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Abstract. We present a biologically motivated computational model
that is able to anticipate and evaluate multiple hypothetical sensorimo-
tor sequences. Our Model for Anticipation based on Cortical Represen-
tations (MACOR) allows a completely parallel search at the neocortical
level using assemblies of rate coded neurons for grouping, separation, and
selection of sensorimotor sequences. For a vision-controlled local naviga-
tion of a mobile robot Khepera, we can demonstrate that our anticipative
approach outperforms a reactive one. We also compare our explicitely
planning approach with the implicitely planning Q-learning.

1 Introduction

Based on findings for the sensorimotor character of perception [1,2], we devel-
oped an alternative approach to perception that avoids the common separation
of perception and generation of behavior and fuses both aspects into one con-
sistent neural process. In this approach, perception of space and shape in the
environment is regarded to be an active process which anticipates the sensory
consequences of alternative hypothetical interactions with the environment, that
could be performed by a sensorimotor system, starting from the current sensory
situation. This approach is supported by biological findings. For example, it was
shown that such planning of motor actions takes place in the secondary motor
areas [3]. Thach (1996) found that the premotor parts of the brain are active both
in planning movements to be executed as well as in thinking about movements
that shall not be executed.

Based on these findings, we developed our Model for Anticipation based on
Cortical Representations MACOR, presented in sec.2. It 1s intended as a general
scheme for sensorimotor anticipation in a neural architecture. The model does
not attempt to provide a detailed description of a specific cortical or subcortical
structure, but we try to capture some general properties that are relevant to
our “perception as anticipation”-approach in brain-like systems (for details see
[4]). The objective of this paper is to demonstrate the efficiency of our anticipa-
tory approach for a real-world sensorimotor control problem, the local navigation
and obstacle avoidance of a vision-controlled mobile robot showing non-holonom
movement characteristics. We compare the achieved navigation behavior with
other non-anticipative approaches like reactive control and Q-learning-based con-
trol. It is important to note that the MACOR-concept 1s also suitable for other
sensorimotor or cognitive tasks that must consider alternative action sequences
and their hypothetical results.
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2 Model for anticipation

In the framework of a visually-guided navigation task (sec.2.3), our architecture
(see fig.1) processes as sensorimotor information a visual input yielded from
an omnicamera, supplemented by the last motor command executed. Within
the architecture, those inputs are represented by a Fuzzy ART architecture [5].
The visual part is represented by the F2-nodes of a Fuzzy ART network. Each
of these nodes contains several neurons, which represent the motor commands
available to bring the system into the considered visual situation (visuomotor
column). Between the resulting visuomotor representation of the current situa-
tion and that of the preceeding one, connections incorporating the certainty of
that transition and its evaluation are adapted (sec.2.1).
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sensorimotor sequences may be generated.

This architecture embeds the functionality required for a parallel generation
of sequences of sensorimotor hypotheses (sec.2.2). In the context of the biological
foundations of the architecture, this parallel generation is realized by a spread of
activity through connections between the visuomotor columns. In the following
investigations, we use a restricted set of discrete motor commands to investigate
the effect of anticipative behavior (see sec.2.3, too).

2.1 Learning within the map

The learning of sensorimotor connections between the present and the preceding
visuomotor situations takes place after each executed motor command. To eval-
uate the certainty of the existance of sensorimotor connections, we investigated
several approaches, for example actual transition probabilities. Because of the
clustering of the input space, high competence weights between neurons in the
same sensorimotor assembly are established. The correspondingly lower com-
petence weights between different situations yield lower sequence evaluations.
These sequences are subsequentely not selected, but important for the consid-
eration of movements resulting in a collision and thus for achieving of system
goals.

Using the simple learning equ.l realized as a sigmoidal function for com-

petence weights, a specific weight can quickly reach a maximum value wg, .,



determined by the parameter g and o. Thus all weights hold the same value
after a sufficiently high number of adaptation steps, such that the action selec-
tion (sec.2.2) depends only on the values of the evaluation weights. Therefore,
the competence weights are only meaningful for unknown transitions, which are
devalued by the competence. In equ.1, z;; is the number of adaptations of the
respective weight.

1
w%(t) R where p =28 and c=04 (1)
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For learning of evaluation weights, a simple form of reinforcement learning
is used. Thus, the evaluation weights hold only the expected evaluation for the
next transition, yielding a purely reactive behavior. Only by means of internal
simulation, an anticipative behavior can be generated. The reinforcements »
yield the evaluation of the generated behavior. In our experiments, they were
chosen to reward a collision free, straight navigation behavior and to punish turns
and collisions. For the adaptation of evaluation connections wlrj, the number z
of adaptations of the respective weight w;; is used to determine an adaptive

learning rate er .

iz 1
wzrj(t'i'l) = wzrj(t) + o (r— wzrj(t)) (2)

i
For comparison, a special form of reinforcement learning, Q-learning [6, 7] was
also investigated, because 1t is a model free, but implicitely planning approach.

1

wij(t+1) = wi;(t) + o (r+7 - wi; () — wij(v)) (3)
ij

k(1) = maxwf () )

By choosing the parameter v to control the planning horizon v > 0, the pre-
diction of evaluations of subsequent transitions can be stored in one connection
(strong Q-learning, equ.3 and 4). Q-learning becomes a planning free approach
by choosing v = 0 (weak Q-learning, equ.2).

2.2 Generation and evaluation of sensorimotor sequences

For generation of sensorimotor sequences, a specific neuron in a Fuzzy ART as-
sembly is activated by the current sensory situation and the last executed motor
command. This neuron propagates its activity y;' to all other interconnected
neurons ¢ € S = [0,n-m — 1] using its competence connections wZ»Cj, where n is
the number of sensory assemblies and m the number of motor neurons within
each assembly. The activated neurons may in turn activate further neurons, re-
sulting in a mechanism of internal simulation and thus the generation of whole

sequences of sensorimotor hypothesis (equ.5).
yi'(t+ 1) = maxui; () -y (1) (5)
Since the maximal value of the competence connection is less than 1.0, a subse-

quent neuron will always be less activated than its predecessor. Also, a neuron
can only be activated by its maximum input activity. This supplies a simple



stopping criterion for the propagation of interconnecting sequences. Simultane-
ous to the parallel generation of sequences of sensorimotor hypotheses, the model
realizes the selection of the best evaluated sequence by a backpropagation of lo-
cal sequence evaluations, as shown in equ.6. This backpropagation starts as the
start neuron activates further neurons and each evaluation is backpropagated to
the respective sequence predeccesor.

v+ 1) = wh(t) -yt (t+1) + I;leasxyf (t) (6)

The activity backpropagated to the start neuron represents the highest sequence
evaluation in each time step. Thus in each time step, an action selection is possi-
ble, which improves as internal simulation goes on. This mechanism yields high
cumulated sequence evaluations for well known and highly evaluated transitions.
To realize a reactive behavior, the process of internal simulation runs only for
one time step. This means the starting neuron activates further neurons which
then propagate their evaluations directly back onto the starting neuron.

2.3 Experimental scenario

Because of their embodiment and situatedness, robots are ideal systems to
demonstrate the advantages of an anticipation based sensorimotor control com-
pared to a reactive one. To navigate successfully, for example, to avoid obstacles
or to go through narrow passages, they have to consider their physical and me-
chanical properties and constraints (e.g. inertia, holonom or nonholonom kine-
matics). A mobile system, a robot or an animal, that is not able to learn and
consider its constraints and their sensorimotor consequences, will not be able to
evolve successful navigation behaviors.

To demonstrate the advantages of an anticipation based sensorimotor control,
we used the mobile robot Khepera as a non-holonom system. Because of the used
restricted action space, our system has to consider its constraints and is forced
to start an early obstacle avoidance by internal simulation to realize a successful
navigation behavior.

In our investigations, the visual sensory inputs were provided by an omnicam-
era. After a transformation into a physiological color space [8] specially tuned
receptive fields extract the color distribution around the robot, which gives an
implicit description of the obstacle arrangement.

3 Results

To demonstrate the advantages of anticipative systems, i.e. systems featuring
explicit planning, we provide a comparison between the following approaches:
— the presented system which explicitely plans by internal simulation,
— a purely reactive system which operates exclusively on the current sensori-
motor situation, and
— an implicitly planning approach, Q-learning.

For the investigation of anticipation-based behavior, we used Fuzzy-ART mod-
ules with 50 nodes (vigilance p = 0.9) for sensory clustering and three exe-
cutable actions per sensory assembly. A sequential learning process was employed



to structure the sensory clusters and to adapt the competence and evaluation
weights involving more than 10.000 typical sensorimotor situations. In Q-learning
we used a planning horizon of v = 0.9. Systems except Q-learning, which does
not use competence weights, utilized equ.1 to adapt their competence weights.
The behavior generated by the different systems was recorded over 10 trials each
and 1s exemplarily depicted in fig.2.
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Fig. 2. In the experiments, a trial ended either after a collision or a maximum of 40 steps.
The generated behavior shows that only the explicitly planning system (middle) was able
to realize a successful obstacle avoidance considering the physical limitations of the non-
holonom robot with a very limited action space. After the very first detection of a curve or
obstacle, this system began to move to the left (as second selected action) and pursued that
movement until the turn was negotiated. In contrast, the reactive system (left) chose to
drive straight forward until almost hitting the wall. Only directly in front of the wall it chose
to turn right, thus unable to avoid a collision. The Q-learning system (right) initiated also
an early turn to the left and continued until the turn was negotiated. Subsequently, the
action 'go straight’ was repeatedly chosen, because the visual situation in the middle of the
floor is represented by the same Fuzzy ART node as the floor situation near the wall. Only
in the situation directly in front of the wall, another Fuzzy ART node was activated and a
turn initiated. Like Q-learning, our reactive approach also learned the action 'go straight’
for the floor situation, but by means of internal simulation, it chose mostly turns.

Further, in each trial the achievable total reinforcement was determined as
the sum of the individual reinforcements received after each motor command.
The respective mean values and variances together with typical trial lengths and
the mean reinforcements for a single motor command are shown in table 1.

criteria reactive system |explicitly anticip. system|Q-learning
reinforcement mean 2.8 15.6 4.2
per trial variance 0.1 8.6 2.4
trial length mean 7.2 29.2 11.7
variance 0.4 14.2 4.2
reinforcement per step| mean | 0.61 0.55 0.57

Table 1. Mean reinforcement and standard deviation (std) for 10 trials of the different
systems. Although the explicitly planning system achieves the highest mean reinforcement
per trial, it also yielded the highest std. This was caused by 4 of those 10 trials (maximal
trial length was 40) that ended due to collision, most probably as a matter of the hardware
fixation of the omnicamera. The trials of the reactive and the Q-learning system all ended
by collision and therefore in lower trial lengths. Further the mean reinforcements per step
(not considering the step that resulted in a collision) show that the explicitely planning
system got the lowest reinforcement per step as a result of more turns executed, which
yield lower reinforcements than the movement 'go straight’.

These results give a strong indication that only the explicitly planning system
is able to realize an obstacle avoidance for the inert, non-holonom roboter system.
In comparison, the reactive system did not produce any avoiding actions at all.
Though the Q-Learning system chose mostly proper motor commands, it could
not overcome the perhaps non-optimal sensorimotor representation.



4 Conclusions and outlook

We presented MACOR, that 1s able to anticipate and evaluate multiple hypo-
thetical sensorimotor sequences. Using a framework of local navigation of a non-
holonome robot, the advantage of anticipation based control was demonstrated
empirically. The investigations performed demonstrate the advantage of antic-
ipative systems compared to reactive systems and especially, the advantage of
explicitly planning systems compared to implicitly planning ones.

This comparison is the basis of further investigations targeting a more com-
plicated scenario, dealing with the aspect of changing system goals. These in-
vestigations are intended to show the advantages of reactively stored evaluation
weights compared to weights whose values represent an implicit planning hor-
izont, like Q-learning. These advantages become obvious for system goals that
change over time, and which thus require readaptations of the sensorimotor
transitions. With reactive evaluation weights in combination with internal sim-
ulation, only the actually different sensorimotor transitions must be relearned,
which are only a few, to reflect the new system goal. So we want to show that
an explicitly planning system may realize a flexible behavior according to a new
task much faster than an implicitly planning system like Q-learning.

Further we want to investigate obvious similarities to probabilistic modelling
techniques involving Hidden Markow Models [9] in detail. Besides some simi-
larities in structure and purpose, there are a number of conceptual differences
concerning, e.g., the learning strategies, the biological plausibility, or a prospec-
tive parallel feasibility.
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