to right): face de-
tection, head-shoulder contour detection, skin color
detection, and fusion result.

as between adjacent resolution levels. This leads to
an interesting side e�ect: because outputs of the dif-
ferent cue detectors o�en occur at the same location
of adjacent resolution levels, such correspondencies
enhance the selection of such locations, resulting in
a much more robust veri�cation. The veri�cation
examples of �g.14 illustrate this e�ect.

2.6 Tracking
The goal of person tracking is to keep continuous
contact to the current user, and person veri�cation
provides the initialization for the subsequent track-
ing process. Tracking can be done via the omnidi-
rectional camera as well as via the frontally aligned
cameras. The tracking procedure is based on the
Condensation algorithm [9], widely accepted as a
powerful and e�cient method for tracking arbitrarily
shaped probability distributions [7].
The features underlying the tracking process, a
combination of head-shoulder contour detection and
adaptive color modeling turned out to be appropri-
ate, were derived from the presented person veri�ca-
tion procedure.

2.7 Gra�cal User Interface, Speech Output
and Robotic Face
Via the gra�cal user interface, running on a touch-
screen that is mounted on top of the robot, an im-
mediate interaction between robot and human user
can be realized. In our application scenario, the cus-
tomer can chose an item she is looking for or a de-
sired market area. Generally, this kind of "classical"
human-machine interaction cannot be completely re-
placed in the near future. The reason is quite obvi-
ous: the appropriate alternative would be a purely
speech-based dialog between robot and human, but,

up to now, speech recognition methods do not pos-
sess the necessary capabilities concerning vocabulary
size, associative mapping, context dependency, di-
alect and so on. Moreover, for service robots inter-
acting with anybody, one cannot assume that robot
and human operate within the same reference frame.
In other words, the robot does not know what the
human will say, and on the other side, the human
has no idea about the vocabulary the robot is able
to recognize.
In our opinion, speech output is much more than
only entertainment. Via speech, the robot can tell
its current state, can o�er its services, or can ask its
current user to solve ambiguous or uncertain situa-
tions. For simplicity reasons, we currently use pre-
pared sound �les, and their activation is triggered
by certain situations. For instance, after successful
person veri�cation the robot welcomes this potential
user and invites her to interact via the touch-screen.

Figure 12: Face of Perses.
Inspired by the smart face of
Minerva, the robotic tour-
guide described in [17], our
robot Perses was equipped
with its own face, created by

eye-like camera fronts and a mouth made of a con-
trollable diode array (see �g. 12). Hence, the current
"emotional" state of the robot can be transmitted in
a more natural way.

3. Experimental Results

The experiments shown below are to demonstrate
an exemplary interaction cycle between service robot
and its user in the home store.

Figure 13: Person
localization via mo-
tion detection. The
white arrow marks
the view direction
(direction of the
frontally aligned
cameras, 0o) of the

robot, the angle runs clockwise.
Interaction starts with person localization. Within
the omnidirectional view (top left in �g. 13) per-
son P2 is moving towards the robot, whereas per-
son P1 passes the robot. Both people are detected
via motion-based segmentation (top right). Subse-
quently, the robot estimates the most attractive di-
rection by valuation of the two di�erent directions
(bottom of �g. 13), and turns towards person P2.



Figure 14: Veri�cation results for
di�erent situations: in a hallway
of the home store (top), infront
of a highly structured wall-paper
shelf of the home store (middle),
and infront of a relatively uni-
form background in our lab (bot-
tom). The input image is shown
left, the rightmost image contains
the veri�cation result. Between
them (from left to right) face,
head-shoulder contour, and skin
color detection are visible. The
rightmost scale space column il-
lustrates the di�erent fusion lev-
els after applying the above men-
tioned fusion rule. During the
last year, special emphasis has
been made to improve robust-
ness, speci�city and e�ciency of
the veri�cation procedure. Cur-
rently, the system runs with 0.5
Hz on a Double-Pentium III (500
MHz) with an image resolution of
about 200 × 200 pixels (frontally
aligned camera, depth range from
0.5 up to 2.5 meters).

Person localization is followed by person veri�ca-
tion. Fig. 14 contains a collection of veri�cation re-
sults. The veri�cation module provides an output
only when cue fusion and �nal selection (see section
2.5) supply a very strong result. To avoid false ver-
i�cations is very important, because otherwise the
robot would start interaction with uninterested peo-
ple or even with inanimate items. In case a potential
customer has not been veri�ed, the customer can log-
in directly via the touch-screen. After successful ver-
i�cation, the robot welcomes the customer by means
of a typical speech sequence. Then, the customer can
chose the desired item or the interesting market area
by means of touch-screen. After selection, the robot
con�rms the corresponding item and shows a map of
the market, where its current position and the goal
position are indicated.
During the whole interaction cycle, the robot tries
to keep continuous contact to the current customer
via visual tracking. An exemplary tracking sequence
is given in �g. 15, where samples of a longer run of
the tracking system (over several minutes) are shown.
To improve the robustness of the tracking procedure,
the person veri�cation module runs in parallel and
supplies additional candidate points. Furthermore,
the tracking process is supported via a simple sonar-
based distance check in the corresponding direction.

Figure 15: Person
tracking experi-
ment. The frames
indicate those
locations where
the tracked per-
son is most likely
expected.

As long as the contact to the current user can be
continuously updated, no articulation of the robot is
needed. If the robot detects a situation where the
user is lost, it provides a speech output to ask the
user to reduce the distance to the robot. Alterna-
tively, the guidance to a desired market position is
interrupted and the robot moves towards its present
user to prevent losing contact.

4. Conclusions and Outlook
The paper has described a multimodal scheme for in-
telligent and natural human-robot interaction. Spe-
cial emphasis was placed on vision-based methods
for user localization, person veri�cation and per-
son tracking. The interaction regime presented here
should be understood as work in progress, under-



going continuous changes. The experimental results
demonstrate the principal functionality of the corre-
sponding subsystems. Although the interaction cy-
cle strongly relates to our home store scenario, it can
contribute to a wider range of service robot applica-
tions.
Future research will concentrate on the extension of
the tracking system, which is currently limited to
roughly frontally aligned people. This includes the
vision-based methods as well as the integration of
scan-based person tracking techniques as proposed
in [16]. Furthermore, we will work on the design
and implementation of a framework for modelling
the interaction cycle to provide the robot with the
capability to learn and generalize from a series of
interactions with di�erent people.
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