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Abstract

We present a biologically motivated computational
model that 1s able to anticipate and evaluate multiple
hypothetical sensorimotor sequences. Our Model for
Anticipation based on Cortical Representations (MA-
COR) allows a completely parallel search at the neo-
cortical level using assemblies of rate coded neurons for
grouping, separation, and selection of sensorimotor se-
quences. For a vision-controlled local navigation of a
mobile robot Khepera, we can demonstrate that our
anticipative approach outperforms a reactive one. We
also compare our explicitely planning approach with
the implicitely planning Q-learning. Further we show
the advantages of ART [2] as a realization of MACOR

for real-world tasks.

1 Introduction

Based on findings for the sensorimotor character of per-
ception [1, 5], we developed an alternative approach
to perception that avoids the common separation of
perception and generation of behavior and fuses both
aspects into one consistent neural process. In this ap-
proach, perception of space and shape in the environ-
ment is regarded to be an active process which antici-
pates the sensory consequences of alternative hypothet-
ical interactions with the environment, that could be
performed by a sensorimotor system, starting from the
current sensory situation. This approach is supported
by biological findings. For example, it was shown that
such planning of motor actions takes place in the sec-
ondary motor areas [9]. Thach (1996) found that the
premotor parts of the brain are active both in planning
movements to be executed as well as in thinking about
movements that shall not be executed.

Based on these findings, we developed our Model for
Anticipation based on Cortical Representations MA-
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COR, presented in sec. 2. It is intended as a gen-
eral scheme for sensorimotor anticipation in a neural
architecture. The model does not attempt to pro-
vide a detailed description of a specific cortical or sub-
cortical structure, but we try to capture some gen-
eral properties that are relevant to our “perception as
anticipation”-approach in brain-like systems (for de-
tails see [3]). The objective of this paper is to demon-
strate the efficiency of our anticipatory approach for a
real-world sensorimotor control problem, the local nav-
igation and obstacle avoidance of a vision-controlled
mobile robot showing non-holonom movement charac-
teristics. We compare the achieved navigation behav-
ior with other non-anticipative approaches like reactive
control and Q-learning-based control (sec. 3.2). More-
over, in section 3.1 we show that a fast generation of
a stable representation of situations in real sensorimo-
tor tasks may be realized more efficiently by systems
derived from the Adaptive Resonance Theory (ART)
than by statistical clusterers.

2 Model for generating visuomotor sequences

For real sensorimotor tasks, the development of MA-
COR requires compliance with a number of demands,
such as a fast generation of stable representations of
situations, the recording of rare, but behaviorally rel-
evant situations and a simultaneous (without sensory
pretraining) adaptation of sensorimotor transitions. In
sec. 2.1, we demonstrate both the agreement of ART-
systems with those requirements, and the feasibility of
an integration of an ART-system into MACOR.

In sec. 2.2, we introduce the anticipation-based model
MACOR in a realization based on Fuzzy ART.

2.1 Fuzzy ART for the generation of sensorimo-
tor representations

In the following, the term statistical clusterer shall re-
fer to systems that approximate the probability density
of the input data (e.g. Self-Organizing Feature Maps
or a Neural Gas [4]). Only statistically often presented
input data will be represented with high accuracy by
those clusterers. In contrast, ART-systems, and es-
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pecially Fuzzy ART in fast learning mode, are able
to capture input data after a single presentation and
thus, independent of their probability density (plastic-
ity). Tts weights form subspaces in the input space,
whose size depend on a single set parameter, the vigi-
lance p € [0,1]. The higher the vigilance, the smaller
the subspaces and therefore, the more accurate the rep-
resentation of the inputs. When an input is presented
to ART, and 1t can be represented by a neuron, the
system will move into a resonant state. Otherwise, a
new neuron must be inserted and its weights calculated
from the input sample. Another essential feature is the
stability of subspaces in Fuzzy ART. Since subspaces
are only allowed to grow and are bounded by the vigi-
lance, no learned data will ever be lost.

Stability and plasticity: In MACOR, the genera-
tion of a visuomotor representation and the adaptation
of sensorimotor transitions (action evaluations) may
be realized either simultaneously or sequentially. Al-
though the effects of the sensorimotor representation
can only be investigated separately following sequential
learning, we are much more interested in simultaneous
learning due to its fewer learning iterations and better
biological plausability.

During simultaneous learning with a statistical clus-
terer, action evaluations will be associated with neu-
rons that still undergo drastic changes of their repre-
sentations. Thus, the evaluations must be relearned to
reflect the new representations. Such changes are un-
avoidable and will occur frequently during the begin-
ning of learning. They produce a slow convergence to
the resulting behavior and may cause failures regarding
the realization of system goals.

With Fuzzy ART, the representations of neurons are
stable, such that the associated action evaluations do
not need to be adapted to changing representations and
simultaneous learning becomes possible.

In modification to the original algorithm for Fuzzy
ART, which assumes an unlimited number of free neu-
rons, MACOR restricts the number of available neu-
rons to a maximum due to biological and technical
resource limits. If a presented input cannot be rep-
resented by a neuron (no resonance) and there are no
more available neurons, our modifications use the neu-
ron with minimal distance as the best matching neuron,
but without any subsequent weight adaptation.

2.2 Model for anticipation

In the framework of a visually-guided navigation task
(sec.2.5), our architecture (see fig.1) processes as sen-
sorimotor information a visual input yielded from an
omnidirectional camera, supplemented by the last mo-

tor command executed. Within the architecture, those
inputs are represented by a Fuzzy ART architecture
[2]. The visual part is represented by the F2-nodes of
a Fuzzy ART network. FEach of these nodes contains
several neurons, which represent the motor commands
available to bring the system into the considered visual
situation (visuomotor column). Between the resulting
visuomotor representation of the current situation and
that of the preeceding one, connections incorporating
the certainty of that transition and its evaluation are
adapted (sec.2.3).
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Figure 1: Overview of the architecture. To represent visuo-
motor inputs, each Fuzzy ART node represent-
ing a specific visual input contains several neu-
rons to represent motor commands available to
bring the system in this situation. Connections
between the present and the preceeding visuomo-
tor situations are adapted to reflect both the re-
inforcement incurred during that particular tran-
sition and the competence gained. By activation
of a specific neuron and the subsequent spread
of activity through its weights to activate other
neurons, alternative sensorimotor sequences may
be generated.

This architecture embeds the functionality required for
a parallel generation of sequences of sensorimotor hy-
potheses (sec.2.4). In the context of the biological foun-
dations of the architecture, this parallel generation is
realized by a spread of activity through connections
between the visuomotor columns. In the following in-
vestigations we use a restricted set of discrete motor
commands to investigate the effect of anticipative be-
havior (see sec.2.5, too).

2.3 Learning within the map
The learning of sensorimotor connections between the
present and the preceeding visuomotor situations takes



place after each executed motor command. To evalu-
ate the certainty of the existance of sensorimotor con-
nections, we investigated several approaches, for ex-
ample actual transition probabilities. Because of the
clustering of the input space, high competence weights
between neurons in the same sensorimotor assembly
are established. The correspondingly lower competence
weights between different situations yield lower se-
quence evaluations. These sequences are subsequentely
not selected, but important for the consideration of
movements resulting in a collision and thus for achiev-
ing the system goals.

Using the simple learning equ.1 realized as a sigmoidal
function for competence weights, a specific weight
can quickly reach a maximum value w, .., determined
by the parameter p and o. Thus all weights hold the
same value after a sufficiently high number of adap-
tation steps, such that the action selection (sec.2.4)
depends only on the values of the evaluation weights.
Therefore, the competence weights are only meaning-
ful for unknown transitions, which are devalued by the
competence. In equ.1, z; is the number of adaptations
of the respective weight.
1
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For learning of evaluation weights, a simple form of
reinforcement learning is used. Thus, the evaluation
weights hold only the expected evaluation for the next
transition, yielding a purely reactive behavior. Only by
means of internal simulation, an anticipative behavior
can be generated. The reinforcements r yield the eval-
uation of the generated behavior. In our experiments,
they were chosen to reward a collision free, straight
navigation behavior and to punish turns and collisions.
For the adaptation of evaluation connections wlrj, the
number z of adaptations of the respective connection

w;; 1s used to determine an adaptive learning rate Z%

v

w=280c=04 (1)

1
wzrj(t'i'l) = wzrj(t) + o (r— wzrj(t)) (2)
i
For comparision a special form of reinforcement learn-
ing, Q-learning [10, 8] was also investigated, because it
is a model free, but implicitely planning approach.

1

wiit+l) = wiit) + - (- whi(t) — wh()(3)
1J

wii(t) = maxwj(1) (4)

By choosing the parameter v to control the planning
horizon v > 0, the prediction of evaluations of preceed-
ing transitions can be stored in one connection (strong
Q-learning, equ.3 and 4). Q-learning becomes a plan-
ning free approach by choosing vy = 0 (weak Q-learning,
equ.2).

2.4 Generation and evaluation of sensorimotor
sequences

For generation of sensorimotor sequences, a specific
neuron in a Fuzzy ART assembly is activated by the
current sensory situation and the last executed motor
command. This neuron propagates its activity y;* to all
other interconnected neurons ¢ € S = [0, n-m—1] using
its competence connections wZ»Cj, where n is the number
of sensory assemblies and m the number of motor neu-
rons within each assembly. The activated neurons may
in turn activate further neurons, resulting in a mecha-
nism of internal simulation and thus the generation of
whole sequences of sensorimotor hypothesis (equ.5).

v+ = maxuf(0) -y () (5)

Since the maximal value of the competence connection
is less than 1.0, a subsequent neuron will always be
less activated than its predecessor. Also, a neuron can
only be activated by 1ts maximum input activity. This
supplies a simple stopping criterion for the propagation
of interconnecting sequences. Simultaneous to the par-
allel generation of sequences of sensorimotor hypothe-
ses, the model realizes the selection of the best evalu-
ated sequence by a backpropagation of local sequence
evaluations, as shown in equ.6. This backpropagation
starts as the start neuron activates further neurons and
each evaluation is backpropagated to the respective se-
quence predeccesor.

v t+1) = wfj(t)~yf‘(t+1)+lg1€asxyf(t) (6)

The activity backpropagated to the start neuron rep-
resents the highest sequence evaluation in each time
step. Thus in each time step, an action selection is
possible, which improves as internal simulation goes
on. This mechanism yields high cumulated sequence
evaluations for well known and highly evaluated tran-
sitions. To realize a reactive behavior, the process of
internal simulation runs only for one time step. This
means the starting neuron activates further neurons
which then propagate their evaluations directly back
onto the starting neuron.

2.5 Experimental scenario

Because of their embodiment and situatedness, robots
are ideal systems to demonstrate the advantages of an
anticipation based sensorimotor control compared to
a reactive one. To navigate successfully, for example,
to avoid obstacles or to go through narrow passages,
they have to consider their physical and mechanical
properties and constraints (e.g. inertia, holonom or
nonholonom kinematics). A mobile system, a robot or
an animal, that is not able to learn and consider its
constraints and their sensorimotor consequences, will
not be able to evolve successful navigation behaviors.



To demonstrate the advantages of an anticipation
based sensorimotor control, we used the mobile robot
Khepera as a non-holonom system. Because of the
used restricted action space, our system has to consider
its constraints and is forced to start an early obstacle
avoidance by internal simulation to realize a successful
navigation behavior.

In our investigations, the visual sensory inputs were
provided by an omnidirectional camera. After a trans-
formation into a physiological color space [6] specially
tuned receptive fields extract the color distribution
around the robot, which gives an implicit description
of the obstacle arrangement.

3 Results

We first show that Fuzzy ART is more efficient than
a statistical clusterer for the generation of visuomotor
representations as the basis for an adaptation of vi-
soumotor transitions. To demonstrate the advantages
of explicit planning systems, in sec.3.2 we provide a
comparison between the following approaches:

e the presented system which explicitely plans by
internal simulation,

e a purely reactive system which operates exclu-
sively on the current sensorimotor situation, and

e an implicitly planning approach, Q-learning.

3.1 Local Navigation based on a Neural Gas or
Fuzzy ART

We intend to show the advantages of Fuzzy ART com-
pared to a statistical clusterer, here exemplarily a Neu-
ral Gas (NG), based on fulfillment of requirements on
real sensorimotor systems, namely an online-enabled
generation of sensorimotor representations and the gen-
eration of actions appropriate for the system goals. We
measure the necessary number of training steps as well
as the generated behavior for both systems.

Sensory representation: To generate sensorimotor
representations, both systems were given 30 sensory
assemblies with three motor commands each: move
straight and left (¢ = 12°, s = 2.1 ¢m), move straight
and right (¢ = —12°, s = 2.1 em) and move straight
(¢ =0°, s = 2.1 ¢m). In accordance with the results of
preliminary investigations, the vigilance of Fuzzy ART
was set to 0.8. For the NG, the parameters learning
radius and learning rate were determined offline on a
data set using a breadth search for the combination
yielding the smallest clusterer error.

Figure 2 shows the expected lower clusterer error for
the NG versus that for Fuzzy ART. Also evident is, that

this error was achieved after the fifth presentation for
the NG, whereas Fuzzy ART converged after the first
presentation. The higher error for Fuzzy ART stems
probably from the calculation of the smallest Euclidean
distance from the middle of the subspace of the neuron.
As those subspaces often do not exhibit similar ranges
in the different input dimensions, but typically, span
much greater ranges in one or a few dimensions, an
input may cause a fairly high clusterer error despite
being represented by the neuron.
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Figure 2: Clusterer error for Fuzzy ART and NG. Follow-
ing each complete presentation (13100 visual in-
puts), we computed the average Euclidean clus-
terer error (for Fuzzy ART, from the middle of
the corresonding subspace). Although the learn-
ing equations for Fuzzy ART utilize Fuzzy AND to
determine the distance between input and weight
vector, we use the Euclidean distance for com-
parability of both systems The clusterer error of
Fuzzy ART is much higher, but it is achieved af-
ter the first presentation. The variance of the
clusterer error for Fuzzy ART is also much higher
than for the NG.

The following investigations will show that even with

the high clusterer error, Fuzzy ART is still able to pro-

vide a foundation for the adaptation of appropriate sen-
sorimotor transitions. The advantages of a fast learning
and stability outweigh the drawbacks in accuracy. In

a first investigation, we compared a NG fully trained

according to fig.2 with a system based on Fuzzy ART.

The NG was allowed five presentations of the data set

for sensorimotor adaptation, whereas the Fuzzy ART

used only the 9000 starting patterns in the data set.

A first indication, that only Fuzzy ART may be used

for an online-enabled generation of sensorimotor repre-

sentations, is given by the necessary training times: ca.

4.5 hours for Fuzzy ART and 32.7 hours for 65500 steps

of the NG. After that, the advantage of fast learning

can be shown by the much lower number of necessary
training steps.

Adaptation of sensorimotor sequences: Af-
ter the generation of sensorimotor representations,
competence- and evaluation weights were trained ac-
cording to eqns. 1 and 2. For this training, ca. 11000
randomly selected and about 2000 reactively selected
actions were executed (equals about 6.5 hours of train-
ing). After the adaptation of the weights, the gener-
ated reactive behavior of both systems was evaluated



and depicted, together with corresponding reinforce-
ment signals, in fig. 3.

The results in figure 3, show the generated behavior,
a collision avoidance, for both systems. The system
based on Fuzzy ART is characterized by early turning
movements, which result from the sensory representa-
tions generated.
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Figure 3: Local navigation using Fuzzy ART (top) and
NG (bottom) in a system with 30 neurons and
three motor commands per neuron. The circles
mark the positions of the Khepera during the ex-
periments. The reinforcement signals received
are provided underneath the corresponding exper-
iment. The system received less reinforcement for
a turning movement than for a straight motion,
whilst collisions were always punished by a rein-
forcement of 0.0. The trial ended in a collision or
at the other end of the scenario. In the figure on
the left top, a drift of the robot to the right is vis-
ible, in spite of an execution of a straight motion
(cmp. reinforcement signals). This is caused by
inaccuracies in the drives of the robot. However,
the sucessful navigation is proof for an integration
of this drift during the adaptation of sensorimotor
sequences.

The advantage of fast learning with Fuzzy ART and its
effect with respect to the behavior generated is shown
in fig. 4. For these investigations, both systems were
allowed 1000 steps for sensory pretraining. For the NG,
the parameters learning radius and learning rate were
again determined using a breadth search for the com-
bination yielding the smallest clusterer error. All other
experimental configuration is the same as before.

The results show that Fuzzy ART is more efficient for
a generation of sensorimotor representations and based
on it, an adaptation of transitions for an action evalu-
ation, although there are very few such applications of
ART-systems for sensorimotor tasks in the literature.
In contrast to the NG with its high number of train-
ing steps for sensory adaptation, Fuzzy ART realizes an
online-enabled learning with much fewer training steps.

Figure 4: In contrast to the investigations in fig. 3, here
both systems were allowed 1000 steps of training.
Only Fuzzy ART (top) realizes a collision avoid-
ance. The NG (bottom) is unable to generate
an appropriate sensory representation as a basis
for successful collision avoidance.

3.2 Comparison between reactive and planning
approaches

For the investigation of anticipation-based behavior, we
used Fuzzy-ART modules with 50 nodes (vigilance p =
0.9) for sensory clustering and also three executable ac-
tions per sensory assembly. After the structuring of the
sensory clusters the competence and evaluation weights
were adapted involving more than 10.000 typical sen-
sorimotor situations. In Q-learning we used a plan-
ning horizon of v = 0.9. Systems except Q-learning,
which does not use competence weights, utilized equ.1
to adapt their competence weights. The behavior gen-
erated by the different systems was recorded over 10 tri-
als each and 1s exemplarily depicted in fig.5. The gen-
erated behavior shows that only the explicitly planning
system (fig.5b middle) was able to realize a successful
obstacle avoidance considering the physical limitations
of the non-holonom robot with a very limited action
space. After the very first detection of a curve or obsta-
cle, this system began to move to the left and pursued
that movement until the turn was negotiated. In con-
trast, the reactive system (left) chose to drive straight
forward until almost hitting the wall. Only directly in
front of the wall it chose to turn right, thus unable to
avoid a collision. The Q-learning system (right) initi-
ated also an early turn to the left and continued un-
til the turn was negotiated. Subsequently, the action
‘go straight’ was repeatedly chosen, because the visual
situation in the middle of the floor is represented by
the same Fuzzy ART node as the floor situation near
the wall. Only in the situation directly in front of the
wall, another Fuzzy ART node was activated and a turn



initiated. Like Q-learning, our reactive approach also
learned the action ’go straight’ for the floor situation,
but by means of internal simulation, our anticipatory
approach chose mostly turns.

Figure 5: In the experiments, a trial ended either after a col-
lision or a maximum of 40 steps. For explanation
see text.

Further, in each trial the achievable total reinforcement
was determined as the sum of the individual reinforce-
ments received after each motor command. The respec-
tive mean values and variances together with typical
trial lengths and the mean reinforcements for a single
motor command are shown in table 1.

criteria react. | anticip. | Q-learn.
system | system

r mean 2.8 15.6 4.2

per trial std 0.1 8.6 2.4

trial mean 7.2 29.2 11.7

length std 0.4 14.2 4.2

r per step | mean 0.61 0.55 0.57

Table 1: Mean reinforcement (r) and standard deviation
(std) for 10 trials of the different systems. Al-
though the explicitly planning system achieves the
highest mean reinforcement per trial, it also yielded
the highest std. This was caused by 4 of those 10
trials (maximal trial length was 40) that ended due
to collision, most probably as a matter of the hard-
ware fixation of the omnidirectional camera. The
trials using the reactive and the Q-learning sys-
tem all ended by collision and therefore lower trial
lengths. Further, the mean reinforcements per step
(not considering the step that resulted in a colli-
sion) show that the explicitely planning system got
the lowest reinforcement per step as a result of
more turns executed, which yield lower reinforce-
ments than the movement 'go straight’.

These results give a strong indication that only the
explicitly planning system is able to realize an obstacle
avoidance for the inert, non-holonom roboter system.
In comparison, the reactive system did not produce any
avoiding actions at all. Though the Q-Learning system
chose mostly proper motor commands it could not treat
the perhaps non optimal sensorimotor representation.

4 Conclusions and outlook

We presented MACOR realized by Fuzzy ART that is
able to anticipate and evaluate multiple hypothetical
sensorimotor sequences. Using a framework of local

navigation of a non-holonome robot, the advantage of
anticipation based control was demonstrated empiri-
cally. The investigations performed demonstrate the
advantage of anticipative systems compared to reac-
tive systems and especially, the advantage of explicitly
planning systems compared to implicitly planning ones.

This comparison is the basis of further investigations
targeting a more complicated scenario, dealing with
the aspect of changing system goals. These investi-
gations are intended to show the advantages of reac-
tively stored evaluation weights compared to weights
whose values represent an implicit planning horizont,
like Q-learning. These advantages become obvious for
system goals that change over time, and which thus
require readaptations of the sensorimotor transitions.
With reactive evaluation weights in combination with
internal simulation, only the actually different senso-
rimotor transitions must be relearned, which are only
a few, to reflect the new system goal. So we want to
show that an explicitly planning system may realize a
flexible behavior according to a new task much faster
than an implicitly planning system like Q-learning.
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