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Abstract

The paper presents vision-based robot navigation and
user localization techniques of our long-term research
project PERSES (PERsonal SErvice System), which
aims to develop an interactive mobile shopping
assistant that allows a continuous and intuitively
understandable interaction with customers in a home
store. Against this background, the paper describes a
number of new or improved approaches, addressing
challenges arising from the characteristics of the
operation area, and from the need to continuously
interact with users in a complex environment. With
our approaches to vision-based or visually-controlled
map building, self-localization and navigation as well
as user localization and tracking, we want to make a
contribution to the real-world suitability of interactive
mobile service-robots in non-trivial application areas
and demanding human-robot interaction scenarios.
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1 Introduction

An interactive mobile service robot, e.g., a shopping
assistant, should be able to actively observe its op-
eration area, to detect, localize, and contact potential
users, to interact with them continuously, and to ad-
equately offer its specific services. Typical service
tasks we want to solve in the PERSES project are to
guide the user to desired areas or articles within a home
store(guidance functionpr to follow him as a user-
specific mobile information kiosk while continuously
observing the user and his behavfoompanion func-
tion) (see [6], too). In the context of this scenario, the
following interaction and navigation tasks had to be
tackled: (a) building and maintaining large-scale maps
as well as continuous self-localization of the robot in
the operation area, (b) robust avoidance of static and
dynamic obstacles during navigation, (c) navigation
to desired market areas acting as a guide, (d) visual
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Figure 1: (Top) Location plan of the home store, the ex-
perimental area of the PERSES-project. The topology of
the store is characterized by many similar, long hallways
of equal width (3 main passages of a length of about 100
meters and approx. 20 secondary hallways of 45 to 60 me-
ters length). Because of their regular structure, the most of
the hallways can be distinguished only visually by means of
color or texture features; (Bottom) exemplary views of three
hallways.

user localization within a pre-defined operation area,
(e) acoustic localization of a potential user clapping
his hands or shouting a command to attract attention,
(f) fast learning of a visual model of the current user
and online adaptation of that model due to the vary-
ing appearance of the user in the course of the shop-
ping process, (g) robust visual user tracking both while
standing still and during self-movement of the robot,
(h) recognition of simple spoken commands, and, for
the future, (i) recognition of gesticulated user instruc-
tions as a kind of non-verbal communication.

Up to now, in many mobile robot applications the
robots perceive their surroundings mainly by means
of distance sensors (laser, sonar). To accommodate
the challenges that arise from the specificity of our
interaction-oriented scenario and the characteristics of
the operation area, a highly unstructured, dynamic and
crowded environment, we placed special emphasis on
vision-based methods both for human-robot interac-
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Figure 2:Experimental platform PERSES, an extended ver-
sion of a B21 robot. In addition to the standard equipment
of two sonar and one IR-layers, PERSES is equipped with
(i) an omnidirectional color camera with380° panoramic
view used for user localization and tracking, self-localization
and obstacle avoidance, (ii) a binocular 6 DoF active-vision
head with 2 frontally aligned color cameras used for user
verification and tracking and odometry correction, and (iii) a
binaural auditory system for acoustic user localization.

tion and robot navigation. The operation area, for ex-
ample, is characterized by many similar, long hallways
of equal width and a great number of critical obstacle
configurations, e.g., objects hanging down from the
ceiling or jutting out of shelves, lost shopping carts,
etc. Many of the obstacles cannot be perceived reliably
by distance sensors which operate in certain planes
in 3D space. Moreover, self-localization methods us-
ing distance sensors can produce numerous ambigui-
ties preventing a quick and reliable self-localization or
relocalization of the robot. In contrast, vision-based
approaches do not show these limitations, but supply
a much greater wealth of information about the struc-
ture of the local surroundings and the current behavior
of the interaction partner. This is not only required for
an efficient and safe navigation in this critical environ-
ment, but also for a stable contact between robot and
user, which, in turn, is a fundamental prerequisite for
a continuous interaction in the course of the shopping
process. Fig. 1 is to illustrate some of the challenges
of the operation area, a typical home store located in
the capital of Thuringia. The robot PERSES we use
as experimental platform is a standard B21 robot ad-
ditionally equipped with color cameras for interaction
and navigation (Fig. 2).

In the following, we present a number of new or
improved approaches, addressing challenges arising
from the characteristics of the operation area, and
from the need to continuously interact with users in
a complex environment: a) visually-controlled build-
ing and maintaining of large scale probabilistic oc-
cupancy maps of the operation area, b) vision-based
robot self-localization that combines panoramic views

of the robot’s omidirectional color camera with the
Monte Carlo Localization (MCL) [5], c) vision-based
obstacle avoidance using optical flow fields and in-
verse perspective mappings of the panoramic image,
and d) vision-based user localization and tracking by
means of specific cues and particle filters [7]. Fig. 3
illustrates the essential subtasks of the interaction and
navigation process from a functional point of view. All
vision-based methods presented in this paper are high-
lighted by gray background.
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Figure 3: Overview of the project-specific subtasks of the
interaction and navigation process from a functional point of
view.

2 Vision-based navigation and interac-
tion methods

2.1 Building and maintaining a global map

To navigate reliably in indoor environments, a robot
must know where it is. This includes both the abil-
ity of globally localizing the robot from scratch, as
well as tracking the robot’s position once its location
is known. In PERSES, we use two types of maps
for self-localization and navigation: (i) grid-based oc-
cupancy maps and (ii) a grid of panoramic views of
local surroundings (see section 2.2). The maps are
learned from sensor data (sonar scans, odometry read-
ings and panoramic images) collected when manually
joy-sticking the robot through the store. Up to now,
the building of the local and global occupancy maps
for navigation and path planning is based on sonar
data and odometry readings. One major problem using
odometry data is their increasing error over time, espe-
cially concerning the orientation angle. This problem
is well known and leads to the fact that a global map
generated along a closed-loop course cannot be really
closed without additional efforts (see Fig. 5, left). To
attenuate this effect, we utilize a specific feature of
our market floor (ground) which shows a rectangu-
lar structure caused by tiles that are uniquely oriented
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Figure 4: General idea of our vision-based odometry cor-
rection considering a specific feature of the market floor:
a) image of the floor in front of the robot, b) local orien-
tation tensors (orientations are coded as gray values), c) con-
fidences of local orientations (low-black, high-white), d) his-
togram of confidence-weighted local orientations, the dom-
inant orientation (center of gravity) is a significant mea-
sure for the accurate orientation of the robot in the interval
0° —90°

across the whole market area. The idea is illustrated
in Fig. 4: a top-down oriented on-board camera ac-
guires images of the floor in front of the robot. By con-
tinuously estimating the dominant orientations within
these images, we can calculate the accurate orienta-
tion of the robot and, therefore, substitute the rotation
angle supplied by odometry by the orientation deter-
mined visually. Hence, it is possible to eliminate the
orientation error, and subsequently, the position error.
Under the assumption that the initial position and ori-
entation of the robot are known, this method allows
an accurate, iterative position tracking as required for
map building. Fig. 5 and 6 illustrate the efficiency of
this specific method for vision-based odometry correc-
tion for map building. Fig. 5 shows the resulting oc-
cupancy maps of a section of the store (60 by 20 me-
ters) without (left) and with (right) odometry correc-
tion, while Fig. 6 presents an occupancy map of the
complete store (100 by 60 meters). Of course, the pro-
posed approach does not hold in a more general frame-
work, but is very well suited for our specific environ-
ment. The introduced method for vision-based odome-
try correction allows to efficiently build very large and
exact occupancy maps on the fly - without the com-
putationally expensive EM-algorithm for localization

Figure 5: Results of the occupancy map building: sonar-
based maps of a store section (60 by 20 meters; path
length: 250 m). Gray-values code occupancy probabilities:
white - occupied (obstacle), gray - free-space, black - un-
explored. (Left) without vision-based odometry correction:
the closed-loop course cannot be closed, because the error of
the odometry-based estimation of the rotation angle finally
amounts t®0°; (Right) with vison-based odometry correc-
tion, now the closed-loop course can be closed exactly.

start/end point
of map building tour

Figure 6: Result of visually corrected building of an oc-
cupancy map of the home store. The map was learned
from sonar scans collected when manually joy-sticking the
robot through the three main passages and a number of sec-
ondary hallways (total path length: 650 meters). In order
to demonstrate the accuracy of the map building, the exact
location map (white CAD-map) and the occupancy map cre-
ated on the fly are overlaid. The final localization error at
the start/end point of the tour located in the entrance area is
lower than 0.5 meter.

estimation and map building [2], which is extensively
exploited for mobile robot applications, e.g., in [9].

2.2 Vision-based robot self-localization

As mentioned above, the topology of the store area
is characterized by many similar, long hallways of
equal width (see Fig. 1). For this reason, self-
localization methods based on distance sensors can
produce numerous ambiguities preventing a quick self-
localization and relocalization in case of a complete
loss of positioning. Because the visual input from the
omnidirectional color camera supplies a much greater
wealth of information about the structure of the local
surroundings, we expect to defuse that problem and
to accelerate relocalization significantly. Therefore,
we currently develop an approach for vision-based
self-localization that combines panoramic views of
the omni-camera with the Monte Carlo Localization
(MCL) developed byFox [5]. MCL is a relatively
new algorithm for robust and efficient self-localization
of mobile robots. It is a version of Markov localiza-
tion [8, 4], a family of probabilistic approaches for
approximating a multi-modal probability distribution
coding the robot’s belieBel(l) for being at position

I = (z,y, ) in the state space of the robat.andy

are the robot’s coordinates in a world-centered Carte-
sian reference frame, andlis the robot’s orientation.
MCL applies sampling techniques to represent the pos-
terior belief Bel(l) for being at positiorl by a set of

N weighted, random samplés Samples in MCL are

of the type((z, y, ), p), wherep > 0 is a numerical
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Figure 7:General idea of our view-based Monte Carlo Lo-
calization. The approach is based on a grid-based representa-
tion of the operation area by a set of panoramic views of local
surroundings. The visual features (in the simplest case, mean
RGB color values) are extracted from annulus segments of
the omnidirectional color image. For more details see [6].

weighting factor, analogous to a discrete probability.
Because the sample set constitutes a discrete approx-
imation of the continuous probability distribution, the
MCL approach is computationally efficient, it places
computation just “where needed”. Additionally, it is
more accurate than Markov localization with a fixed
cell size, as state represented in samples is not dis-
cretized [5]. This allows a self-localization and posi-
tion tracking with sub-grid accuracy. In analogy with
the MCL algorithm presented in [5], our view-based
MCL (see Fig. 7) proceeds in two phases, Bredic-

tion phasgrobot motion) and th&/pdate phasevhich

are described more in detail in [6]. Fig. 8 illustrates

L = el | @1l g [ [ [d 10 44O L]

‘ ol ﬁ{ Kﬁ e
i et
e

s

Figure 8: Self-localization and tracking experiment exe-
cuted in a large section of the sto8(x 17m?) covering

3 hallways and 4 long shelves presented in Fig. 1 (not com-
pletely shown here). The grid-space is 60 cm, the total path
length is 50 m. The correct positions of the robot are marked
by white circles>, the estimated positions (centers of gravity
of the samples with highest weighting factors) ky Be-
cause the localization error is lower than 20% of the grid-
space (about 10 cm), in most casesdtand x are overlap-

ping.

a typical result of a view-based self-localization and

position tracking experiments recently executed in a
large section of the stor@g x 17m?). Despite the uni-
formity of the learned three hallways (see Fig. 1) and
the coarse grid-space 66 c¢m, the view-based MCL
yields very precise localization results already after a
few robot movements. After 5to 7 movements (about
10 meters), the difference between estimated and cor-
rect position of the robot was not larger than 20% of
the grid-space, i.e., about 10 cm. In earlier experi-
ments presented in [6] we investigated the influence of
occlusions on the localization accuracy. In these exper-
iments, a few people were standing around the robot at
a very low distance and occluded large regions of the
panoramic image (40-50%). Despite this occlusion,
the MCL still generated good localization results. In
this case, the difference between estimated and correct
position was not larger than the grid space. The results
of the empirical experiments confirm the robustness of
this vision-based self-localization method, however, it
still has to demonstrate its capabilities in still larger
and more complex operation areas of the home store.

2.3 Vision-based obstacle avoidance

Before navigation commands (e.g., from the path plan-
ning subsystem) are executed, they are passed to the
obstacle avoidancenodule (see Fig. 3) which sup-
presses commands impossible according to the cur-
rent obstacle configuration in front of the robot. In
addition to scan-based obstacle avoidance methods,
we currently investigate vision-based methods. The
need for supplemental vision-based methods for obsta-
cle avoidance is due to numerous obstacles that cannot
be perceived reliably by 2D distance sensors (sonar,
laser) because of their specific form, size or height
(e.g., objects jutting out of shelves or hanging down
from the ceiling). Against this background, local navi-
gation methods based on optical flow fields and inverse
perspective mappings are currently investigated in our
lab. Based on the images provided by the omnidi-
rectional camera, we estimate panoramic optical flow
fields (Fig. 9) that are used for an efficient bee-like lo-
cal navigation. The underlying control mechanism [3]
tries to balance the optical flow in both hemispheres of
the visual field, which results in a collision-free loco-
motion in the middle of obstacle configurations (e.qg.,
hallways). This approach, however, still has a number
of insufficiencies in free-space and dead-ends.

2.4 Visual user localization and tracking

One of the major problems of this scenario consists in
the robust localization, verification and tracking of a
user in the area. A detailed explanation of our multi-
cue approach is given in [1].

User localization: The visual user localization
performs a motion-based foreground-background seg-
mentation in the image sequence provided by the om-
nidirectional camera, and returns the angle to the cen-
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Figure 9: Results of inverse perspective mappings of suc-
cessive omnidirectional views of the local surroundings (left)
onto virtual top-views (right) that are used to estimate a
panoramic optical flow field (bottom). It is obvious that the
person moving from the positions at 3 to 2 o’clock in the
omni- and top-view images causes large flow vectors, while
the static objects on the right just cause small ones. This
technique simplifies the detection of dynamic obstacles dur-
ing self-movement of the robot. As a consequence of the
inverse perspective mapping, towering objects or objects jut-
ting out of shelves produce larger flow vectors than objects
located near the ground. The flow vectors on the left side
in the image are the result of the self-movement of the robot
near the shelves.

ter of gravity of the closest region moving towards the
robot. In the waiting position or while standing still,
this motion-based segmentation determines candidate
regions that indicate if and where potential users could
be in the surroundings of the robot.

User verification: The verification of the localiza-
tion hypothesis is triggered, when the robot was turned
to the moving object. Due to this turn, a potential user
should be localized in front of the robot, allowing to
observe him by the frontally aligned cameras as well as
by the omnidirectional camera. To evaluate if there re-
ally is a person and if the person could be willing to in-
teract with the robot, we developed a verification sys-
tem that integrates different visual cues. Person verifi-
cation should highlight that regions most likely cover
the upper part of a person. Fig. 10 gives an overview of
our task-specific multi-cue approach that integrates the
following visual cues: facial structure, head-shoulder-
contour and skin color. Because we want to localize
people even at different distances from the robot, a
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Figure 10:Multiple-cue approach for user verification.

multiresolution pyramid (scale space with five fine-to-
coarse resolutions) transforms the images into a multi-
scale representation. The cue modules sensitive to fa-
cial structure and head-shoulder contour operate at all
levels of the grayscale pyramid, while the cue mod-
ule for skin color detection uses the original color im-
age. After superposition of the corresponding fea-
ture maps, a 3D-Winner-Take-All process within the
saliency pyramid selects that region most likely cov-
ering the upper part of a person. Fig. 11 shows typi-
cal verification results obtained in the highly structured
environment of the home store. By this multi-cue ap-
proach, we can handle varying environmental circum-
stances much easier, which, for instance, can make the
skin color detection difficult or almost impossible.

Figure 11: Typical verification results for different situa-
tions in the home store; size of the frames corresponds to the
respective level of the scale space - small frames correspond
to levels of high-resolution and vice versa. Final localization
results are marked as black frames. (Left) back light scene
taken in the entrance area, where only the contour detection
can provide a confident contribution for verification; (Right)
crowded area in the store - the child is selected as final local-
ization result because it is the only subject that fulfills all 3
criteria of the multi-cue approach: face and upper part of the
body are oriented frontally towards the robot, skin color can
be detected clearly.

User tracking: During the whole interaction cy-
cle, the robot tries to keep continuous contact to the
current customer via visual tracking. Person verifi-
cation provides the initialization for this tracking pro-
cess, and tracking can be done via the omnidirectional
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Figure 12: User tracking in a sequence of panoramic im-
ages provided by the omnidirectional camera. In this se-
quence, only the frontal part/ — 50°) of the panoramic
visual field is log-polar transformed and analyzed. The par-
ticles with the highest probability (coding significant user lo-
calization hypotheses) are mapped onto the images as white
dots. The black/white frames indicate those locations where
the tracked user is most likely expected (center of gravity of
the largest particle cloud).

camera as well as via the frontally aligned cameras.
The tracking procedure is based on thendensation
algorithm [7], widely accepted as a powerful and effi-
cient method for tracking arbitrarily shaped probabil-
ity distributions [5]. The features underlying the track-
ing process, a combination of head-shoulder contour
detection and skin color modeling, which turned out to
be appropriate, were derived from the user verification
procedure. An exemplary tracking sequence is given
in Fig. 12, where samples of a longer run of the track-
ing system are shown. To improve the robustness of
the racking procedure, the person verification module
runs in parallel and supplies further candidate points.
As long as the contact to the current user can be contin-
uously updated, no articulation of the robot is needed.
If the robot detects a situation where the user is lost, it
provides a speech output to ask the user to reduce the
distance to the robot. Alternatively, the guidance to
a desired market position is interrupted and the robot
moves towards its current user to prevent losing con-
tact.

3 Conclusions and Outlook

In the paper, special emphasis has been placed on
vision-based methods for both map building, self-
localization and local navigation of the mobile robot
PERSES, and localization and tracking of potential
users to accommodate the challenges that arise from
the characteristics of the environment and from the
need to continuously interact with people. For the
already implemented subsystems, we presented both
important aspects of the methodological background
and results of ongoing experiments executed in the op-
eration area, a home store. The experimental results
are promising and illustrate the functionality, but also
the still existing weaknesses of the already realized

vision-based methods. Future research will concen-
trate on the integration of the methods presented here
into a prototypical interaction cycle and on the imple-
mentation of a probabilistic control architecture that
allows the self-organization of efficient strategies for
multi-modal human-robot interaction during the shop-
ping process. In order to model the current state of the
user within the interaction cycle and to select the most
effective interaction-strategy, the integration of proce-
dures for speech recognition and interpretation of ges-
tures and/or body language, and a verbal, mimic, or
body language-based articulation of the robot back to
the user is required. Such an intuitively understand-
able, bidirectional interaction between robot and user
still remains a challenge to realize a user-friendly guid-
ance and companion function.
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